Титриметрический анализ. Методы титриметрического анализа. Типы титрования. Аналитическая химия Метод титрования в химии

В титриметрическом анализе количественное определение вещества производится, исходя из объема раствора известной концентрации, затраченного на реакцию с определенным веществом.

Процесс определения содержания вещества или точной концентрации раствора объемно-аналитическим путем называется титрованием . Эта важнейшая операция титриметрического анализа заключается в том, что к исследуемому раствору медленно приливают другой раствор точно известной концентрации в количестве, эквивалентном количеству определяемого соединения.

Объемы растворов, количественно реагирующих между собой, обратно пропорциональны нормальным концентрациям этих растворов:

V 1 = N 2 или V 1 x N 1 = N 2 x V 2 V 1 x N 1 = V 2 x N 2

Где V – объем реагирующего раствора, л; N – концентрация, н.

Это положение лежит в основе титриметрического анализа. Для того чтобы определить концентрацию одного из растворов, надо знать точно объемы реагирующих растворов, точную концентрацию другого раствора и момент, когда два вещества прореагируют в эквивалентных количествах. Условиями титриметрического определения являются:

а) точное измерение объемов реагирующих веществ;

б) приготовление растворов точно известной концентрации, с помощью которых проводится титрование, так называемых рабочих растворов (титранов) (часто такие растворы известной концентрации называют стандартными (титрованными);

в) определение конца реакции.

Титриметрическое определение занимает гораздо меньшее время, чем гравиметрическое. Вместо многих длительных операций гравиметрического анализа (осаждение, фильтрование, взвешивание и т.д.) при титриметрическом определении проводят всего одну операцию – титрование.

Точность титриметрических определений несколько меньше точности гравиметрического анализа, однако разница невелика, поэтому там, где возможно, стараются вести определение более быстрым методом.

Для того чтобы та или иная реакция могла служить основой для титрования, она должна удовлетворять ряду требований.

1. Реакция должна проходить количественно по определенному уравнению без побочных реакций. Необходимо быть уверенным. Что прибавляемый реактив расходуется исключительно на реакцию с определяемым веществом.

2. Окончание реакции следует точно фиксировать, чтобы количество реактива было

эквивалентно количеству определяемого вещества. На эквивалентности реагирующих веществ основано вычисление результатов анализа.

3. Реакция должна протекать с достаточной скоростью и быть практически необратимой. Точно фиксировать точку эквивалентности при медленно идущих реакциях почти невозможно.

СПОСОБЫ ТИТРОВАНИЯ

По способу выполнения титрования различают прямое, обратное или косвенное титрование (метод замещения).

При прямом титровании к раствору определяемого вещества непосредственно добавляют титрант. Для проведения анализа по этому методу достаточно одного рабочего раствора. Например, для определения кислоты необходим рабочий раствор щелочи, для определения окислителя – раствор восстановителя.

При обратном титровании к раствору анализируемого вещества приливают известный объем рабочего раствора, взятого в избытке. После этого титруют остаток первого рабочего раствора другим рабочим раствором и рассчитывают количество реагента, которое вступило в реакцию с анализируемым веществом. Например, для определения хлорид-ионов к анализируемому раствору хлорида добавляют известный объем раствора AqNO 3 , взятого в избытке. Происходит реакция

Aq + +Cl = AqCl↓.

Избыток раствора AqNO 3 определяют с помощью другого рабочего раствора – тиоцианата аммония NH 4 SCN:

Aq + + SCN - = AqSCN↓.

При косвенном титровании к анализируемому раствору приливается в избытке реагент, который реагирует с определяемым веществом. Затем один из продуктов реакции определяется титрованием. Например, для определения циановодородной кислоты добавляют раствор АqNO 3 в избытке. Происходит реакция

HCN + AqNO 3 = AqCN↓ + HNO 3

Затем азотная кислота легко определяется с помощью рабочего раствора щелочи NaOH:

HNO 3 + NaOH = NaNO 3 + H 2 O

В этом случае слабая циановодородная кислота замещается в эквивалентных количествах сильной.

3. КЛАССИФИКАЦИЯ МЕТОДОВ ТИТРИМЕТРИЧЕСКОГО

АНАЛИЗА

В титриметрическом анализе используют реакции различного типа (кислотно-основного взаимодействия, комплексообразования и т.д,), удовлетворяющие тем требованиям, которые предъявляются к титриметрическим реакциям. Отдельные титриметрические методы получили название по типу основной реакции, протекающей при титровании или по названию титранта (например, в аргентометрических методах титрантом является раствор AqNO 3 , в перманганатометрических – раствор KMnO 4 и т.д).По способу фиксирования точки эквивалентности выделяют методы титрования с цветными индикаторами, методы потенциометрического титрования, кондуктометрического, фотометрического и т.д. При классификации по типу основной реакции, протекающей при титровании, обычно выделяют следующие методы титриметрического анализа:

1 .методы кислотно-основного титрования, основанные на реакциях, связанных с процессом передачи протона:

H + + OH - = H 2 O, CH 3 COOH +OH - = CH 3 COO - + H 2 O,

CO 3 2- + H + = HCO - 3 ;

2. методы комплексообразования, использующие реакции образования координационных соединений (например, комплексонометрия):

Mg 2+ + H 2 V 2- = MgV 2_ + 2H +

ГдеV 2 = CH 2 – N /

׀ / CH 2 – COO-

3. Методы осаждения, основанные на реакциях образования малорастворимых

соединений:

Aq + + Cl - + AqCl↓ (аргентометрия),

Hg 2 2+ +2Cl - = Hg 2 Cl 2 ↓(меркурометрия);

4.методы окислительно-восстановительного титрования. основанные

на окислительно-восстановительных реакциях (оксидиметрия):

MnO 4 - + 5Fe 2+ + 8H + = Mn 2+ + 5Fe 3+ + 4H 2 O (перманганатометрия);

2S 2 O 3 2- + l 2 = S 4 O 6 2- + 2l - (йодометрия);

5NO - 2 + 2MnO 4 - + 6H + + 5NO - 3 + 2Mn 2+ +3H 2 O (нитритометрия);

3SbCl 4 - + Br - 3 + 6H + + 6Cl - = 3SbCl 6 - + Br _ + 3H 2 O (броматометрия).

В титриметрии используются самые разнообразные реакции. В зависимости от того, какая реакция лежит в основе титрования, различают следующие методы титриметрического анализа.

Кислотно-основные методы , в основе которых лежит реакция нейтрализации:

Н + + ОН - → Н 2 О

Этим методом определяют количество кислот, оснований, а также некоторых солей.

