История развития хроматографии. Развитие хроматографии. Возникновение и развитие хроматографии

1. Введение.

2. Возникновение и развитие хроматографии.

3. Классификация хроматографических методов.

4. Хроматография на твердой неподвижной фазе:

а) газовая (газо-адсорбционная) хроматография;

б) жидкостная (жидкостно-адсорбционная) хроматография.

5. Хроматография на жидкой неподвижной фазе:

а) газо-жидкостная хроматография;

б) гель-хроматография.

6. Заключение.


Как лучи спектра, в столбике углекислого кальция закономерно распределяются различные компоненты смеси пигментов, давая возможность своего качественного и количественного определения. Получаемый таким образом препарат я называю хроматограммой, а предлагаемую методику – хроматографической.

М. С. Цвет, 1906 г.

Введение

С необходимостью разделения и анализа смеси веществ приходится сталкиваться не только химику, но и многим другим специалистам.

В мощном арсенале химических и физико-химических методов разделения, анализа, исследования структуры и свойств индивидуальных химических соединений и их сложных смесей одно из ведущих мест занимает хроматография.

Хроматография – это физико-химический метод разделения и анализа смесей газов, паров, жидкостей или растворенных веществ и определения физико-химических свойств индивидуальных веществ, основанный на распределении разделяемых компонентов смесей между двумя фазами: подвижной и неподвижной. Вещества, составляющие неподвижную фазу, называются сорбентами. Неподвижная фаза может быть твердой и жидкой. Подвижная фаза – это поток жидкости или газа, фильтрующийся через слой сорбента. Подвижная фаза выполняет функции растворителя и носителя анализируемой смеси веществ, переведенной в газообразное или жидкое состояние.

Различают два вида сорбции: адсорбцию – поглощение веществ твердой поверхностью и абсорбцию – растворение газов и жидкостей в жидких растворителях.


2. Возникновение и развитие хроматографии

Возникновение хроматографии как научного метода связано с именем выдающегося русского ученого Михаила Семеновича Цвета (1872 - 1919), который в 1903 г. открыл хроматографию в ходе исследований механизма преобразования солнечной энергии в растительных пигментах. Это год и следует считать датой создания хроматографического метода.

М.С. Цвет пропускал раствор анализируемых веществ и подвижной фазы через столб адсорбента, находящегося в стеклянной трубке. В связи с этим его метод получил название колоночной хроматографии. В 1938 г. Н.А. Измайлов и М.С. Шрайбер предложили видоизменить метод Цвета и проводить разделение смеси веществ на пластинке, покрытой тонким слоем адсорбента. Так возникла тонкослойная хроматография, позволяющая проводить анализ с микроколичеством вещества.

В 1947 г. Т.Б. Гапон, Е.Н. Гапон и Ф.М. Шемякин впервые осуществили хроматографическое разделение смеси ионов в растворе, объяснив его наличием обменной реакции между ионами сорбента и ионами, содержащимися в растворе. Так было открыто еще одно направление хроматографии – ионообменная хроматография. В настоящее время ионообменная хроматография является одним из важнейших направлений хроматографического метода.

Е.Н. и Г.Б. Гапон в 1948 г. осуществили высказанную еще М.С. Цветом идею о возможности хроматографического разделения смеси веществ на основе различия в растворимости труднорастворимых осадков. Появилась осадочная хроматография.

В 1957 г. М. Голей предложил наносить сорбент на внутренние стенки капиллярной трубки – капиллярная хроматография. Этот вариант позволяет анализировать микроколичества многокомпонентных смесей.

В 60-х годах появилась возможность синтезировать как ионогенные, так и незаряженные гели, обладающие строго определенными размерами пор. Это позволило разработать вариант хроматографии, сущность которого заключается в разделении смеси веществ на основе различия их способности проникать в гель – гель-хроматография. Этот метод позволяет разделять смеси веществ, обладающих различной молекулярной массой.

В настоящее время хроматография получила существенное развитие. Сегодня разнообразные методы хроматографии, особенно в сочетании с другими физическими и физико-химическими методами, помогают научным сотрудникам и инженерам решать самые различные, часто очень сложные задачи в научных исследованиях и в технике.

3. Классификация хроматографических методов

Многообразие видоизменений и вариантов метода хроматографии требует их систематизации или классификации.

В основу классификации можно положить различные признаки, а именно:

1. агрегатное состояние фаз;

2. механизм разделения;

3. способ проведения процесса;

4. цель проведения процесса.

Классификация по агрегатному состоянию фаз:

газовая (подвижная фаза - газ), газожидкостная (подвижная фаза – газ, неподвижная фаза - жидкость), жидкостная (подвижная фаза - жидкость) хроматография.

Классификация по механизму разделения.

Адсорбционная хроматография основана на избирательной адсорбции (поглощении) отдельных компонентов анализируемой смеси соответствующими адсорбентами. Адсорбционная хроматография подразделяется на жидкостную (жидкостно-адсорбционная хроматография) и газовую (газо-адсорбционная хроматография).

Ионообменная хроматография основана на использовании ионообменных процессов, протекающих между подвижными ионами адсорбента и ионами электролита при пропускании раствора анализируемого вещества через колонку, заполненную ионообменным веществом (ионитом). Иониты представляют собой нерастворимые неорганические и органические высокомолекулярные соединения. В качестве ионитов применяют окись алюминия, пермутит, сульфоуголь и разнообразные синтетические органические ионообменные вещества – ионообменные смолы.

Осадочная хроматография основана на различной растворимости осадков, образуемых компонентами анализируемой смеси со специальными реактивами. Например, при пропускании раствора смеси солей Нg (II) и Pb через колонку с носителем, предварительно пропитанным раствором KI, образуются 2 окрашенных слоя: верхний, окрашенный в оранжево-красный цвет (HgI 2), и нижний, окрашенный в желтый цвет (PbI 2).

Классификация по способу проведения процесса.

Колоночная хроматография - вид хроматографии, в которой в качестве носителя для неподвижного растворителя используют колонку.

Бумажная хроматография – вид хроматографии, в которой в качестве носителя для неподвижного растворителя вместо колонки используют полоски или листы фильтровальной бумаги, не содержащей минеральных примесей. В этом случае каплю испытуемого раствора, например смесь растворов солей Fe (III) и Co (II), наносят на край полоски бумаги. Бумагу подвешивают в закрытой камере (рис.1), опустив ее край с нанесенной на него каплей испытуемого раствора в сосуд с подвижным растворителем, например с н-бутиловым спиртом. Подвижный растворитель, перемещаясь по бумаге, смачивает ее. При этом каждое содержащееся в анализируемой смеси вещество с присущей ему скоростью перемещается в том же направлении, что и растворитель. По окончании разделения ионов бумагу высушивают и затем опрыскивают реактивом, в данном случае раствором K 4 , который образует окрашенные соединения с разделяемыми веществами (синее – с ионами железа, зеленое – с ионами кобальта). Образующиеся при этом зоны в виде окрашенных пятен позволяют установить наличие отдельных компонентов.

Бумажная хроматография в сочетании с применением органических реактивов позволяет провести качественный анализ сложных смесей катионов и анионов. На одной хроматограмме с помощью одного реактива можно обнаружить ряд веществ, так как для каждого вещества характерно не только соответствующее окрашивание, но и определенное место локализации на хроматограмме.

Тонкослойная хроматография – вид хроматографии по своему механизму разделения аналогичный бумажной хроматографии. Различие между ними заключается в том, что вместо листов бумаги разделение проводят на пластинках, покрытых тонким слоем сорбента, изготовленного из порошкообразной окиси алюминия, целлюлозы, цеолитов, силикагеля, кизельгура и т.п. и удерживающего неподвижный растворитель. Основное достоинство тонкослойной хроматографии заключается в несложности аппаратуры, простоте и большой скорости проведения эксперимента, достаточной четкости разделения смеси веществ и в возможности анализа ультрамикроколичеств вещества.

Классификация по цели проведения хроматографического процесса.

Наибольшее значение хроматография имеет как метод качественного и количественного анализа смесей веществ (аналитическая хроматография).

Препаративная хроматография – вид хроматографии, в котором разделение смеси веществ производится в препаративных целях, т.е. для получения более или менее значительных количеств веществ в чистом, свободном от примесей виде. Задачей препаративной хроматографии может быть также концентрирование и последующее выделение из смеси веществ, содержащихся в виде микропримесей к основному веществу.

Неаналитическая хроматография – вид хроматографии, который используется в качестве метода научного исследования. Ее применяют для исследования свойств систем, например растворов, кинетики химических процессов, свойств катализаторов и адсорбентов.

Итак, хроматография является универсальным методом анализа смесей веществ, получения веществ в чистом виде, а также методом исследования свойств систем.


4. Хроматография на твердой неподвижной фазе

а)Газовая (газо-адсорбционная) хроматография

Газовая хроматография – хроматографический метод, в котором подвижной фазой является газ. Газовая хроматография получила наибольшее применение для разделения, анализа и исследования веществ и их смесей, переходящих без разложения в парообразное состояние.

Одним из вариантов газовой хроматографии является газо-адсорбционная хроматография – это метод, в котором неподвижной фазой является твердый адсорбент.

В газовой хроматографии в качестве подвижной фазы (газа-носителя) используется инертный газ: гелий, азот, аргон, значительно реже водород и углекислый газ. Иногда газом-носителем служат пары легколетучих жидкостей.

Газохроматографический процесс обычно осуществляется в специальных приборах, называемых газовыми хроматографами (рис.3). В каждом из них имеется система подачи потока газа-носителя, система подготовки и ввода исследуемой смеси, хроматографическая колонка с системой регулирования ее температуры, анализирующая система (детектор) и система регистрации результатов разделения и анализа (регистратор).

Важное значение в газо-адсорбционной хроматографии имеет температура. Ее роль прежде всего заключается в изменении сорбционного равновесия в системе газ - твердое тело. От правильного подбора температуры колонки зависит, и степень разделения компонентов смеси, и эффективность колонки, и общая скорость анализа. Существует некоторый температурный интервал колонки, в котором хроматографический анализ оптимален. Обычно этот температурный интервал находится в области, близкой к температуре кипения определяемого химического соединения. Когда температуры кипения компонентов смеси сильно различаются между собой, применяют программирование температуры колонки.