Методы окисления – восстановления (оксидиметрия). Эти методы основаны на реакциях окисления-восстановления. При помощи раствора окислителя определяют количество вещества, являющегося восстановителем и, наоборот.

Методы осаждения и комплексообразования основаны на осаждении ионов в виде труднорастворимых соединений и на связывании ионов в малодиссоциированный комплекс.

Различают следующие способы титрования :

прямое, когда при титровании происходит реакция между определяемым веществом и титрантом;

обратное, к огда к определяемому раствору добавляют заведомо избыточный, но точно отмеренный объем раствора известной концентрации и избыток реактива оттитровывают титрантом;

титрование заместителя , когда титрантом титруют продукт реакции определяемого вещества с каким-либо реактивом.

ТИТРАНТЫ

Титрантом называется раствор, с помощью которого производится титриметрическое определение, т.е. раствор, которым титруют. Чтобы проводить определение с помощью титранта, надо знать его точную концентрацию. Существуют два метода приготовления титрованных растворов, т.е. растворов точно известной концентрации.

1. Точная навеска, взятая на аналитических весах, растворяется в мерной колбе, т.е. готовится раствор, в котором известно количество растворенного вещества и объем раствора. В этом случае растворы называются растворами с приготовленным титром.

2. Раствор готовится приблизительно нужной концентрации, а точную концентрацию определяют титрованием, имея другой раствор с приготовленным титром. Титрованные растворы, точную концентрацию которых находят в результате титрования, называются растворами с установленным титром.

Титранты, как правило, готовят приблизительно нужной концентрации, а их точную концентрацию устанавливают. Необходимо помнить, что титр растворов с течением времени меняется и его надо проверять через определенные промежутки времени (от 1 до 3 нед. в зависимости от вещества, из которого приготовлен раствор). Поэтому, если титрант готовят по точно взятой навеске, то его титр соответствует приготовленному лишь ограниченное время.

Одним из правил титриметрического анализа является следующее:титры титрантов нужно устанавливать в таких же условиях, в каких будет выполняться анализ.

Для определения точной концентрации титранта (“установки титра”. или стандартизации) пользуются так называемым исходным или установочным веществом.

От свойств установочного вещества зависит точность определения титра титранта, а, следовательно, и точность всех последующих анализов. Установочное вещество должно удовлетворять следующим требованиям.

Соответствие состава вещества его химической формуле.

Химическая чистота – суммарное количество примесей не должно превышать0,1% - Устойчивость на воздухе, т.е. углекислого газа.

Устойчивость в растворе (не окисляться и не разлагаться).

Возможно, большая эквивалентная масса – это уменьшает относительную ошибку при определении.

Хорошая растворимость в воде.

Способность реагировать с раствором, титр которого устанавливается по строго определенному уравнению и с большой скорость.

Для установки титра титранта из установочного вещества готовят точный раствор по точно взятой навеске. Раствор готовится в мерной колбе. Мерная колба должна быть вымыта хромовой смесью до «полной стекаемости», ополоснута много раз водой под краном и затем 3 – 4 раза дистиллированной водой. Воронка должна быть чистой, сухой и свободно входить в горло колбы.

Навеску установочного вещества отвешивают на аналитических весах в бюксе. Можно отвесить точно рассчитанное количество, а можно взять количество, близкое к рассчитанному, но точно взвешенное. В первом случае раствор будет точно заданной концентрации, а во втором – точная концентрация рассчитывается.

Взятую навеску аккуратно переносят через воронку в мерную колбу. Остатки из бюкса тщательно смывают в воронку дистиллированной водой из промывалки. Затем обмывают внутренние стенки воронки и, слегка приподняв ее, - наружную часть трубки. Необходимо следить, чтобы общее количество воды, использованное для обмывания бюкса и воронки, занимало не более половины колбы. Осторожным вращательным движением перемешивают содержимое колбы, пока навеска полностью не растворится. Затем дистиллированной водой из промывалки доводят содержимое колбы до метки. Для этого наливают воду примерно на 1 см ниже метки. Ставят колбу так, чтобы метка была на уровне глаз и осторожно, по каплям, добавляют воду до тех пор, пока нижняя часть мениска не будет касаться метки на шейке колбы (рис.1). Тщательно закрывают колбу пробкой и, переворачивая колбу, перемешивают раствор 12-15 раз. Растворы для установки титра должны быть свежеприготовленными.

Для получения титрованных растворов часто пользуются фиксаналами , представляющими собой запаянные стеклянные ампулы, с точными навесками реактивов. На каждой ампуле имеется надпись, показывающая, какое вещество и в каком количестве находится в ампуле.

В мерную колбу вставляют воронку, также тщательно вымытую и ополоснутую дистиллированной водой. Если в ампуле содержится не раствор, а сухое вещество, то воронка должна быть сухой. Затем в воронку вставляют специальный стеклянный боек (обычно прилагается к коробке с фиксаналами), также сполоснутый дистиллированной водой. Ампулу протирают этиловым спиртом, чтобы удалить надпись и обмывают дистиллированной водой. Затем ее вставляют в воронку так, чтобы она своим тонким изогнутым внутрь дном касалась бойка, приподнимают ее и слегка ударяют о конец бойка. При этом содержимое ампулы попадает через воронку в колбу (рис.2). Сбоку или сверху в ампуле имеется углубление, в котором пробивают отверстие стеклянной палочкой с заостренным концом. Через это отверстие промывают дистиллированной водой из промывалки внутренние стенки ампулы. Промывать нужно много раз маленькими порциями. После этого ополаскивают наружные стенки ампулы и ампулу выбрасывают. Ополаскивают воронку и боек, затем поднимают воронку и обмывают наружную

Часть трубки воронки. Обмывают верхнюю часть шейки мерной колбы. Производя все эти операции по промыванию, следят, чтобы количество воды в мерной колбе к концу всех операций не превышало 2∕3объема колбы. Осторожно вращательным движением перемешивают содержимое колбы. Если фиксанал содержал сухое вещество, перемешивают его до полного растворения. Затем дистиллированной водой доводят содержимое колбы до метки. Тщательно закрывают колбу и перемешивают раствор 12-15 раз.

Для установки титра титранта пипеткой отбирают отдельные порции раствора и титруют их. Можно также брать отдельные навески исходного вещества и, растворив каждую из них в произвольном количестве воды, титровать весь полученный раствор. Этот способ дает более точные результаты, чем первый, однако является слишком трудоемким. Поэтому в лаборатории практически при выполнении анализов пользуются первым способом.

5. ОПРЕДЕЛЕНИЕ ТОЧКИ ЭКВИВАЛЕНТНОСТИ И КОНЦА

РЕАКЦИИ

При титровании употребляют не избыток реактива, а количество, эквивалентное количеству определяемого вещества. Необходимым условием при определении содержания вещества титриметрически является точное установление того момента, когда заканчивается реакция между титруемым веществом и титрантом, то есть фиксирование точки эквивалентности . Чем точнее определен конец реакции, тем точнее будет результат анализа.

Для определения конца реакции применяют особые реактивы, так называемые индикаторы. Действие индикаторов обычно сводится к тому, что они по окончании реакции между титруемым веществом и титрантом в присутствии небольшого избытка последнего претерпевают изменения и меняют окраску раствора или осадка. Когда из бюретки прибавлено столько титранта, что наблюдается заметное изменение окраски титруемого раствора, говорят что достигнута точка конца титрования.

В большинстве случаев индикаторы прибавляют к раствору исследуемого вещества и титрование происходит в присутствии индикатора. Это так называемые внутренние индикаторы . В некоторых случаях поступают иначе: по мере титрования от титруемого раствора отбирают капилляром по капле раствора, к которому по фарфоровой пластинке прибавляют каплю индикатора. Таким образом, реакция с индикатором происходит вне титруемого раствора. Применяемые в этом случае индикаторы называются внешними.

Для каждого титриметрического метода имеются отдельные индикаторы. При кислотно-основном титровании индикаторы меняют свою окраску при изменении рН раствора. В методах осаждения точку эквивалентности находят по прекращению образования осадка. Индикаторы, применяемые в этих методах, образуют ярко-окрашенный осадок или раствор с избытком титранта. Иногда, если титруют ярко-окрашенным раствором, например раствором KМnO 4, окончание титрования можно заметить без индикатора, так как первая капля титранта, которая не прореагирует с определенным веществом, изменяет окраску титруемого раствора.

Цель работы: приобретение навыков в применении одного из методов количественного анализа – титриметрического, и обучение элементарным приемам статистической обработки результатов измерений.

Теоретическая часть

Титриметрический анализ - это метод количественного химического анализа, основанный на измерении объема раствора реактива с точно известной концентрацией, расходуемого для реакции с определяемым веществом.

Титриметрическое определение вещества проводится титрованием - добавлением одного из растворов к другому небольшими порциями и отдельными каплями при постоянном фиксировании (контроле) результата.

Один их двух растворов содержит вещество в неизвестной концентрации и представляет собой анализируемый раствор.

Второй раствор содержит реагент с точно известной концентрацией и называется рабочим раствором, стандартным раствором или титрантом.

Требования к реакциям, применяемым при титриметрическом анализе:

1. Возможность фиксировать точку эквивалентности, наиболее широко используют наблюдение за его окраской, которая может меняться при следующих условиях:

Одно из реагирующих веществ окрашено, и окрашенный реагент в процессе реакции изменяет свой цвет;

Применяемые вещества – индикаторы - изменяют окраску в зависимости от свойств раствора (например, в зависимости от реакции среды).

2. Количественное течение реакции, вплоть до равновесия, характеризуемого соответствующей величиной константы равновесия

3. Достаточная скорость химической реакции, т.к. фиксировать точку эквивалентности при медленно текущих реакциях крайне трудно.

4. Отсутствие побочных реакций, при которых точные вычисления невозможны.

Методы титриметрического анализа можно классифицировать по характеру химической реакции, лежащей в основе определения веществ: кислотно-основного титрования (нейтрализации), осаждения, комплексообразования, окисления-восстановления.

Работа с растворами .

Мерные колбы предназначены для измерения точного объема жидкости. Они представляют собой круглые плоскодонные сосуды с узким длинным горлом, на котором имеется метка, до которой следует наполнять колбу (рис. 1).

Рис.1 Мерные колбы

Техника приготовления растворов в мерных колбах из фиксаналов.

Для приготовления раствора из фиксанала ампулу разбивают над воронкой, вставленной в мерную колбу, содержимое ампулы смывают дистиллированной водой; затем растворяют его в мерной колбе. Раствор, находящийся в мерной колбе, доводят до метки. После доведения уровня жидкости до метки раствор в колбе хорошо перемешивают.



Бюретки представляют собой тонкие стеклянные трубки, градуированные в миллилитрах (рис. 2). К нижнему, слегка суженному концу бюретки припаян стеклянный кран или присоединен резиновый шланг с шариковым затвором и стеклянным носиком. Для работы выбирают бюретку в зависимости от объема раствора, применяемого в анализе.

Рис.2. Бюретки

Порядок работы с бюреткой

1. Бюретку промывают дистиллированной водой.

2. Подготовленную к работе бюретку закрепляют вертикально в штативе, с помощью воронки наливают в бюретку раствор так, чтобы его уровень был выше нулевой отметки.

3. Из нижнего оттянутого конца бюретки удаляют пузырьки воздуха. Для этого отгибают его кверху и выпускают жидкость до тех пор, пока весь воздух не будет удален. Затем опускают капилляр вниз.

4. Уровень жидкости в бюретке устанавливают на нулевое деление.

5. При проведении титрования нажимают на резиновую трубку сбоку от шарика и сливают жидкость из бюретки в колбу, вращая последнюю. Сначала титрант, находящийся в бюретке, сливают тонкой струйкой. Когда же окраска индикатора в месте падения капель титранта начнет изменяться, раствор приливают осторожно, по каплям. Титрование прекращают, когда наступает резкое изменение окраски индикатора от приливания одной капли титранта, и записывают объем израсходованного раствора.

6. По окончании работы титрант из бюретки сливают, бюретку промывают дистиллированной водой.

Метод кислотно-основного титрования (нейтрализации)

Метод кислотно-основного титрования основан на реакции взаимодействия кислот и оснований, т.е. на реакции нейтрализации:

H + + OH¯ = H 2 O

При выполнении данного задания используется метод кислотно-основного титрования, основанный на применении реакции нейтрализации:



2NaOH + H 2 SO 4 = Na 2 SO 4 + 2H 2 O

Метод заключается в том, что к раствору определяемого вещества - гидроксида натрия – постепенно прибавляют раствор серной кислоты известной концентрации. Добавление раствора кислоты продолжают до тех пор, пока его количество не станет эквивалентным количеству реагируемого с ним гидроксида натрия, т.е. до нейтрализации щёлочи. Момент нейтрализации устанавливают по изменению окраски индикатора, прибавляемого в титруемый раствор. По закону эквивалентов в соответствии с уравнением:

С н(к-ты) · V (к-ты) = C н (щелочи) · V (щелочи)

С н(к-ты) и C н (щелочи) – молярные концентрации эквивалентов реагирующих растворов, моль/л;

V (к-ты) и V (щелочи) – объёмы реагирующих растворов, л (мл).