Разделение в хроматографической колонке является важнейшей, но предварительной операцией всего процесса газохроматографического анализа. Вышедшие из колонки, как правило, бинарные смеси (газ-носитель – компонент) попадают в детектирующее устройство. Здесь происходит преобразование изменений концентраций компонентов во времени в электрический сигнал, регистрируемый при помощи специальной системы в виде кривой, называемой хроматограммой. Результаты всего опыта в значительной степени зависят от правильного выбора типа детектора, его конструкции. Существует несколько классификаций детекторов. Различают дифференциальные и интегральные детекторы. Дифференциальные детекторы регистрируют мгновенное значение одной из характеристик (концентрации или потока) во времени. Интегральные детекторы суммируют количество вещества за определенный промежуток времени. Также применяют разнообразные по принципу действия, чувствительности и назначению детекторы: термокондуктометрические, ионизационные, спектроскопические, масс-спектрометрические, кулонометрические и многие другие.

Применение газо-адсорбционной хроматографии

Газо-адсорбционная хроматография используется в химической и нефтехимической промышленности для анализа продуктов химического и нефтехимического синтеза, состава фракций нефти, определения чистоты реактивов и содержания ключевых продуктов на разных стадиях технологических процессов и т.п.

Анализ постоянных газов и легких углеводородов, включая изомеры, методом газовой хроматографии занимает 5 – 6 минут. Раньше, на традиционных газоанализаторах, этот анализ длился 5 – 6 часов. Все это привело к тому, что газовая хроматография стала широко использоваться не только в научно-исследовательских институтах и контрольно-измерительных лабораториях, но и вошла в системы комплексной автоматизации промышленных предприятий.

Сегодня газовая хроматография применяется и при поиске нефтяных и газовых месторождений, позволяя определять в отобранных из почв пробах содержание органических веществ, указывающих на близость нефтяных и газовых месторождений.

Газовая хроматография успешно применяется в криминалистике, где с ее помощью устанавливают идентичность образцов пятен крови, бензинов, масел, подделку дорогостоящих пищевых продуктов и т.п. Очень часто газовая хроматография применяется для определения содержания спирта в крови водителей автомобилей. Несколько капель крови из пальца достаточно, чтобы узнать, сколько, когда и какой спиртной напиток он выпил.

Газовая хроматография позволяет получать ценную и уникальную информацию о составе запахов пищевых продуктов, таких, как сыр, кофе, икра, коньяк и др. Иногда информация, получаемая газохроматографическим анализом, нас не радует. Например, нередко в пищевых продуктах обнаруживается излишнее количество пестицидов или фруктовый сок содержит трихлорэтилен, который вопреки запретам использовали для повышения степени извлечения каротина из фруктов и т.д. Но именно эта информация защищает здоровье человека.

Впрочем, нередки случаи, когда полученной информацией люди просто пренебрегают. В первую очередь это относится к курению. Детальный газохроматографический анализ давно установил, что дым сигарет и папирос содержит до 250 различных углеводородов и их производных, из которых около 50 обладают канцерогенным действием. Именно поэтому у курильщиков рак легких встречается в 10 раз чаще, но по-прежнему миллионы людей продолжают отравлять себя, своих коллег и родственников.

Газовая хроматография находит широкое применение в медицине для определения содержания многочисленных лекарственных препаратов, определения уровня жирных кислот, холестерина, стероидов и т.д. в организме больного. Такие анализы дают чрезвычайно важную информацию о состоянии здоровья человека, ходе его болезни, эффективности использования тех или иных лекарств.

Научные исследования в металлургии, микробиологии, биохимии, в разработке средств защиты растений и новых лекарственных препаратов, в создании новых полимеров, строительных материалов и во многих других самых различных областях практической деятельности человека невозможно себе представить без такого мощного аналитического метода, как газовая хроматография.

Газовая хроматография успешно используется для определения содержания полициклических ароматических соединений, опасных для здоровья человека, в воде и в воздухе, уровня бензина в воздухе помещений автозаправочных станций, состава выхлопных газов автомобилей в воздухе и т.д.

Этот метод широко используется как один из основных методов контроля чистоты окружающей среды.

Газовая хроматография занимает важное место в нашей жизни, обеспечивая нас колоссальным объемом информации. В народном хозяйстве и в научно-исследовательских организациях используется более 20 тыс. самых различных газовых хроматографов, которые являются незаменимыми помощниками при решении многих сложных задач, ежедневно возникающих перед исследователями и инженерами.

б)Жидкостная (жидкостно-адсорбционная) хроматография

Жидкостная хроматография представляет собой группу вариантов хроматографии, в которых подвижной фазой является жидкость.

Одним из вариантов жидкостной хроматографии является жидкостно-адсорбционная хроматография – это метод, в котором неподвижной фазой является твердый адсорбент.

Хотя жидкостная хроматография была открыта раньше газовой, она лишь во второй половине ХХ века вступила в период исключительно интенсивного развития. В настоящее время по степени разработки теории хроматографического процесса и техники инструментального оформления, по эффективности и скорости разделения она вряд ли уступает методу газохроматографического разделения. Однако каждый из этих двух основных видов хроматографии имеет свою преимущественную область применения. Если газовая хроматография пригодна главным образом для анализа, разделения и исследования химических веществ с молекулярной массой 500 – 600, то жидкостная хроматография может быть использована для веществ с молекулярной массой от нескольких сот до нескольких миллионов, включая предельно сложные макромолекулы полимеров, белков и нуклеиновых кислот. Вместе с тем противопоставление различных хроматографических методов по своей сути лишено здравого смысла, так как хроматографические методы удачно дополняют друг друга, и к самой задаче конкретного исследования надо подходить по-иному, а именно, какой хроматографический метод позволяет решить ее с большей скоростью, информативностью и с меньшими затратами.

Как и в газовой хроматографии, в современной жидкостной хроматографии применяют детекторы, позволяющие непрерывно фиксировать концентрацию определяемого вещества в потоке жидкости, вытекающей из колонки.

Единого универсального детектора для жидкостной хроматографии не существует. Поэтому в каждом конкретном случае следует подбирать наиболее подходящий детектор. Наибольшее распространение получили ультрафиолетовый, рефрактометрический, микроадсорбционный и транспортный пламенно-ионизационный детекторы.

Спектрометрические детекторы. Детекторы этого типа являются высокочувствительными селективными приборами, позволяющими определять в потоке жидкой фазы весьма малые концентрации веществ. Их показания мало зависят от колебаний температуры и других случайных изменений среды. Одна из важных особенностей спектрометрических детекторов заключается в прозрачности большинства применяющихся в жидкостно-адсорбционной хроматографии растворителей в рабочей области длин волн.

Чаще всего применяют поглощение в УФ, реже в ИК области. В УФ области применяют приборы, работающие в широком диапазоне – от 200 нм до видимой части спектра, либо на определенных длинах волн, чаще всего на 280 и 254 нм. В качестве источников излучения применяются ртутные лампы низкого давления (254 нм), среднего давления (280 нм) и соответствующие фильтры.

Микроадсорбционные детекторы. В основе действия микроадсорбционных детекторов лежит выделение теплоты при адсорбции вещества на адсорбенте, которым заполнена ячейка детектора. Измеряется, однако, не теплота, а температура адсорбента, до которой он нагревается в результате адсорбции.

Микроадсорбционный детектор – достаточно высокочувствительный инструмент. Его чувствительность зависит прежде всего от теплоты адсорбции.

Микроадсорбционные детекторы являются универсальными, пригодными для детектирования как органических, так и неорганических веществ. Однако на них трудно получить достаточно четкие хроматограммы, особенно при неполном разделении компонентов смеси.


5. Хроматография на жидкой неподвижной фазе

а)Газо-жидкостная хроматография

Газо-жидкостная хроматография – газохроматографический метод, в котором неподвижной фазой является малолетучая жидкость, нанесенная на твердый носитель.

Этот вид хроматографии используется для разделения газов и паров жидкостей.

Основное различие газо-жидкостной от газо-адсорбционной хроматографии заключается в том, что в первом случае метод основан на использовании процесса растворения и последующего испарения газа или пара из жидкой пленки, удерживаемой твердым инертным носителем; во втором случае процесс разделения основан на адсорбции и последующей десорбции газа или пара на поверхности твердого вещества – адсорбента.

Процесс хроматографирования схематически можно представить следующим образом. Смесь газов или паров летучих жидкостей вводят потоком газа-носителя в колонку, заполненную неподвижным инертным носителем, на котором распределена нелетучая жидкость (неподвижная фаза). Исследуемые газы и пары поглощаются этой жидкостью. Затем компоненты разделяемой смеси селективно вытесняются в определенном порядке из колонки.

В газо-жидкостной хроматографии применяется ряд детекторов, специфически реагирующих на любые органические вещества или же на органические вещества с определенной функциональной группой. К их числу относятся ионизационные детекторы, детекторы электронного захвата, термоионные, спектрофотометрические и некоторые другие детекторы.

Пламенно-ионизационный детектор (ПИД). Работа ПИД основана на том, что органические вещества, попадая в пламя водородной горелки, подвергаются ионизации, вследствие чего в камере детектора, являющейся одновременно ионизационной камерой, возникает ток ионизации, сила которого пропорциональна количеству заряженных частиц.

ПИД чувствителен только к органическим соединениям и не чувствителен или очень слабо чувствителен к таким газам, как воздух, оксидам серы и углерода, сероводороду, аммиаку, сероуглероду, парам воды и к ряду других неорганических соединений. Нечувствительность ПИД к воздуху позволяет применять его для определения загрязнений воздуха различными органическими веществами.

При работе с ПИД применяются 3 газа: газ-носитель (гелий или азот), водород и воздух. Все 3 газа должны обладать высокой степенью чистоты.

Аргоновый детектор. В аргоновом детекторе ионизация вызывается столкновением молекул определяемого вещества с метастабильными атомами аргона, образующимися в результате воздействия радиоактивного В-излучения.

Термоионный детектор. Принцип действия термоионного детектора состоит в том, что соли щелочных металлов, испаряясь в пламени горелки, селективно реагируют с соединениями, содержащими галогены или фосфор. В отсутствие таких соединений в ионизационной камере детектора устанавливается равновесие атомов щелочного металла. Присутствие атомов фосфора вследствие их реакции с атомами щелочного металла нарушает это равновесие и вызывает появление в камере ионного тока.

Так как термоионный детектор обладает наивысшей чувствительностью к фосфорсодержащим соединениям, он получил название фосфорного. Применяется этот детектор главным образом для анализа фосфорорганических пестицидов, инсектицидов и ряда биологически активных соединений.