С (NaOH) и - молярные концентрации эквивалента NaOH и H 2 SO 4 в реагирующих растворах, моль/л;

V (NaOH) и ) - объёмы реагирующих растворов щёлочи и кислоты, мл.

Примеры решения задач.

1. На нейтрализацию 0,05 л раствора кислоты израсходовано 20 см 3 0,5н раствора щелочи. Чему равна нормальность кислоты?

2. Сколько и какого вещества останется в избытке, если к 60см 3 0,4н раствора серной кислоты прибавить 120см 3 0,3н раствора гидроксида калия?

Решение задач по определению рН раствора, концентраций различного типа представлено в методическом пособии .

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Получите у лаборанта колбу с раствором щёлочи неизвестной концентрации. Пробы анализируемого раствора отмерьте мерным цилиндром по 10 мл в три конические колбы для титрований. В каждую из них добавьте 2-3 капли индикатора метилового оранжевого. Раствор приобретёт жёлтую окраску (метилоранж жёлтый в щелочной среде и оранжево-красный в кислой).

Приготовьте к работе установку для титрований (рис.3) Бюретку ополосните дистиллированной водой, а затем заполните раствором серной кислоты точно известной концентрации (молярная концентрация эквивалента H 2 SO 4 указана на склянке) выше нулевого деления. Каучуковую трубку со стеклянным наконечником отогните вверх и, оттягивая резину от стеклянной оливы, закрывающей выход из бюретки, медленно выпускайте жидкость так, чтобы после заполнения наконечника в нём не осталось пузырьков воздуха. Избыток раствора кислоты выпустите из бюретки в подставленный стакан, при этом нижний мениск жидкости в бюретке должен установиться на нулевом делении.

Одну из колб раствора щёлочи подставьте под наконечник бюретки на лист белой бумаги и приступайте непосредственно к титрованию: одной рукой медленно подавайте кислоту из бюретки, а другой непрерывно перемешивайте раствор круговым движением колбы в горизонтальной плоскости. В конце титрования раствор кислоты из бюретки следует подавать по каплям до тех пор, пока от одной капли раствор примет неисчезающую оранжевую окраску.

Определите объём кислоты, израсходованный на титрование, с точностью до 0,01мл. Отсчёт делений бюретки производите по нижнему мениску, при этом глаз должен находиться на уровне мениска.

Повторите титрование ещё 2 раза, начиная каждый раз с нулевого деления бюретки. Результаты титрований запишите в таблицу 1.

Концентрацию раствора щёлочи вычислите по формуле:

Таблица 1

Результаты титрования раствора гидроксида натрия

Проведите статистическую обработку результатов титрований по методике, описанной в приложении. Результаты статистической обработки экспериментальных данных сведите в таблицу 2.

Таблица 2

Результаты статистической обработки экспериментальных данных титрования раствора гидроксида натрия. Доверительная вероятность α = 0,95.

n S x

Запишите результат определения молярной концентрации эквивалента NaOH в анализируемом растворе в виде доверительного интервала.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1. Раствор гидроксида калия имеет рН =12. Концентрация основания в растворе при 100% диссоциации равна … моль/л.

1) 0,005; 2) 0,01; 3) 0,001; 4) 1·10 -12 ; 5) 0,05.

2. На нейтрализацию 0,05 л раствора кислоты израсходовано 20 см 3 0,5 н раствора щелочи. Чему равна нормальность кислоты?

1) 0,2 н; 2) 0,5 н; 3) 1,0 н; 4) 0,02 н; 5) 1,25 н.

3. Сколько и какого вещества останется в избытке, если к 75 см 3 0,3 н раствора серной кислоты прибавить 125 см 3 0,2 н раствора гидроксида калия?

1) 0,0025 г щелочи; 2) 0,0025 г кислоты; 3) 0,28 г щелочи; 4) 0,14 г щелочи; 5) 0,28 г кислоты.

4. Метод анализа, основанный на определении повышения температуры кипения, называется…

1) спектрофотометрический; 2) потенциометрический; 3) эбулиоскопический; 4) радиометрический; 5) кондуктометрический.

5. Определить процентную концентрацию, молярность и нормальность раствора серной кислоты, полученного при растворении 36 г кислоты в 114 г воды, если плотность раствора 1,031 г/см 3 .

1) 31,6 ; 3,77; 7,54 ; 2) 31,6; 0,00377; 0,00377 ;

3) 24,0 ; 2,87; 2,87 ; 4) 24,0 ; 0,00287; 0,00287;

5) 24,0; 2,87; 5,74.

Лекция 7. Титриметрический метод анализа.

1. Сущность титриметрического метода анализа

2. Классификация титриметрических методов анализа

3. Расчеты в титриметрии. Стандартные и рабочие растворы

4. Погрешности титриметрического метода

5. Построение кривых титрования.

Титриметрический метод анализа основан на том, что вещества реагируют друг с другом в эквивалентных количествах:

где n 1 и n 2 количества вещества 1 и 2, [ n]= моль

где C молярная концентрация эквивалента;· V объем раствора [ V ]= л

Тогда для двух стехиометрически реагирующих веществ справедливо соотношение:

Титриметрический анализ – метод определения количества вещества путем точного измерения объема растворов веществ, вступающих между собой в реакцию.

Титр – количество г вещества содержащегося в 1 мл раствора или эквивалентное определяемому веществу. Например, если титр H2SO4 равен 0,0049 г/мл, это значит, что каждый мл раствора содержит 0,0049 г. серной кислоты.

Раствор, титр которого известен, называется титрованным Титрование – процесс добавления к исследуемому раствору или его аликвотной части эквивалентного количества титрованного раствора. При этом используются стандартные растворы – растворы с точной концентрацией вещества (Na2CO3, HCl).

Реакция титрования должна отвечать следующим требованиям:

1) Реакция должна протекать количественно, быть строго стехиометричной

2) Реакция должна протекать с высокой скоростью;


3) Реакция должна протекать до конца, должны отсутствовать конкурирующие процессы;

4) Для данной реакции должен существовать удобный способ фиксирования конца реакции (точки эквивалентности).

Например, кислотно-основное титрование:

HCl + NaOH → NaCl + H2O (индикатор метилоранж)

Классификация методов титриметрического анализа.