б)Гель-хроматография

Гель-хроматография (гель-фильтрация) – метод разделения смесей веществ с различными молекулярными массами путем фильтрации анализируемого раствора через поперечно-сшитые ячеистые гели.

Разделение смеси веществ происходит в том случае, если размеры молекул этих веществ различны, а диаметр пор зерен геля постоянен и может пропускать лишь те молекулы, размеры которых меньше диаметра отверстий пор геля. При фильтровании раствора анализируемой смеси более мелкие молекулы, проникая в поры геля, задерживаются в растворителе, содержащимся в этих порах, и движутся вдоль слоя геля медленнее, чем крупные молекулы, не способные проникнуть в поры. Таким образом, гель-хроматография позволяет разделять смесь веществ в зависимости от размеров и молекулярной массы частиц этих веществ. Этот метод разделения достаточно прост, быстр и, что самое главное, он позволяет разделять смеси веществ в более мягких условиях, чем другие хроматографические методы.

Если гранулами геля заполнить колонку и затем налить в нее раствор различных веществ с разной молекулярной массой, то при движении раствора вдоль слоя геля в колонке будет происходить разделение этой смеси.

Начальный период опыта: нанесение раствора анализируемой смеси на слой геля в колонке. Второй этап – гель не препятствует диффузии молекул малого размера в поры, крупные же молекулы остаются в растворе, окружающем гранулы геля. При промывании слоя геля чистым растворителем крупные молекулы начинают двигаться со скоростью, близкой к скорости перемещения растворителя, в то время как мелкие молекулы должны сначала продиффундировать из внутренних пор геля в объем между зернами и вследствие этого задерживаются и вымываются растворителем позже. Происходит разделение смеси веществ согласно их молекулярной массе. Вымывание веществ из колонки происходит в порядке уменьшения их молекулярной массы.

Применение гель-хроматографии.

Основное назначение гель-хроматографии – разделение смесей высокомолекулярных соединений и определение молекулярномассового распределения полимеров.

Однако в равной степени гель-хроматография применяется для разделения смеси веществ средней молекулярной массы и даже низкомолекулярных соединений. В этом случае большое значение имеет то, что гель-хроматография позволяет вести разделение при комнатных температурах, что выгодно отличает ее от газо-жидкостной хроматографии, требующей нагревания для перевода анализируемых веществ в паровую фазу.

Разделение смеси веществ методом гель-хроматографии возможно и тогда, когда молекулярные массы анализируемых веществ очень близки или даже равны. В этом случае используется взаимодействие растворенных веществ с гелем. Это взаимодействие может оказаться столь значительным, что сводит на нет различия в размерах молекул. Если природа взаимодействия с гелем для разных веществ неодинакова, это различие можно использовать для разделения интересующей смеси.

Примером может служить применение гель-хроматографии для диагностики заболеваний щитовидной железы. Диагноз устанавливают по количеству иода, определенному в ходе анализа.

Приведенные примеры применения гель-хроматографии показывают ее широкие возможности для решения самых разнообразных аналитических задач.


Заключение

Как научный метод познания окружающего нас мира хроматография постоянно развивается и совершенствуется. Сегодня она применяется столь часто и столь широко в научных исследованиях, медицине, молекулярной биологии, биохимии, технике и народном хозяйстве, что очень трудно найти область знаний, в которой бы хроматография не использовалась.

Хроматография как метод исследования с ее исключительными возможностями является мощным фактором познания и преобразования усложняющегося мира в интересах создания приемлемых условий обитания человека на нашей планете.


С П И С О К Л И Т Е Р А Т У Р Ы

1. Айвазов Б.В. Введение в хроматографию. – М.: Высш.шк., 1983 – с. 8-18, 48-68, 88-233.

2. Крешков А.П. Основы аналитической химии. Теоретические основы. Качественный анализ, книга первая, изд.4-е, перераб. М., «Химия», 1976 – с. 119-125.

3. Сакодынский К.И., Орехов Б.И. Хроматография в науке и технике. – М.: Знание, 1982 – с. 3-20, 28-38, 58-59.

Транскрипт

1 Краткая история развития жидкостной хроматографии Хроматография была открыта М.С. Цветом в 1903 г. в виде колоночного жидкостно-адсорбционного метода. В этом методе использовались адсорбенты с размером зерен более мкм, элюент (растворитель) проходил через колонку самотеком за счет силы тяжести, проточных детекторов не было. Разделение происходило медленно, в течение нескольких часов, и в таком режиме жидкостная хроматография не могла быть использована для аналитических целей. В гг. усилия специалистов в различных странах были направлены на создание экспрессной жидкостной хроматографии. Было ясно, что для увеличения скорости разделения нужно сократить пути внешней и внутренней диффузии. Этого можно было добиться за счет уменьшения диаметра зерен адсорбентов. Заполнение колонок мелкими зернами (5-10 мкм) создавало большое входное давление, что потребовало применения насосов высокого давления. Так появилась жидкостная хроматография высокого давления. При переходе к адсорбентам мелкой фракции сильно возросла эффективность колонок, поэтому современную экспрессную аналитическую жидкостную хроматографию назвали высокоэффективной жидкостной хроматографией (ВЭЖХ). Разработка жестких адсорбентов мелкого зернения (5 или 10 мкм), создание насосов высокого давления (свыше 200 атм.) и проточных детекторов все это обеспечило высокие характеристики ВЭЖХ. По временам разделения она не уступала газовой хроматографии, а по областям применения значительно ее превзошла. В настоящее время ВЭЖХ занимает ведущие позиции среди других методов хроматографии как по объему выпускаемой аппаратуры (более хроматографов в год на сумму более 2 млрд. долл.), так и по числу публикаций (5-6 тыс. публикаций в год). Современная ВЭЖХ реализована в различных вариантах. Эти варианты позволяют разделять различные смеси молекул (включая смеси всех типов изомеров); макромолекулы синтетических и биополимеров (включая вирусы и молекулы с массами до нескольких миллионов); ионы и устойчивые радикалы. Велика роль ВЭЖХ и в таких жизненно важных областях науки и производства, как биология, биотехнология, пищевая промышленность, медицина, фармацевтика, судебно-медицинская экспертиза, контроль загрязнения окружающей среды и др. ВЭЖХ сыграла одну из основных ролей в расшифровке генома человека, в последние годы успешно решает задачи протеомики.

2 Варианты ВЭЖХ, применяемые в последнее десятилетие Варианты Обращенно-фазная Нормально-фазная Ионная Ион-парная Ионообменная Эксклюзионная Гель-фильтрационная Лигандообменная Хиральная Аффинная Иммунная Мицеллярная Гидрофобная Серебряная обрашеннофазная Жидко-жидкостная Экстракционная Донорно-акцепторная Варианты Комплексообразующая Инверсионная эксклюзионная Нелинейная Капиллярная Микронасадочная Многомерная Перфузионная Вытеснительная Сверхбыстрая Турбулентная Непрерывная Противоточная Центрифужная С движущимся слоем Высокотемпературная Мембранная Вопросы теории ВЭЖХ Хроматографический процесс: удерживание, размывание, разделение Хроматографическая колонка представляет собой трубку, заполненную простым адсорбентом, через которую непрерывно течет растворитель. Адсорбент (сорбент, наполнитель колонки) удерживается в колонке фильтрами, он неподвижен и поэтому называется неподвижной фазой. Растворитель, перемещающийся относительно сорбента, называется подвижной фазой (в некоторых случаях элюентом). При движении вдоль колонки молекулы вещества (сорбаты) диффундируют внутри пор сорбента и, в результате межмолекулярных взаимодействий того или иного типа, адсорбируются на поверхности неподвижной фазы. Время, в течение которого молекулы находятся в адсорбированном состоянии, определяется силой межмолекулярного взаимодействия сорбатов с сорбентом. При очень слабой сорбции молекулы почти все время проводят в

3 растворе подвижной фазы и поэтому перемещаются вниз по колонке со скоростью, лишь незначительно уступающей скорости движения подвижной фазы. Наоборот, при очень сильной сорбции молекулы почти не отрываются от поверхности и скорость их перемещения по колонке незначительна. С точки зрения хроматографии больший интерес представляют такие условия, в которых сила адсорбции промежуточная и скорость перемещения сорбатов по колонке в 2-10 раз меньше скорости движения подвижной фазы. Явление замедленного движения молекул относительно движения подвижной фазы в хроматографии называется удерживанием. Если константы сорбции веществ различны, то различным будет и их средняя скорость движения по колонке. Таким образом, достигается основная цель хроматографии разделение. Естественно, что на практике в колонку не вводят единичные молекулы. Если в колонку введены хотя бы несколько молекул разного вида, то средние скорости перемещения молекул сорбатов по-прежнему различны. Помимо этого, скорости перемещения отдельных молекул каждого вида отклоняются в ту или иную сторону от среднего для данного вида значения. Молекулы сорбатов, первоначально введенные в колонку в виде мгновенного импульса, выходят из нее более широкой зоной. Такая неидентичность скоростей перемещения одинаковых молекул в хроматографии называется размыванием. Это нежелательное явление приводит к тому, что среди молекул одного вещества могут находиться также молекулы другого, скорость которых близка к скорости наиболее быстрых молекул первого. В результате зоны веществ могут частично наложиться одна на другую и разделение окажется неполным. Процессы удерживания и размывания предмет теории хроматографии. Некоторые основные термины и определения Хроматограмма кривая, изображающая зависимость концентрации соединений, выходящих из колонки с потоком подвижной фазы, от времени с момента начала разделения.

4 Хроматограмма обычно состоит из базовой линии и пиков. В хроматографических приборах, как правило, не происходит непосредственного измерения концентрации вещества в подвижной фазе, а с помощью специального узла детектора измеряется какая-либо физическая величина, функционально связанная с концентрацией (электропроводность, оптическая плотность и т.д.). Базовая линия соответствует тому промежутку времени, в течение которого детектор регистрирует сигнал только от подвижной фазы. Пик кривая, в идеале приближающаяся к кривой гауссова распределения, описывает постепенное нарастание концентрации на выходе из колонки и последующем ее уменьшении. Время появления максимума пика на хроматограмме называется временем удерживания (t R). При постоянных условиях работы и составе фаз хроматографической системы время удерживания является величиной постоянной для данного вещества. Иногда в начальной части хроматограммы регистрируется пик, природа которого связана с кратковременным нарушением равновесия в колонке при вводе пробы. Этому пику соответствует время удерживания несорбируемого вещества (t 0). Сравнительную термодинамическую характеристику двух разделяемых пиков веществ дает относительное удерживание или селективность. Эта величина показывает способность данной хроматографической системы разделять данную пару веществ. Времена удерживания и все производные от них величины являются по существу термодинамическими характеристиками процесса. Однако результат определяется совместным влиянием факторов термодинамического и кинетического типа. Если в хроматографической системе данного состава при

5 данной температуре у двух веществ значения t R одинаковы (или =1.0), то никакое изменение геометрии колонки не приведет к разделению этой пары. Но, с другой стороны, различие значений t R вовсе не означает автоматически, что разделение, а тем более хорошее, будет достигнуто. Для этого используемая колонка должна обладать достаточно высокими кинетическими характеристиками. Акты сорбции-десорбции должны совершаться с большой скоростью, чтобы реализовать потенциальную возможность разделения, на которую указывает различие в t R. Основная кинетическая характеристика процесса - высота h, эквивалентная теоретической тарелке (ВЭТТ). Эта величина соответствует высоте слоя сорбента, при прохождении которого акт сорбции-десорбции совершается в среднем один раз. Она отражает, по существу, качество используемого сорбента, качество заполнения колонки и правильность выбора режима хроматографирования. Для оценки качества колонки применяется обратная величина число теоретических тарелок N. Число теоретических тарелок служит мерой эффективности колонки. Размывание хроматографических зон Разделяемая смесь вводится в колонку в виде узкого импульса и его объемом по сравнению с объемом колонки можно пренебречь. По мере перемещения молекул разделяемых веществ с потоком подвижной фазы импульс постепенно расширяется, при этом концентрация разделяемых веществ в нем уменьшается. Главная причина данного процесса в том, что скорость перемещения по колонке отдельных молекул отличается от средней скорости, характерной для данного соединения. С точки зрения конечного полезного результата хроматографического процесса достижения разделения молекул различных видов размывание зон крайне нежелательно, по крайней мере по следующим причинам. Во-первых, интенсивное размывание ведет к частичному перекрыванию зон различных соединений и поэтому приходится предъявлять более жесткие требования к селективности системы. Причем даже если в том или ином случае удается обеспечить повышенную селективность, общая разделяющая способность невелика. Другое отрицательное следствие размывания уменьшение концентрации сорбата в центре зоны, ведущее к снижению чувствительности при анализе. Мерой интенсивности процессов размывания является высота, эквивалентная теоретической тарелке. Величина h определяется рядом частных процессов. 1) Неоднородность потока подвижной фазы. Сорбент в колонке образует систему каналов, через которые протекает подвижная фаза. Чем мельче частицы сорбента, тем ближе друг к другу длина пути молекул подвижной фазы, меньше разница времени проходящих через колонку молекул одной зоны, меньше размывание зоны.

6 2) Молекулярная диффузия в подвижной и неподвижной фазах. Чем больше скорость потока, тем меньше размывание из-за этой причины. 3) Скорость массообмена время сорбции или ионного обмена. Чем больше скорость потока, тем больше размывание из-за этой причины. Ясно, что для снижения h необходимо использовать частицы сорбента меньшего диаметра. К сожалению, использовать этот путь можно лишь до определенного предела, который диктуется техническими соображениями. Перепад давления в колонке связан с другими параметрами процесса следующим соотношением: где r параметр сопротивления потоку, р перепад давления, U скорость потока, L длина колонки, d p размер частиц сорбента. При повышенном давлении резко возрастает стоимость и сложность оборудования. Поэтому в ВЭЖХ d р =3-10 мкм. Для повышения эффективности предпочтительнее менее вязкие растворители, так как в них больше коэффициент диффузии и меньше сопротивление колонки. В ВЭЖХ теория размывания хроматографических зон к настоящему времени более или менее завершена. Разработка этой теории позволила на практике реализовать эффективность колонок, близкую к теоретической. Так, при использовании сорбентов с диаметром зерен менее 3 мкм была получена эффективность до теоретических тарелок на метр длины колонки. Большое внимание хроматографистов обращено на исследования селективности разделения. В ВЭЖХ, в отличие от газовой хроматографии, селективность определяется как природой сорбента, так и природой элюента. Продолжаются работы по изучению взаимодействия вещество растворитель, которое коррелирует со свободной энергией сорбции. Острыми темами в теории ВЭЖХ являются компьютерная оптимизация процесса разделения. Как указано выше, основные усилия хроматографистов в настоящее время направлены на теоретическое исследование вопросов селективности разделения. Имеются десятки публикаций по изучению связи структуры молекул с их удерживанием на сорбентах разной химической природы и в многомерных вариантах хроматографии. Для улучшения селективности разделения, как в газовой хроматографии, так и в ВЭЖХ, широко используется стерический фактор, когда для селективного разделения изомеров применяются циклодекстрины, краун-эфиры, жидкие кристаллы.

7 Впечатляют достижения в теории разделения оптических изомеров, как в газовой, так и в жидкостной хроматографии. Получены результаты на уровне открытия, показывающие возможности разделения оптических изомеров при контактах на двух точках (третьей точкой контакта может служить поверхность ахирального адсорбента). Успешно продолжается развитие теории хроматографии полимеров в критических условиях. Достигнут прогресс в установлении связи параметров хроматографического удерживания с биологической и химической активностью молекул. Это особенно перспективно для фармацевтики при поиске новых типов лекарств. В последние годы повышенный интерес вызывает проблема, касающаяся влияния температуры на весь процесс разделения в ВЭЖХ. Предложена высокотемпературная ВЭЖХ и разрабатывается аппаратура для программирования температуры в этом методе. Многообещающими выглядят работы по оптимизации разделения при одновременном варьировании температуры и силы элюента. Исследовалось влияние электрического поля, приложенного вдоль колонки, на удерживание и размывание кортикостероидов на колонках с пористым углеродным адсорбентом, а также влияние магнитного поля на удерживание на колонках, заполненных магнитными частицами стальными шариками, покрытыми политетрафторэтиленом. Сорбенты для ВЭЖХ Для ВЭЖХ разработан и выпускается широкий ассортимент сорбентов. Около 100 фирм во всем мире выпускают более 300 типов наименований сорбентов. Однако реальный ассортимент значительно уже, так как сорбенты многих фирм одинаковы по химической природе поверхности и отличаются только названиями. Относительная доля применения разных методов ВЭЖХ на разных сорбентах Метод хроматографии/тип Процент сорбента пользователей Обращенно-фазный 50,4 Силикагель с привитыми группами С С 8 15,9 Фенил 7,1 С 4 2,3 С 1 -С 2 1,1

8 Нормально-фазная 24,1 Силикагель с привитыми группами CN- 8,9 Силикагель 8,5 МН 2-4,7 Диол 2 Ионообменная и ионная 14 Анионы 7,4 Катионы 6,6 Эксклюзионная 6,7 Водная 3,5 Неводная 3,2 Хиральная 2,8 Гидрофобная 1,1 Прочие 1,1 Чаще всего применяют чистые силикагели и силикагели с привитыми неполярными и полярными группами. Разработаны и продолжают разрабатывать сорбенты на основе оксидов алюминия, циркония, титана и др. Доля применения различных сорбентов в ВЭЖХ такова: силикагели 70%, пористые полимеры (сополимер стирола и дивинилбензола, полиметакрилаты, целлюлозы и др.) 20%, пористые углеродные сорбенты, оксид титана, оксид циркония 4%, оксид алюминия 1%. В аналитической практике наибольшее применение находит обращеннофазный вариант хроматографии (более 70%) с использованием силикагеля с привитыми алкильными группами С 18 и С 8. Несмотря на широкое использование, эти сорбенты имеют ряд недостатков, основным из которых является недостаточная химическая стабильность. При рн < 3 происходит гидролиз связи =Si О Si=, а при рн > 10 растворяется силикагельная основа, особенно при повышенных температурах. Эти сорбенты неселективны при разделении полярных соединений и изомеров. Вещества основного характера элюируются, как правило, в виде несимметричных пиков вследствие взаимодействия с остаточными гидроксильными группами. Свойства силикагельных материалов сильно зависят от чистоты, геометрической и химической природы силикагеля, способа прививки алкильных групп и пр. В последние годы активно проводятся исследования, направленные на устранение указанных недостатков. Прежде всего, значительно усовершенствовано производство исходных силикагелей, что позволило воспроизводимо получать сферические частицы с ничтожным содержанием

9 тяжелых металлов. Полное связывание гидроксильных групп поверхности силикагеля никогда не достигается. Остаточные гидроксильные группы приводят к нежелательным взаимодействиям и несимметричным пикам соединений, состоящих из небольших полярных молекул. Чтобы устранить влияние остаточных силанолов, было предложено закрывать (блокировать) их более объемными изопропильными или изобутильными группами. Примером такого сорбента является Zorbax Stable Bond. Применяют также бидентатные заместители, когда две соседние алкильные цепи связаны с атомами кремния через 3-4 метиленовые группы. Эта «перемычка» закрывает остаточные гидроксильные группы и такие фазы оказываются стабильными даже при повышенных рн < 12 (Zorbax Extend-С18). Силикагели со средними размерами пор, 80, 100, 120 Å, применяют для разделения низкомолекулярных соединений, силикагели с порами 300 Å и более для разделения макробиомолекул. Как известно, поверхность белковой глобулы богата гидрофильными аминокислотами, но в то же время содержит немало (до половины от их общего содержания) гидрофобных остатков, нередко образующих скопления (" гроздья"). Такие гидрофобные зоны, развитые в большей или меньшей степени, представляют характерную особенность структуры каждого белка, на чем и основан метод гидрофобной хроматографии. Соответствующие сорбенты синтезируют, включая гидрофобные группировки в гидрофильную матрицу, например в поперечносшитую агарозу сефарозу. По такому принципу построены, в частности, октил- и фенилсефароза: При пропускании белкового раствора через фенилсефарозу гидрофобные участки поверхности белков образуют контакты с фенильнымн группами, вытесняя прилегающие к этим структурам молекулы воды. Число и прочность таких контактов весьма различны у разных белков. Повышению их прочности способствует сорбция белков из концентрированных растворов солей, например