Классифицировать титриметрические методы анализа можно по нескольким признакам. Например, по типу основной реакции, протекающей при титровании:

1) кислотно-основное титрование (нейтрализация): H3O+ + OH - ↔ 2H2O

этим методом определяют количество кислоты или щёлочи в анализируемом растворе;

а) ацидиметрия

б) алкалиметрия

2) окислительно-восстановительное титрование (редоксиметрия):

Ox1 + Red2 ↔ Ox2 + Red1

а) перманганатометрия (KMnO4);

б) йодометрия (I2);

в) броматометрия (KBrO3);

г) дихроматометрия (K2Cr2O7);

д) цериметрия (Ce(SO4)2);

е) ванадометрия (NH4VO3);

ж) титанометрия (TiCl3) и т. д.

3) осадительное титрование: Me + X ↔ MeX↓

а) аргентометрия Ag+ + Cl - " AgCl $

б) меркурометрия

4) комплексометрическое титрование Mem+ + nL ↔ m+

а) меркуриметрия

б) комплексонометрия (ЭДТА)

Главная задача титриметрического анализа – не только использовать раствор точно известной концентрации, но и правильно определить точку эквивалентности. Существует несколько способов зафиксировать точку эквивалентности:

1. По собственной окраске ионов определяемого элемента, например перманганат ионы MnO 4 - имеют малиновую окраску

2. С помощью индикаторов например, при реакции нейтрализации используют кислотно-щелочные индикаторы: лакмус, фенолфталеин, метил оранж – органические соединения изменяющие окраску при переходе от кислой к щелочной среде.

Индикаторы – органические красители, которые меняют свою окраску при изменении кислотности среды. Схематически (опуская промежуточные формы) равновесие индикатора можно представить как кислотно-основную реакцию

HIn +H2O In - + H3O+

На область перехода окраски индикатора (положение и интервал) влияют все факторы, от которых зависит константа равновесия (ионная сила, температура, посторонние вещества, растворитель), а также индикатора.

3. По веществу-свидетелю

Пример: Ag+ + Cl - " AgCl $

Ag+ + CrO4" Ag2CrO4$ (ярко оранжевая окраска)

В колбу, где требуется определить ион хлора, добавляют небольшое количество соли K2CrO4 (свидетель). Затем из бюретки постепенно добавляют исследуемое вещество, при этом первыми в реакцию вступают ионы хлора и образуется белый осадок (AgCl), т. е. ПР AgCl << ПР Ag2Cr O4.

Таким образом, лишняя капля нитрата серебра даст ярко оранжевую окраску, т. к. весь хлор уже прореагировал.

Способы титрования.

1. прямое титрование, при прямом титровании титрант непосредственно добавляют к титруемому веществу. Такой способ применим только при выполнении всех требований, перечисленных выше.

2. обратное титрование (с избытком), используется при медленно протекающей реакции. Если скорость реакции мала, или не удается подобрать индикатор, или наблюдаются побочные эффекты, например потери определяемого вещества вследствие летучести, можно использовать прием обратного титрования : добавить к определяемому веществу заведомый избыток титранта Т1, довести реакцию до конца, а затем найти количество непрореагировавшего титранта титрованием его другим реагентом Т2 с концентрацией С2. очевидно, что на определяемое вещество затрачивается количество титранта Т1, равное разности СТ1VT1 = СT2VT2.


3. косвенное титрование (по замещению), применяется при анализе органических соединений. Если реакция нестехиометрична или протекает медленно, то используют титрование заместителя, для чего проводят химическую реакцию определяемого вещества с вспомогательным реагентом, а получающийся в эквивалентном количестве продукт оттитровывают подходящим титрантом.

Способы выражения концентрации раствора.

Молярная концентрация – моль/ л

1М – в 1 литре находится 1 г/моль вещества

Молярная концентрация эквивалентов (нормальные растворы) (раствор должен содержать в 1 л заданное число эквивалентных масс).

Химическим эквивалентом называется количество вещества эквивалентное одному г атома водорода .

Титр раствора Т

Титр по рабочему веществу: https://pandia.ru/text/79/035/images/image004_113.gif" width="133" height="48 src="> [г/мл]

Титр по рабочему веществу надо перевести в титр по определяемому веществу, воспользовавшись фактором пересчёта: Tonp = Tраб· F

Пример: https://pandia.ru/text/79/035/images/image006_73.gif" width="72" height="46 src=">

а – навеска анализируемого вещества

Стандартные и рабочие растворы

Титрант с известной концентрацией называют стандартным раствором. По способу приготовления различают первичные и вторичные стандартные растворы. Первичный стандартный раствор готовят растворением точно количества химически чистого вещества известного стехиометрического состава в определенном объеме растворителя. Вторичный стандартный раствор получают следующим образом: готовят раствор с приблизительной концентрацией и определяют его концентрацию (стандартизируют) по подходящему первичному стандарту.

Первичные стандартные вещества должны отвечать ряду требований:

1. Состав вещества должен строго соответствовать химической формуле. Содержание примесей менее 0,05%

2. Вещество должно быть устойчивым при комнатной температуре, быть не гигроскопичным, не окисляться кислородом воздуха, не поглощать углекислый газ, быть не летучим.

3. Вещество должно иметь достаточно высокую молекулярную массу, чтобы уменьшить погрешность при взвешивании.

Для приготовления первичных стандартных раствором можно воспользоваться фиксаналом – ампулой, в которой запаяно известное количество стандартного вещества или раствора.

Титриметрический анализ – метод определения количества вещества путем точного измерения объема растворов веществ, вступающих между собой в реакцию.

Титр – количество г. вещества содержащегося в 1 мл. раствора или эквивалентное определяемому веществу. Например, если титр H 2 SO 4 равен 0,0049 г/мл, это значит, что каждый мл раствора содержит 0,0049 г. серной кислоты.

Раствор, титр которого известен, называется титрованным. Титрование – процесс добавления к исследуемому раствору или его аликвотной части эквивалентного количества титрованного раствора. При этом используются стандартные растворы – фиксаналы – растворы с точной концентрацией вещества (Na 2 CO 3 , HCl).

Реакция титрования должна отвечать следующим требованиям:

    высокая скорость реакции;

    реакция должна протекать до конца;

    реакция должна быть высоко стехиометричной;

    иметь удобный метод фиксирования конца реакции.

HCl + NaOH → NaCl + H 2 O

Главная задача титриметрического анализа – не только использовать раствор точно известной концентрации (фиксанал), но и правильно определить точку эквивалентности.

Существует несколько способов зафиксировать точку эквивалентности:

      По собственной окраске ионов определяемого элемента, например марганца в виде аниона MnO 4 -

      По веществу-свидетелю

Пример: Ag + + Cl - " AgCl $

Ag + + CrO 4 " Ag 2 CrO 4 $ (ярко оранжевая окраска)

В колбу, где требуется определить ион хлора, добавляют небольшое количество соли K 2 CrO 4 (свидетель). Затем из бюретки постепенно добавляют исследуемое вещество, при этом первыми в реакцию вступают ионы хлора и образуется белый осадок (AgCl), т. е. ПР AgCl << ПР Ag2Cr O4.