10 сульфата аммония. Плавное понижение концентрации соли в растворе, протекающем через колонку с фенилсефарозой, приводит к поочерёдной десорбции белков. Сходным образом действуют сорбенты, полученные присоединением к макропористому кремнезему гидрофобных алкильных радикалов различной длины. Они, будучи жесткими, особенно подходят для работы при повышенном давлении в условиях высокоэффективной жидкостной хроматографии (ВЭЖХ, англ. HPLC). Те из них, которые содержат длинные С 18 углеводородные цепи, малопригодны для разделения белков из-за слишком сильного, нередко необратимого связывания, но могут применяться для хроматографии пептидов. Лучшие результаты дает хроматография белков на сорбентах, содержащих более короткие С 4 -С 8 -углеводородные цепи. Нередко гидрофобная хроматография сочетается с другими эффектами. Например, присоединение к активированной бромцианом сефарозе диаминов различной длины дает сорбенты, в которых содержаться гидробные углеводородные цепочки наряду с двумя катионными группами. Объединение черт гидрофобного сорбента и анионита в одном хроматографическом материале обогащает его возмажности. Описанный выше способ проведения хроматографии на гидрофобном сорбенте далеко не единственно возможный. Для сорбции белков необязательно введение в раствор повышенных концентраций соли, а для элюции можно применять добавление органических растворителей, сдвиг рн. В некоторых случаях, когда связывание белка основано на сочетании гидрофобных и ионных взаимодействий,хорошие результаты дает элюция растворами солей. Отметим также, что признаки гидрофобной хроматографии встречаются и в других приемах разделения белков, в особенности в аффинной хроматографии. Каждый год на Питтсбургской конференции-выставке в США предлагаются десятки новых сорбентов для ВЭЖХ и по ним можно судить о новых направлениях и тенденциях. Фирмы предлагают широкий выбор колонок: длина колонок варьируется от 10 до 250 мм, а внутренний диаметр от 1 до 50 мм. Аппаратура для ВЭЖХ Современные жидкостные хроматографы выпускаются в трех исполнениях: блочно-модульном, моноблочном и промежуточном (модульное исполнение в едином блоке). Выбор конфигурации модульного прибора определяется аналитической задачей. Модульная система позволяет быстро и легко собирать конкретную систему с минимальными затратами. На базе гибкой блочномодульной системы можно создавать как простые приборы, так и сложные, с наращиванием блоков, пригодные для решения рутинных технологических задач и выполнения сложных научно-исследовательских измерений.

11 Моноблочная система в некоторых случаях выгодна в случае специализированных конкретных задач. Подобные преимущества имеет и интегрированная система с заменяемыми блоками. В настоящее время серийно выпускаются следующие типы жидкостных хроматографов: высокого давления (закрытые системы), градиентные, изократические, препаративные, ионные, эксклюзионные, низкого давления (открытые системы), многомерные, анализаторы on-line, высокотемпературные непрерывные, противоточные, с движущимся слоем, аминокислотные анализаторы. В комплект этих жидкостных хроматографов могут входить следующие детектирующие системы: УФ-Вид-фотометры с переменной длиной волны, с фиксированными длинами волн (с фильтрами), сканирующие, с фотодиодной матрицей, рефрактометрические, флуоресцентные, электрохимические, кондуктометрические, амперометрические, по светорассеянию, хемилюминесцентные, масс-спектрометрические, хиральные, микроколоночные, радиоактивные, ИК-спектроскопические, пламенноионизационные и др. Развивается ВЭЖХ с микро- и наноколонками. Схема хроматографа: 1-насос 2-узел ввода пробы 3-хроматографическая колонка 4-детектор 5-регистратор 6-термостат колонки 7-узел подготовки эллюента 8-слив эллюата или коллектор фракций

12 Области применения ВЭЖХ Методы ВЭЖХ в качестве официальных методов вошли в фармакопеи разных стран, в ЕРА (агентство США по анализу загрязнений окружающей среды), в ГОСТы и рекомендации по анализу многих вредных соединений. При контроле загрязнений окружающей среды методами ВЭЖХ определяют нефтепродукты в поверхностных и питьевых водах; пестициды в воде, почве; фталаты в воде; ароматические амины и полиядерные ароматические соединения в пище и воде; фенол, хлорфенол и нитрофенолы в питьевой воде; нитрозамины в пище; тяжелые металлы в воде, почве и пище; микотоксины (афлатоксины, зеараленон и др.) в пище и кормах и многие другие загрязнители. Ранняя диагностика заболеваний по анализам биохимических маркеров ВЭЖХ все шире используется для определения биохимических маркеров и метаболитов при массовом медицинском обследовании населения и выявлении опасных заболеваний. Обычно для диагностики заболеваний достаточно определение только маркеров, однако в некоторых случаях требуется определять метаболический профиль уровня многих компонентов. Биологическими маркерами служат сравнительно небольшие молекулы: катехоламины, аминокислоты (гомоцистеин), индолы, нуклеозиды, порфирины, сахара, стероиды, гормоны, витамины, птерины и липиды. В ряде случаев используются и большие молекулы: ферменты, белки, нуклеиновые кислоты. Профиль концентраций физиологических жидкостей у пациентов с различными заболеваниями может значительно различаться от профиля здоровых людей. Этот показатель необходимо определять и у больных с наследственными метаболическими нарушениями. Кроме того, профильные анализы проводятся в случае онкологических, сердечно-сосудистых, психических и неврологических заболеваний, а также при диабете и порфириазе. Профиль концентраций биологических жидкостей определяют у больных с определенными симптомами, но он не дает точного диагноза болезни. Недавно было показано, что у пациентов со СПИДом в профиле появляются измененные нуклеозиды. Для анализа таких объектов, как сложные и многокомпонентные биологические жидкости, пригодна именно высокоэффективная жидкостная хроматография, которая имеет явные преимущества перед газовой хроматографией в виду нестабильности многих биологически активных соединений при повышенных температурах. Содержание многих маркеров в биологических жидкостях находится на уровне г, поэтому для их определения необходимы высокочувствительные и селективные детекторы, в частности амперометрические и флуоресцентные. Желательно, чтобы анализы

13 завершались быстро, в течение 5-20 минут. В настоящее время с проведением анализов биохимических маркеров в медицинских центрах различных стран мира уже детектируется более 200 метаболических болезней. Исследования и анализы в биохимии ВЭЖХ наиболее широко применяется для разделения биологических соединений: белков, ферментов, сахаров, липидов, аминокислот, пептидов, витаминов и др. В связи с развитием протеомики резко возрос интерес к разделению и анализу белков, пептидов и аминокислот. Методом ВЭЖХ проводятся исследования взаимодействия лекарство-мембрана, лекарство-белок, оценки степени окисления белков. Установленная связь между хроматографическими параметрами и биологическими свойствами позволяет более осознанно осуществлять поиск новых лекарств и других биологически активных соединений в фармацевтике. ВЭЖХ один из наиболее важных методов исследования метаболитов лекарств, разделения и изоляции аллергенов, изучения процессов фармакокинетики. Освоено в промышленном масштабе разделение энантиомерных лекарственных веществ.


2.2.29. ВЫСОКОЭФФЕКТИВНАЯ ЖИДКОСТНАЯ ХРОМАТОГРАФИЯ Высокоэффективная жидкостная хроматография (ВЭЖХ) представляет собой метод разделения, основанный на различном распределении веществ между двумя не смешивающимися

8. Вопросы 1. Дайте определение хроматографии. 2. Какие особенности хроматографии позволяют достичь лучшего разделения веществ с близкими свойствами по сравнению с другими методами разделения. 3. Перечислите

Лекция 6 Хроматографические методы анализа План лекции 1. Понятия и термины хроматографии. 2. Классификация хроматографических методов анализа. Хроматографическое оборудование. 3. Виды хроматографии: газовая,

Московский физико-технический институт (Государственный университет) Департамент молекулярной и биологической физики Физические методы исследования Лекция 9 Жидкостная хроматография Методы и техника г.

Профессор Кочетов Анатолий Глебович Ассистент Лянг Ольга Викторовна АСТ, АЛТ: по Райтману Френкелю и кинетический метод Изобретение или визуализация биологической химической реакции или физического процесса

ЛЕКЦИЯ 7 ХРОМАТОГРАФИЯ КАК МЕТОД РАЗДЕЛЕНИЯ, ИДЕНТИФИКАЦИИ И КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ Основные понятия и определения Различные классификации хроматографических методов Хемосорбционная хроматография

Открытие хроматографии(1903 г.) МИХАИЛ СЕМЕНОВИЧ ЦВЕТ (1872-1919) Основные этапы развития хроматографии 1903 г. Открытие хроматографии (Цвет М.С.) 1938 г. Тонкослойная или планарная хроматография (Измайлов

Аналитическая химия 4 семестр, Лекция 17. Модуль 3. Хроматография и другие методы анализа. Хроматография. Принцип и классификация методов. 1. Принцип хроматографического разделения. Стационарная и подвижная

МИНОБРНАУКИ РОССИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ХИМИЧЕСКИЙ ФАКУЛЬТЕТ Аннотированная рабочая программа дисциплины Хроматографические методы анализа Направление подготовки

04.07 Московский физико-технический институт Департамент молекулярной и биологической физики Физические методы исследования Лекция 8 Хроматография г. Долгопрудный, 6 апреля 07г. План. История возникновения

В.Д. ШАТЦ О.В. САХАРТОВА ВЫСОКО-ЭФФЕКТИВНАЯ ЖИДКОСТНАЯ ХРОМАТОГРАФИЯ Основы теории. Методология. Применение в лекарственной химии. ПРЕДИСЛОВИЕ Современное развитие химических и биологических наук потребовало

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Уральский государственный университет им. А.М. Горького» ИОНЦ «Экология и природопользование»

АННОТАЦИЯ рабочей программы учебной дисциплины «Введение в хроматографические методы анализа» по направлению подготовки 04.03.01 Химия по профилю подготовки «Аналитическая химия» 1. Цели освоения дисциплины

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ Высокоэффективная жидкостная хроматография ОФС.1.2.1.2.0005.15 Взамен ст. ГФ XI Высокоэффективная жидкостная хроматография (жидкостная

Лабораторная работа 7б Хроматографическое определение состава газовой фазы почв. Хроматография (от греч. chroma, родительный падеж chromatos цвет, краска) - физико-химический метод разделения и анализа

Московский физико-технический институт (Государственный университет) Кафедра молекулярной физики Физические методы исследования Лекция Газовая хроматография Теория и принципы г. Долгопрудный, ноября г.

APP NOTE-19/2017LC Аналитические возможности жидкостного хроматографа МаэстроВЭЖХ с амперометрическим детектором на примере определения гомоцистеина в плазме крови Яшин А. Я. к. х. н., ведущий инженер

Преимущества колонок Agilent AdvanceBio SEC для эксклюзионной хроматографии при анализе биофармацевтических препаратов Сравнение колонок различных производителей для повышения качества данных Обзор технической

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ХИМИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА АНАЛИТИЧЕСКОЙ ХИМИИ П Р О Г Р А М М А С П Е Ц И А Л Ь Н О Г О К У Р С А «ХРОМАТОГРАФИЧЕСКИЙ АНАЛИЗ» ДЛЯ СТУДЕНТОВ 5 КУРСА СПЕЦИАЛЬНОСТИ

Колонки для эксклюзионной хроматографии Agilent AdvanceBio SEC для анализа агрегации: совместимость с приборами Обзор технической информации Введение Колонки Agilent AdvanceBio SEC это новое семейство

Московский физико-технический институт (Государственный р университет)) Кафедра молекулярной физики Физические методы исследования Лекция 0 Газовая хроматография г. Долгопрудный, 5 ноября 0г. План. История

2 Методы анализа: 1. Химические методы. Химическое равновесие и его использование в анализе. Кислотно-основное равновесие. Сила кислот и оснований, закономерности их изменения. Функция Гаммета. Вычисление

Государственное бюджетное образовательное учреждение высшего профессионального образования МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИКО- СТОМАТОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ Министерства здравоохранения и социального развития

В. Д. ШАТЦ, О. В. САХАРТОВА ВЫСОКО- ЭФФЕКТИВНАЯ ЖИДКОСТНАЯ ХРОМАТОГРАФИЯ Основы теории. Методология. Применение в лекарственной химии АКАДЕМИЯ НАУК ЛАТВИЙСКОЙ ССР ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ИНСТИТУТ

Московский физико-технический институт (Государственный университет) Департамент молекулярной и биологической физики Физические методы исследования Лекция 8 Детекторы в хроматографии Жидкостная хроматография

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ Электрофорез ОФС.1.2.1.0021.15 Взамен ст. ГФ XI, вып.1 Электрофорез метод анализа, основанный на способности заряженных частиц,

Московский физико-технический институт Департамент молекулярной и биологической физики Физические методы исследования Лекция 9 Газовая хроматография Техника и методы эксперимента г. Долгопрудный, 3 апреля

APP NOTE-18/2017LC Аналитические возможности жидкостного хроматографа МаэстроВЭЖХ с амперометрическим детектором на примере определения катехоламинов в плазме крови Яшин А. Я. к. х. н., ведущий инженер

Хроматография относится к важнейшим процессам инструментальной аналитики. Прежде всего, она играет важную роль в таких областях науки как химия, биохимия и аналитика окружающей среды при определении малых

Федеральное государственное бюджетное учреждение науки «Кировский научно исследовательский институт гематологии и переливания крови Федерального медико биологического агентства» 3.3.2. Медицинские иммунобиологические

Надежное определение углеводов, спиртов и органических кислот с помощью хроматографии низкого давления Колонки Аджилент Hi-Plex для лигандообменной ВЭЖХ Компания Аджилент Текнолоджиз Колонки Аджилент Hi-Plex

ФГУП НПО «РАДОН» Москва Разработка и апробация метода концентрирования и разделения и (IV) с использованием экстракционной хроматографии на Resin Ермаков А.И. Москва - 2013 1 Сорбционный материал: Импрегнированный

Физикохимические методы анализа Хроматография В основе метода хроматографии лежит явление сорбции Сорбция процесс поглощения газов, паров и растворенного вещества твердыми или жидкими сорбентами Виды

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ Газовая хроматография ОФС.1.2.1.2.0004.15 Взамен ст. ГФ XI Газовая хроматография это метод разделения летучих соединений, основанный

Газовая хроматография 1 Требования к веществам 1. Летучесть 2. Термостабильность (вещество должно испарятся без разложения) 3. Инертность Схема газового хроматографа 1 2 3 4 5 1. Баллон с газом-носителем

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ Тонкослойная хроматография ОФС.1.2.1.2.0003.15 Взамен ст. ГФ XI, вып.1 Хроматографический процесс, протекающий при движении

Московский физико-технический институт (Государственный университет) Департамент молекулярной и биологической физики Физические методы исследования Лекция 7 Газовая и жидкостная хроматография. Практическая

141 Применение микроколоночной ВЭЖХ для контроля ионола в трансформаторном масле Рудаков О.Б., Фан Винь Тхинь Воронежский государственный архитектурно-строительный университет, Воронеж Подолина Е.А. Электростальский

46. ХРОМАТОГРАФИЧЕСКИЕ МЕТОДЫ РАЗДЕЛЕНИЯ Хроматографическими называют многостадийные методы разделения, в которых компоненты образца распределяются между двумя фазами неподвижной и подвижной. Неподвижная

Е.Л.СТЫСКИН, Л.Б.ИЦИКСОН, Е.В.БРАУДЕ Практическая Высокоэффективная Жидкостная ХРОМАТОГРАФИЯ Ознакомительная версия Москва. 1986 СОДЕРЖАНИЕ Предисловие... Введение... ГЛАВА 1. ОСНОВЫ ТЕОРИИ И ОСНОВНЫЕ

Московский физико-технический институт (Государственный р университет)) Кафедра молекулярной физики Физические методы исследования Лекция 9 Хроматография. Введение г. Долгопрудный, 9 октября 0г. План.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Уральский государственный университет им. А.М. Горького» ИОНЦ «Экология и природопользование»

Тема. Физико-химия поверхностных явлений. Адсорбция. Поверхностные явления проявляются в гетерогенных системах, т.е. системах, между компонентами которых имеется поверхностьраздела. Поверхностными явлениями

848 КРАТКИЕ СООБЩЕНИЯ по материалам XII Международной конференции «Физико-химические основы ионообменных процессов (ИОНИТЫ-2010)» УДК 541 Определение сахаров, аминокислот методом высокоэффективной анионообменной

СОВРЕМЕННАЯ ПРЕПАРАТИВНАЯ ФЛЕШ-ХРОМАТОГРАФИЯ Часть 2* А.Аболин, к.х.н., "ГалаХим" [email protected] П.-Ф. Икар, Interchim (Франция) Мы продолжаем публиковать материалы о современных методах препаративной

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ) Департамент молекулярной и биологической физики ВЫСОКОЭФФЕКТИВНАЯ ЖИДКОСТНАЯ ХРОМАТОГРАФИЯ

Ученые записки Таврического национального университета им. В. И. Вернадского Серия «Биология, химия» Том 17 (56). 2004. 1. С. 150-155. УДК 577.322: 537.632.5 ВЛИЯНИЕ НЕКОТОРЫХ ГИДРОФОБНЫХ ЛИГАНДОВ НА СПЕКТРАЛЬНЫЕ

Физические процессы в биологических мембранах Авторы: А.А. Кягова, А.Я. Потапенко I. Структура, функции физические свойства биологических мембран 1) Структура Фосфолипидный бислой Молекулы фосфолипидов

273 УДК 543. 544 РАЗДЕЛЕНИЕ ПРОИЗВОДНЫХ ЭНАНТИОМЕРОВ АМИНОКИСЛОТ НА АМИНИРОВАННОМ β-циклодекстрине МЕТОДОМ ВЫСОКОЭФФЕКТИВНОЙ ЖИДКОСТНОЙ ХРОМАТОГРАФИИ И. А. Ананьева, Е. Н. Шаповалова, С. А. Лопатин, О.

ВЫСОКОЭФФЕКТИВНЫЙ ЖИДКОСТНОЙ ХРОМАТОГРАФ СО СПЕКТРОФЛУОРИМЕТРИЧЕСКИМ ДЕТЕКТОРОМ «ФЛЮОРАТ -02-ПАНОРАМА». Представляет собой анализатор жидкости «ФЛЮОРАТ -02-ПАНОРАМА», используемый в качестве спектрофлуориметрического

1. Пояснительная записка 1.1. Требования к студентам Студент должен обладать следующими исходными компетенциями: базовыми положениями математических и естественных наук; владеть навыками самостоятельной

Подлежит публикации в открытой печати Хроматографы жидкостные Agilent 1100, Agilent 100 Внесены в Государственный реестр Средств измерений Регистрационный А6 лягь Взамен Выпускаются по технической документации

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени ШАКАРИМА города СЕМЕЙ Документ СМК 3 уровня УП КВ УП КВ УЧЕБНАЯ ПРОГРАММА компонента по выбору Редакция 1 от «08»

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Владимирский государственный университет В.Г. АМЕЛИН ХРОМАТОГРАФИЧЕСКИЕ МЕТОДЫ АНАЛИЗА

Все грани одного Кристалла 09-312-6029RU Методические рекомендации Нефтепродукты. Определение типов ароматических углеводородов в средних дистиллятах. Метод высокоэффективной жидкостной хроматографии с

Лекция 7. ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ 1. Поверхностное натяжение 1.1. Поверхностная энергия. До сих пор мы не учитывали существования границы раздела различных сред*. Однако ее наличие может оказаться весьма

Учебная программа составлена на основе образовательного стандарта ОСВО 1-31 05 01 2013 и учебного плана УВО G 31 153/уч. 2013 г. СОСТАВИТЕЛЬ: В.А.Винарский, доцент, кандидат химических наук, доцент РЕКОМЕНДОВАНА

1 Высокомолекулярные соединения (Лысенко Е.А.) Лекция 7. Фракционирование макромолекул 2 1. Понятие о фракционировании. 2. Препаративное фракционирование. 3. Метод турбидиметрического титрования. 4. Гель-проникающая

08, том http://dx.doi.org/0.6787/nydha-68-878-08---07- НАУЧНЫЙ ПОДХОД К СТАНДАРТИЗАЦИИ ИССЛЕДОВАНИЯ ПРЕПАРАТА МЕГОСИНА И ЕГО КОМПЛЕКСНОГО СОЕДИНЕНИЯ МЕГАФЕРОНА Зияев Х.Л., Назирова Я.К., Хаитбаев А.А.