Таким образом, лишняя капля нитрата серебра даст ярко оранжевую окраску, т. к. весь хлор уже прореагировал.

III . С помощью индикаторов : например, при реакции нейтрализации используют кислотно-щелочные индикаторы: лакмус, фенолфталеин, метил оранж – органические соединения изменяющие окраску при переходе от кислой к щелочной среде.

Индикаторы – органические красители, которые меняют свою окраску при изменении кислотности среды.

Схематически (опуская промежуточные формы) равновесие индикатора можно представить как кислотно-основную реакцию

HIn +H 2 O In - + H 3 O +

H 2 O
H + + OH -

H + + H 2 O
H 3 O +

На область перехода окраски индикатора (положение и интервал) влияют все факторы, от которых зависит константа равновесия (ионная сила, температура, посторонние вещества, растворитель), а также индикатора.

Классификация методов титриметрического анализа.

    кислотно-основное титрование (нейтрализация): этим методом определяют количество кислоты или щёлочи в анализируемом растворе;

    осаждение и комплексообразование (аргентометрия)

Ag + + Cl - " AgCl $

    окислительно-восстановительное титрование (редоксиметрия):

а) перманганатометрия (KMnO 4);

б) йодометрия (Y 2);

в) броматометрия (KBrO 3);

г) дихроматометрия (K 2 Cr 2 O 7);

д) цериметрия (Ce(SO 4) 2);

е) ванадометрия (NH 4 VO 3);

ж) титанометрия (TiCl 3) и т.д.

Титриметрический, или объемный, анализ - метод количественного анализа, основанный на измерении объема (или массы) реагента Т, затраченного на реакцию с определяемым веществом Х. Другими словами, титриметрический анализ - анализ, основанный на титровании.

Цель лабораторных занятий по титриметрическим методам анализа - выработка практических навыков по технике выполнения титриметрического анализа и овладение методами статистической обработки результатов анализа на примере конкретных количественных определений, а также закрепление теоретических знаний путем решения типовых расчетных задач по каждой теме.

Знание теории и практики методов титриметрического анализа необходимо для последующего изучения инструментальных методов анализа, других химических и специальных фармацевтических дисциплин (фармацевтической, токсикологической химии, фармакогнозии, фармацевтической технологии). Изучаемые методы титриметрического анализа являются фармакопейными и широко применяются в практической деятельности провизора для контроля качества лекарственных препаратов.

Условные обозначения

А, Х, Т - любое вещество, определяемое вещество и титрант соответственно;

m(A), m(Х), т(Т) - масса любого вещества, определяемого вещества и титранта соответственно, г;

М(А), М(Х), М(Т) - молярная масса любого вещества, определяемого вещества и титранта соответственно, г/моль;

n(А), n(Х), n(Т) - количество любого вещества, определяемого вещества и титранта соответственно, моль;

Количество вещества эквивалента любого вещества, определяемого вещества и титранта соответственно, моль;

- объем раствора любого вещества, определяемого вещества и титранта соответственно, л;

- объем аликвотной доли определяемого вещества, равный вместимости пипетки, л;

- объем анализируемого раствора определяемого вещества, равный вместимости колбы, л.

1. Основные понятия титриметрического

анализа

1.1. Титрование - процесс определения вещества Х постепенным прибавлением небольших количеств вещества Т, при котором какимнибудь способом обеспечивают обнаружение точки (момента), когда все вещество Х прореагировало. Титрование позволяет найти количество вещества Х по известному количеству вещества Т, прибавленного до этой точки (момента), с учетом того, что соотношение, в котором реагируют Х и Т, известно из стехиометрии или как-то иначе.

1.2. Титрант - раствор, содержащий активный реагент Т, с помощью которого проводят титрование. Обычно титрование проводят, прибавляя титрант из калиброванной бюретки в колбу для титрования с анализируемым раствором. В эту колбу перед титрованием вносят аликвотную долю анализируемого раствора.

1.3. Аликвотная доля (аликвота) - точно известная часть анализируемого раствора, взятая для анализа. Часто она отбирается калиброванной пипеткой, и ее объем обычно обозначается символом V ss .

1.4. Точка эквивалентности (ТЭ) - такая точка (момент) титрования, в которой количество прибавленного титранта Т эквивалентно количеству титруемого вещества Х. Синонимы ТЭ: стехиометрическая точка, теоретическая конечная точка.

1.5. Конечная точка титрования (КТТ ) - точка (момент) титрования, в которой некоторое свойство раствора (например, его окраска) показывает заметное (резкое) изменение. КТТ соответствует более или менее ТЭ, но чаще всего не совпадает с ней.

1.6. Индикатор - вещество, которое проявляет видимое изменение в ТЭ или вблизи нее. В идеальном случае индикатор присутствует в достаточно малой концентрации, чтобы в интервале его перехода не затра-

чивалось существенное количество титранта Т. Резкое видимое изменение индикатора (например, его окраски) соответствует КТТ.

1.7. Интервал перехода индикатора - область концентрации ионов водорода, металла или других ионов, в пределах которой глаз способен обнаружить изменение в оттенке, интенсивности окраски, флуоресценции или другого свойства визуального индикатора, вызванное изменением соотношения двух соответствующих форм индикатора. Эту область обычно выражают в виде отрицательного логарифма концентрации, например:Для окислительно-восстановительного индикатора интервал перехода представляет собой соответствующую область окислительно-восстановительного потенциала.

1.8. Степень оттитрованности- отношение объема V (Т) добавленного титранта к объему V (ТЭ) титранта, соответствующему ТЭ. Другими словами, степень оттитрованности раствора - отношение количества оттитрованного вещества к его исходному количеству в анализируемом растворе:

1.9. Уровень титрования - порядокконцентрации используемого раствора титранта, например, 10 -1 , 10 -2 , 10 -3 и т.д.