Agilent SureMass Обзор технической информации Аннотация Ручной анализ или программное разделение пиков традиционно использовались при анализе хроматограмм полного спектра ГХ-МС для того, чтобы выделить

Хроматография– это метод разделения и определения веществ,основанный на распределении компонентов между двумя фазами –подвижной и неподвижной. Неподвижной (стационарной) фазой служит твердое пористое вещество (часто его называют сорбентом) или пленка жидкости, нанесенная на твердое вещество. Подвижная фаза представляет собой жидкость или газ, протекающий через неподвижную фазу, иногда под давлением. Компоненты анализируемой смеси (сорбаты) вместе с подвижной фазой передвигаются вдоль стационарной фазы. Ее обычно помещают в стеклянную или металлическую трубку, называемую колонкой. В зависимости от силы взаимодействия с поверхностью сорбента (за счет адсорбции или по какому-либо другому механизму) компоненты будут перемещаться вдоль колонки с разной скоростью. Одни компоненты останутся в верхнем слое сорбента, другие, в меньшей степени взаимодействующие с сорбентом, окажутся в нижней части колонки, а некоторые и вовсе покинут колонку вместе с подвижной фазой (такие компоненты называются неудерживаемыми, а время их удерживания определяет “мертвое время” колонки).

Таким образом происходит быстрое разделение сложных смесей компонентов.

История открытие:

    Рождение хроматографии

Вечером этого дня на заседании биологического отделения Варшавского Общества естествоиспытателей выступил ассистент кафедры анатомии и физиологии растений Михаил Семёнович Цвет с докладом «О новой категории адсорбционных явлений и о применении их к биохимическому анализу».

К сожалению, М.С.Цвет, будучи по образованию ботаником, не оценил в должной мере химический аналитический аспект своего открытия и мало публиковал свои работы в химических журналах. Впоследствии именно химики оценили реальный масштаб предложенного М.С. Цветом хроматографического метода, который стал наиболее распространенным методом аналитической химии.

Следует подчеркнуть следующие достоинcтва хроматографических методов:

1. Разделение носит динамический характер, причем акты сорбции- десорбции разделяемых компонентов повторяются многократно. Этим обусловлена значительно большая эффективность хроматографического

разделения по сравнению со статическими методами сорбции и

экстракции.

2. При разделении используют различные типы взаимодействия сорбатов и неподвижной фазы: от чисто физических до хемосорбционных.

Это обуславливает возможность селективного разделения широкого круга

3. На разделяемые вещества можно накладывать различные дополнительные поля (гравитационное, электрическое, магнитное и др.), которые, изменяя условия разделения, расширяют возможности хроматографии.

4. Хроматография – гибридный метод, сочетающий одновременное разделение и определения нескольких компонентов.

5. Хроматография позволяет решать как аналитические задачи (разделение, идентификация, определение), так и препаративные (очистка, выделение, концентрирование). Решение этих задач можно сочетать, выполняя их в режиме “online”.

Многочисленные методы классифицируются по агрегатному состоянию фаз, механизму разделения и технике проведения разделения.

Хроматографические методы различаются и по способу проведения

процесса разделения на фронтальный, вытеснительный и элюентный.

    Ионная хроматография

Ионная хроматография– это высокоэффективная жидкостная хроматография для разделения катионов и анионов на ионообменниках

низкой емкости. Широкое распространение ионной хроматографии

обусловлено рядом ее достоинств:

– возможность определять большое число неорганических и

органических ионов, а также одновременно определять катионы и

– высокая чувствительность определения(до1 нг/мл без

предварительного концентрирования;

– высокая селективность и экспрессность;

– малый объем анализируемой пробы(не более2 мл образца);

– широкий диапазон определяемых концентраций(от1 нг/мл до

– возможность использования различных детекторов и их комбинаций, что позволяет обеспечить селективность и малое время определения;

– возможность полной автоматизации определения;

– во многих случаях полное отсутствие предварительной пробоподготовки.

Вместе с тем, как и любой аналитический метод, ионная хроматография не лишена недостатков, к которым можно отнести:

– сложность синтеза ионообменников, что значительно затрудняет

развитие метода;

– более низкую по сравнению с ВЭЖХ эффективность разделения;

– необходимость высокой коррозионной стойкости

хроматографической системы, особенно при определении

катионов.

2.1 История развития:

Изучение ионнообменных процессов началось уже в начале XIX в. с наблюдений о влиянии почв на химический состав контактирующих с ним солевых растворов. В конце 40-х годов Г. Томпсон отметил, что почва поглощает аммиак из внесенных органических удобрений, соответствующие опыты были проведены специалистом их Йорка Д. Спенсом. Первые результаты опытов Д. Спенса были опубликованы Г. Томпсоном в 1850 г. В статье отмечается, что “первое открытие высоковажных свойств почвы может едва не потерпеть неудачу как полезное для сельского хозяйства” и его последнии работы были опубликованны е в 1852 и 1855 гг.

2.3 Принципы разделения ионов в сорбционных процессах

Ионообменная хроматография относится к жидкостно-твердофазной хроматографии, в которой подвижной фазой является жидкость (элюент), а неподвижной фазой – твердое тело (ионообменник). В основе метода ионообменной хроматографии лежит динамический процесс замещения ионов, связанных с неподвижной фазой, ионами элюента, поступающими в колонку. Разделение происходит благодаря разному сродству к ионообменнику ионов, находящихся в смеси, что приводит к различным скоростям их перемещения по колонке.

Ионная хроматография представляет собой вариант колоночной ионообменной хроматографии.

Согласно рекомендациям ИЮПАК (1993 г.) термины ионообменная (ИОХ) и ионная (ИХ) хроматография определяются следующим образом. "Ионообменная хроматография основана на различии ионообменных взаимодействий для индивидуальных анализируемых веществ. Если ионы разделяются и могут быть детектированы с помощью кондуктометрического детектора или косвенного УФ - детектирования, то она называется ионной хроматографией".

Современная (2005 г.) формулировка: "Ионная хроматография включает все высокоэффективные жидкостные хроматографические (ВЭЖХ) разделения ионов в колонках, объединенные с непосредственным детектированием в проточном детекторе и количественной обработкой полученных аналитических сигналов". Это определение характеризует ионную хроматографию безотносительно механизма разделения и метода детектирования и тем самым отделяет еѐ от классического ионного обмена.

В ионной хроматографии применяются следующие принципы разделения:

    Ионный обмен.

    Образования ионных пар.

    Эксклюзия ионов.

Ионный обмен

Ионный обмен представляет собой обратимую гетерогенную реакцию эквивалентного обмена ионов, находящихся в фазе ионита (противоионов), наионы элюента. Противоиионы удерживаются функциональными группами ионита за счет электростатических сил. Как правило, в катионной хроматографии эти группы являются группами сульфоновых кислот; в случае анионной хроматографии – четвертичных аммониевых оснований. На рис. 1 представлена схема процесса обмена катионов и анионов. Ионы определяемого вещества обозначены как А, ионы элюента, конкурирующие с ними за обменные центры, - Е.

Рис. 1. Ионный обмен катионов (А+) и анионов (А-) на ионы элюента (Е+ или Е-) с участием катионообменника, содержащего функциональные сульфогруппы – SO3-, и анионообменника (группы четвертичного аммониевого основания –N+R3).

Образование ионных пар

Для реализации этого механизма разделения применяют ион-парные реагенты, которые добавляют в раствор элюента. Такие реагенты представляют собой анионные или катионные поверхностно-активные вещества, например, алкилсульфоновые кислоты или тетраалкиламмониевые соли.

Вместе с противоположно заряженными определяемыми ионами ионы этого ион-парного реагента образуют незаряженную ионную пару, которая может удерживаться на неподвижной фазе за счет межмолекулярных взаимодействий. Разделение осуществляется за счет различия констант образования ионных пар и степени их адсорбции на матрице сорбента. На рис. 2 показана статическая ионообменная модель в ион-парной хроматографии после адсорбции реагента на неподвижной фазе. Этот принцип разделения применяется как для анионов, так и для катионов .

Рис. 2 . Ионообменная модель в ион-парной хроматографии.

Ионная эксклюзия

Ионоэксклюзионная хроматография (ИЭХ). в основном, применяется для разделения слабых кислот или оснований. Наибольшее значение ИЭХ имеет для определения карбоновых и аминокислот, фенолов, углеводов.

На рис. 3 показан принцип разделения с помощью ИЭХ на примере кислот R–COOH.

Рис. 3. Схема разделения карбоновых кислот R–COOH с использованием ионоэксклюзионной хроматографии.

В ионоэксклюзионной хроматографии в качестве неподвижной фазы часто применяют полностью сульфированный катионообменник, содержащий ионыводорода (противоионы). В водном растворе элюента сульфокислотные группы ионита гидратируются. Гидратная оболочка ограничивается воображаемой отрицательно заряженной мембраной (Доннановской мембраной). Мембрана проницаема только для недиссоциированных молекул (например, воды).

Органические карбоновые кислоты могут быть разделены, если в качестве элюента применяются сильные минеральные кислоты. Вследствие низких значений констант кислотности карбоновые кислоты присутствуют в таких растворах в недиссоциированной форме. Эти формы могут проходить через мембрану Доннана и адсорбироваться на неподвижной фазе.

Первооткрывателем хроматографии был русский ученый, ботаник и физикохимик Михаил Семёнович Цвет.

Открытие хроматографии относится ко времени завершения Цветом работы над магистерской диссертацией в Петербурге (1900 - 1902) и первому периоду работы в Варшаве (1902 - 1903). Исследуя пигменты растений, Цвет пропустил раствор смеси очень мало различающихся по цвету пигментов через трубку, заполненную адсорбентом - порошкообразным карбонатом кальция, и промыл затем адсорбент чистым растворителем. Отдельные компоненты смеси при этом разделились и образовали цветные полосы. Согласно современной терминологии Цвет открыл проявительный вариант хроматографии (проявительную жидкостно-адсорбционную хроматографию). Основные итоги исследований по развитию созданного им варианта хроматографии Цвет изложил в книге “Хромофиллы в растительном и животном мире” (1910), которая является его докторской диссертацией. хроматография газовый осадочный ионообменный

Цвет широко использовал хроматографический метод не только для разделения смеси и установления ее многокомпонентности, но и для количественного анализа, с этой целью он разбивал стеклянную колонку и разрезал столбик адсорбента на слои. Цвет разработал аппаратуру для жидкостной хроматографии, впервые осуществил хроматографические процессы при пониженном давлении (откачке) и при некотором избыточном давлении, разработал рекомендации по приготовлению эффективных колонок. Кроме того, он ввел многие основные понятия и термины нового метода, такие как «хроматография», «проявление», «вытеснение», «хроматограмма» и др.

Хроматографию сначала использовали очень редко, ее скрытый период длился около 20 лет, в течение которых появилось лишь очень небольшое число сообщений о различных применениях метода. И только в 1931 г. Р. Куну (Германия) А. Винтерштейну (Германия) и Э. Ледереру (Франция), работавшим в химической лаборатории (руководимой Р. Куном) Института императора Вильгельма по медицинским исследованиям в Гейдельберге, удалось выделить этим методом a- и b-каротин из сырого каротина и тем самым продемонстрировать ценность открытия Цвета.

Важным этапом в развитии хроматографии стало открытие советскими учеными Н.А. Измайловым и М.С. Шрайбер метода хроматографии в тонком слое (1938), позволяющего проводить анализ с микроколичеством вещества.

Следующим важным шагом явилось открытие А. Мартином и Р. Сингом (Англия) варианта жидкостной распределительной хроматографии на примере разделения ацетильных производных аминокислот на колонке, заполненной силикагелем, насыщенным водой, с использованием хлороформа в качестве растворителя (1940) . Тогда же было отмечено, что в качестве подвижной фазы может быть использована не только жидкость, но и газ. Несколькими годами позднее эти ученые предложили осуществлять разделение производных аминокислот на смоченной водой бумаге с бутанолом в качестве подвижной фазы. Они же осуществили первую двумерную систему разделения. За открытие распределительного варианта хроматографии Мартин и Синг получили Нобелевскую премию по химии. (1952). Далее Мартин и А. Джеймс осуществили вариант газовой распределительной хроматографии, разделив смеси на смешанном сорбенте из силикона ДС-550 и стеариновой кислоты (1952 - 1953). С этого времени наиболее интенсивное развитие получил метод газовой хроматографии.

Одним из вариантов газовой хроматографии является хроматермография, при которой для улучшения разделения смеси газов одновременно с движением подвижной фазы - газа, воздействуют на сорбент и разделяемую смесь движущимся температурным полем, имеющим определенный градиент по длине (А.А. Жуховицкий и сотр., 1951) .

Заметный вклад в развитие хроматографического метода внес Г. Шваб (Германия), явившийся основателем ионообменной хроматографии (1937 - 1940). Дальнейшее развитие она получила в работах советских ученых Е.Н. Гапона и Т.Б. Гапона, которые провели хроматографическое разделение смеси ионов в растворе (совместно с Ф.М. Шемякиным, 1947), а также осуществили высказанную еще Цветом идею о возможности хроматографического разделения смеси веществ на основе различия в растворимости труднорастворимых осадков (осадочная хроматография, 1948).

Современный этап в развитии ионообменной хроматографии начался в 1975 г. после работы Г. Смолла, Т. Стивенса и У. Баумана (США), в которой они предложили новый аналитический метод, названный ионной хроматографией (вариант высокоэффективной ионообменной хроматографии с кондуктометрическим детектированием).

Исключительное значение имело создание сотрудником фирмы "Перкин-Эльмер" М. Голеем (США) капиллярного варианта хроматографии (1956), при котором сорбент наносится на внутренние стенки капиллярной трубки, что позволяет анализировать микроколичества многокомпонентных смесей.

В конце 60-х гг. резко возрос интерес к жидкостной хроматографии. Появилась высокоэффективная жидкостная хроматография (ВЭЖХ). Этому способствовало создание высокочувствительных детекторов, новых селективных полимерных сорбентов, новой аппаратуры, позволяющей работать при высоких давлениях. В настоящее время ВЭЖХ занимает ведущие позиции среди других методов хроматографии и реализована в различных вариантах.

Множество открытий прошедшего века обязаны русскому ученому Михаилу Цвету и его методу хроматографического анализа. Большое число выдающихся исследователей обязано ему своими успехами, а многие и Нобелевскими премиями!

"...Без работ Майкла Цвета нам, всем "пигментщикам", делать было бы нечего..." - вот мнение одного известного английского ученого.

Михаил Семенович Цвет (1872–1919) - сын итальянки и русского интеллигента. Он родился в Италии в городе Асти, неподалеку от Турина. В 1891 году Михаил окончил Женевскую гимназию и поступил на физико-математический факультет Женевского университета. Представив диссертацию "Исследование физиологии клетки. Материалы к познанию движения протоплазмы, плазматических мембран и хлоропластов" Цвет в октябре 1896 года получил диплом доктора естественных наук. В декабре того же года он приезжает в Петербург.

Михаил не знал, что ученая степень Женевского университета не признается в России. Поэтому ему пришлось работать у известного ботаника Андрея Сергеевича Фаминцина, также изучавшего хлорофилл, можно сказать, на птичьих правах. В Петербурге Цвет познакомился с другими выдающимися ботаниками и физиологами растений: И.П. Бородиным, М.С. Ворониным, А.Н. Бекетовым. Это было блестящее общество оригинальных, богатых идеями мыслителей и умелых экспериментаторов. Цвет продолжил свои исследования хлоропластов, готовясь в то же время к новым магистерским экзаменам и к защите диссертации. Экзамены он сдал в 1899 году, а магистерскую диссертацию он защитил в Казанском университете 23 сентября 1901 года.

С ноября 1901 года Цвет работает на должности ассистента кафедры анатомии и физиологии растений в Варшавском университете. На XI Съезде естествоиспытателей и врачей Михаил Семенович сделал доклад "Методы и задачи физиологического исследования хлорофилла", в котором впервые сообщил о методе адсорбционной хроматографии.

Михаил Семенович долгое время решал задачу разделения пигментов зеленого листа, а они очень близки по свойствам. К тому же в листьях присутствуют и другие, очень яркие, пигменты - каротиноиды. Именно благодаря каротиноидам и по осени появляются желтые, оранжевые, багровые листья. Однако пока хлорофиллы не разрушатся, отделить их от каротиноидов было почти невозможно.

Как замечает Ю.Г. Чирков, "видимо, открытие Цвета явилось реакцией на существующие тогда грубые и убийственные для пигментов методы их разделения. Вот один из приемов.

Сначала добывали спиртовую вытяжку хлорофилла, затем ее три часа кипя гили с добавлением в раствор крепкой щелочи (едкого калия). В результате хлорофилл разлагается на составные части - зеленый и желтый пигменты.

Но ведь в процессе изготовления этого зелья (почти алхимические манипуляции) природный хлорофилл мог разрушиться. И тогда исследователь имел бы дело с кусками пигментов, а то и с продуктами их химического превращения".

О том, как свершилось великое открытие, пишет С.Э. Шноль: "Он взял стеклянную трубку, наполнил ее порошком мела и на верхний слой налил немного спиртового экстракта листьев Экстракт был буро-зеленого цвета, и такого же цвета стал верхний слой меловой колонки. А затем М.С. начал по каплям лить сверху в трубку с мелом чистый спирт. Капля за каплей очередная порция растворителя элюировала пигменты с крупинок мела, которые перемещались вниз по трубке. Там свежие крупинки мела адсорбировали пигменты и в свою очередь отдавали их новым порциям растворителя. В силу несколько разной прочности адсорбции (легкости элюции) увлекаемые подвижным растворителем разные пигменты двигались по меловой колонке с разной скоростью и образовывали однородные окрашенные полосы чистых веществ в столбике мела. Это было прекрасно. Ярко-зеленая полоса, полоса чуть желтее зеленого - это два вида хлорофиллов - и яркая желто-оранжевая полоса каротиноидов. М.С. назвал эту картину хроматограммой".

"Цвет показал, - пишет Чирков, - что при пропускании растворенных в жидкости растительных пигментов через слой бесцветного пористого сорбента отдельные пигменты располагаются в виде окрашенных зон - каждый пигмент имеет собственный цвет или хотя бы оттенок. Порошок сорбента (это может быть мел, сахарная пудра...) адсорбирует (поверхностно поглощает: латинское adsorbere значит "глотать") разные пигменты с неодинаковой силой: одни могут "проскочить" с током раствора дальше, другие окажутся задержанными ближе. Полученный таким образом послойно окрашенный столбик сорбента Цвет назвал хроматограммой, а метод - хроматографией".

Так была решена казавшаяся неразрешимой задача. Метод оказался гениально прост. Он совсем не похож на громоздкие, требовавшие большого числа реактивов сложные процедуры, применяемые до этого.

Может, эта простота стала причиной того, что большая часть современников или не восприняла это удивительное открытие, или, что еще печальнее, резко восстала против его автора.

Но время все расставило на свои места. Цвет изобрел хроматографию для исследований хлорофилла. Он впервые выделил вещество, которое назвал хлорофиллом альфа и хлорофиллом бета. Он оказался пригодным для исследований не только пигментов, но и бесцветных, неокрашенных смесей - белков, углеводов. К шестидесятым годам двадцатого века хроматографии было посвящено уже несколько тысяч исследований. Хроматография стала универсальным методом.

"...Принцип хроматографического разделения веществ, открытый М. Цветом, лежит в основе множества разнообразных методов хроматографического анализа. Без его использования было бы невозможно большинство достижений в науке и технике XX века...

В основе всего этого - одна общая идея. Она проста. Это, в сущности, идея геометрической прогрессии. Пусть имеются два вещества очень близкие по всем своим свойствам. Ни осаждением, ни экстракцией, ни адсорбцией не удается разделить их в заметной степени. Пусть одно вещество адсорбируется на поверхности, например, карбоната кальция (т. е. менее 1 процента).

Иными словами, его содержание на адсорбенте составит 0,99 от содержания другого. Обработаем адсорбент каким-либо растворителем так, чтобы произошли десорбция (отсоединение) и элюция (смывание) обоих веществ и оба они перешли бы с адсорбента в растворитель, и перенесем этот получившийся раствор на свежую порцию адсорбента. Тогда доля первого вещества на поверхности адсорбента снова будет равна 0,99 от содержания второго, т. е. адсорбируется часть, равная 0,99 х 0,99=0,98 от исходного количества. Еще раз проведем элюцию и снова адсорбцию - теперь доля первого вещества составит 0,98 х 0,99 = 0,97 от содержания второго. Чтобы содержание первого вещества на очередной порции адсорбента составило всего 1 процент от содержания второго, потребуется повторить цикл адсорбции-элюции около 200 раз...

Идея многократной переадсорбции для разделения веществ может быть модифицирована в многократное перераспределение смеси веществ в системе несмешивающихся растворителей. Это - основа распределительной хроматографии. Та же идея лежит в основе современных методов электрофореза, когда смесь веществ движется с разной скоростью по различным адсорбентам в электрическом поле.