1.10. Кривая титрования - графическое изображение зависимости изменения концентрации с (Х) определяемого вещества Х или некоторого связанного с ним свойства системы (раствора) от объема V (Т) прибавленного титранта Т. Величина с (Х) в ходе титрования изменяется на несколько порядков, поэтому кривая титрования часто строится в координатах:По оси абсцисс откладывают объем прибавленного титранта V (Т) или степень оттитрованности / . Если по оси ординат откладывать равновесную концентрацию с (Х) или интенсивность пропорционального ей свойства, то получают линейную кривую титрования. Если по оси ординат откладыватьили логарифм интенсивности свойства, пропорционального с (Х), то получают логарифмическую (или монологарифмическую) кривую титрования. Для более четкого выявления особенностей процесса титрования и в прикладных целях иногда строят дифференциальные кривые титрования, откладывая по оси абсцисс объем прибавленного титранта V (Т), а по оси ординат - первую производную от логарифма концентрации (или интенсивности пропорционального ей свойства) по объему прибавляемого титранта:Такие кривые титрования обычно используют в физико-химических методах анализа, например, при потенциометрическом титровании.

1.11. Стандартный раствор - раствор, имеющий известную концентрацию активного вещества.

1.12. Стандартизация - процесс нахождения концентрации активного реагента в растворе (чаще всего путем титрования его стандартным раствором соответствующего вещества).

1.13. Скачок титрования - интервал резкого изменения какоголибо физического или физико-химического свойства раствора вблизи точки эквивалентности, обычно наблюдается тогда, когда добавлено 99,9-100,1% титранта по сравнению с его стехиометрическим количеством.

1.14. Холостое титрование - титрование раствора, идентичного анализируемому раствору по объему, кислотности, количеству индикатора и т.д., но не содержащего определяемого вещества.

2. Основные операции титриметрического анализа

2.1. Очистка, мытье, хранение мерной посуды.

2.2. Проверка вместимости мерной посуды.

2.3. Взятие навески с точно известной массой по разности результатов двух взвешиваний (обычно - на аналитических весах).

2.4. Количественное перенесение навески вещества в мерную колбу и растворение вещества.

2.5. Заполнение мерной посуды (колб, бюреток, пипеток) раствором.

2.6. Опорожнение пипеток, бюреток.

2.7. Отбор аликвотной доли анализируемого раствора.

2.8. Титрование и расчеты по результатам титрования.

3. Калибровка мерной посуды

При титриметрическом анализе точные объемы раствора отмеривают с помощью измерительной посуды, в качестве которой используют мерные колбы вместимостью 1000, 500, 250, 100, 50 и 25 мл, пипетки и градуированные пипетки вместимостью 10, 5, 3, 2 и 1 мл. Вместимость колбы и пипетки при 20 °C выгравирована на шейке колбы или на боковой поверхности пипетки (номинальный объем). При массовом изготовлении мерной посуды действительная (истинная) вместимость мерных колб, бюреток, пипеток может отличаться от номинальных значений, указанных на посуде. Для достижения необходимой точности получаемых результатов титриметрического анализа

Калибровка мерной посуды основана на определении точной массы вливаемой или выливаемой дистиллированной воды, которая определяется по результатам взвешивания посуды до и после вливания или выливания воды. Объем воды в калибруемой посуде (ее вместимость) и масса воды связаны соотношением:


где- плотность воды при температуре опыта, г/мл.

Плотность воды зависит от температуры, поэтому при проведении расчетов следует использовать данные табл. 2-1.

Таблица 2-1. Значения плотности воды при соответствующей температуре


Мерные колбы калибруются на вливание, а бюретки и пипетки - на выливание, так как небольшие количества жидкости при выливании всегда остаются на стенках посуды.

3.1. Проверка вместимости мерных колб

Колбу тщательно моют, высушивают и взвешивают на аналитических весах с точностью до ±0,002 г. Затем заполняют ее водой (здесь и далее - дистиллированной) по нижнему мениску, удаляют фильтровальной бумагой капли воды в верхней части горлышка колбы и снова взвешивают. Каждое взвешивание пустой колбы и колбы с водой проводят не менее двух раз, при этом расхождение между двумя взвешиваниями не должно превышать ±0,005 г. Разность между массой колбы с водой и массой пустой колбы равна массе воды, вмещаемой колбой при данной температуре. Истинную вместимость колбы рассчитывают делением среднего значения массы воды на ее плотность при температуре опыта (см. табл. 2-1).

Например, пусть при калибровке мерной колбы с номинальным объемом 100 мл среднее значение массы воды при 18 °C равно 99,0350 г. Тогда истинная вместимость мерной колбы равна:

3.2. Проверка вместимости бюреток

Бюретка представляет собой стеклянный цилиндр, внутренний диаметр которого может несколько изменяться по длине бюретки. Равным делениям на бюретке в различных ее частях соответствуют неравные объемы раствора. Именно поэтому при калибровке бюретки рассчитывают истинные объемы для каждого выбранного участка бюретки.

Чистую и высушенную бюретку заполняют водой до нулевой отметки по нижнему мениску и удаляют с помощью фильтровальной бумаги капли воды с внутренней поверхности верхней части бюретки. Затем под бюретку подставляют бюкс, предварительно взвешенный с крышкой на аналитических весах. В бюкс медленно сливают из бюретки определенный объем воды (например, 5 мл). После этого бюкс закрывают крышкой и снова взвешивают. Разность массы бюкса с водой и пустого бюкса равна массе воды, вмещаемой в бюретке между делениями 0 и 5 мл при температуре опыта. Затем бюретку снова заполняют водой до нулевой отметки по нижнему мениску, медленно сливают 10 мл воды в пустой бюкс и аналогичным методом определяют массу воды, вмещаемую в бюретке между делениями 0 и 10 мл. При калибровке бюретки, например, на 25 мл такую операцию проводят 5 раз и рассчитывают массу воды, соответствующую указанным на бюретке номинальным объемам 5, 10, 15, 20 и 25 мл. Каждое взвешивание пустого бюкса и бюкса с водой повторяют не менее двух раз, при этом расхождение между двумя взвешиваниями не должно превышать ±0,005 г.

Затем по табл. 2-1 определяют плотность воды при температуре опыта и рассчитывают истинную вместимость бюретки для каждого указанного на ней значения номинального объема.

На основе полученных данных рассчитывают величину поправки равную разности между рассчитанным значением истинной вместимости и соответствующим значением номинального объема бюретки:

и затем вычерчивают кривую ошибок вместимости бюретки в координатах(рис. 2-1).

Например, пусть при калибровке бюретки вместимостью 25 мл при температуре 20 °C получены следующие экспериментальные данные, которые вместе с результатами соответствующих расчетов представлены в табл. 2-2.

На основе полученных табличных данных вычерчивают кривую поправок вместимости для данной бюретки, с использованием которой можно уточнить результаты отсчета по бюретке.

Таблица 2-2. Результаты калибровки бюретки вместимостью 25 мл



Рис. 2-1. Кривая поправок вместимости бюретки

Например, пусть на титрование аликвотной доли определяемого вещества по результатам отсчета по бюретке израсходовано 7,50 мл титранта. В соответствии с графиком (см. рис. 2-1) величина поправки, соответствующая этому номинальному объему, равна 0,025 мл, истинный объем израсходованного титранта равен: 7,50 - 0,025 = 7,475 мл.

3.3. Проверка вместимости пипеток

Чистую и взвешенную на аналитических весах пипетку заполняют водой до нулевой отметки по нижнему мениску и затем воду медленно

сливают по стенке в предварительно взвешенный бюкс. Бюкс закрывают крышкой и взвешивают вместе с водой. Каждое взвешивание пустого бюкса и бюкса с водой повторяют не менее двух раз, при этом расхождение между двумя взвешиваниями не должно превышать ±0,005 г. Разность массы бюкса с водой и пустого бюкса равна массе воды, вмещаемой пипеткой. Истинную вместимость пипетки рассчитывают делением средней массы воды на плотность воды при температуре опыта (см. табл. 2-1).

4. Типовые расчеты в титриметрическом анализе

4.1. Способы выражения концентраций, применяемые для расчетов в титриметрическом анализе

4.1.1. Молярная концентрация вещества с (А), моль/л - количество вещества А в моль, содержащееся в 1 л раствора:


(2.1)

где- количество вещества А в моль, растворенное в V (А) л

раствора.

4.1.2. Молярная концентрация эквивалента вещества , моль/л - количество вещества эквивалента А в моль, содержащееся в 1 л раствора (прежнее название - «нормальность» раствора):


(2.2)

где
- количество вещества эквивалента А в моль,

растворенное в V (А) л раствора; - молярная масса эквивалента ве-

щества А, г/моль;- фактор эквивалентности вещества.

4.1.3. Титр вещества T (А), г/мл - масса растворенного вещества А в граммах, содержащаяся в 1 мл раствора:

4.1.4. Титриметрический фактор пересчетаI, г/мл - масса определяемого вещества в граммах, взаимодействующая с 1 мл титранта:

(2.4)

4.1.5. Поправочный коэффициент F - величина, показывающая, во сколько раз практические концентрации титранта отличаются от соответствующих теоретических значений, заданных в методике:


(2.5)

4.2. Вычисление молярной массы эквивалента веществ в реакциях, применяемых в титриметрическом анализе

Эквивалентом называется реальная или условная частица, которая может присоединять или отдавать один ион водорода Н+ (или быть другим образом эквивалентной ему в кислотно-основных реакциях) либо присоединять или отдавать один электрон в окислительновосстановительных реакциях.

Фактор эквивалентности- число, обозначающее, какую

долю эквивалент составляет от реальной частицы вещества А. Фактор эквивалентности рассчитывается на основании стехиометрии данной реакции:

где Z - число протонов, отдаваемых или присоединяемых одной реагирующей частицей (молекулой или ионом) в кислотно-основной реакции, или число электронов, отдаваемых или принимаемых одной реагирующей частицей (молекулой или ионом) в полуреакции окисления или восстановления.

Молярная масса эквивалента вещества - масса одного моль эквивалента вещества, равная произведению фактора эквивалентности на молярную массу вещества, г/моль. Она может быть рассчитана по формуле:


(2.6)

4.3. Приготовление раствора методом разбавления более концентрированного раствора с известной концентрацией

При проведении титриметрического анализа в ряде случаев требуется приготовить раствор вещества А объемомс примерно известной концентрацией путем разбавления более концентрированного раствора.

При разбавлении раствора водой количество вещества А или количество вещества эквивалента А не меняется, поэтому в соответствии с выражениями (2.1) и (2.2) можно записать:

(2.7)
(2.8)

где индексы 1 и 2 относятся к растворам до и после разбавления соответственно.

Из полученных соотношений рассчитывают объем более концентрированного раствора, который необходимо отмерить для приготовления заданного раствора.

4.4. Приготовление заданного объема раствора по навеске с точно известной массой

4.4.1. Расчет массы навески

Теоретическая масса навески стандартного вещества А, необходимая для приготовления заданного объема раствора с известной концентрацией, рассчитывается из выражений (2.1) и (2.2). Она равна:

(2.9)

если используется молярная концентрация вещества в растворе, и:

(2.10)

если используется молярная концентрация эквивалента вещества в растворе.

4.4.2. Расчет точной концентрации приготовленного раствора

Концентрацию раствора вещества А, приготовленного по точной навеске массой m (А), рассчитывают из соотношений (2.1-2.3), где т(А) - практическая масса вещества А, взятая по разности двух взвешиваний на аналитических весах.

4.5. Расчет концентрации титранта при его стандартизации

Известный объем стандартного раствора объемомс концентрацией титруют раствором титранта объемом V (Т) (или наоборот). В этом случае для реакции, протекающей в растворе в процессе титрования, закон эквивалентов имеет вид:

и

Отсюда получают выражение для расчета молярной концентрации эквивалента титранта по результатам титрования:


(2.12)

4.6. Расчет массы определяемого вещества в анализируемом растворе 4.6.1. Прямое титрование

Определяемое вещество в анализируемом растворе титруется непосредственно титрантом.

4.6.1.1. Расчет с использованием молярной концентрации эквивалента титранта

Аликвотную долю раствора определяемого веществатитруют

раствором титранта объемом V(T). В этом случае для реакции, протекающей в растворе в процессе титрования:

закон эквивалентов имеет вид: и

(2.13)

Отсюда молярная концентрация эквивалента определяемого вещества, рассчитанная по результатам титрования, равна:


(2.14)

Полученное выражение подставляют в уравнение (2.2) и получают формулу для расчета массы определяемого вещества в колбе объемом по результатам прямого титрования:


(2.15)

Если при титровании часть титранта расходуется на реакцию с индикатором, проводят «холостой опыт» и определяют объем титранта V" (Т),

израсходованный на титрование индикатора. При расчетах этот объем вычитают из объема титранта, который пошел на титрование раствора определяемого вещества. Такая поправка вносится при проведении «холостого опыта» во все расчетные формулы, применяемые в титриметрическом анализе. Например, формула (2.15) для расчета массы определяемого вещества с учетом «холостого опыта» будет иметь вид:

(2.16)

4.6.1.2. Расчет с использованием титриметрического фактора пересчета

Имеем анализируемый раствор объемомНа титрование алик-

вотной долираствора определяемого вещества израсходован объем титранта V (Т) с теоретическим титриметрическим фактором пересчета и поправочным коэффициентом F. Тогда масса определяемого вещества в аликвотной доле равна:

(2.17)

а во всем анализируемом объеме

(2.18)

4.6.2. Заместительное титрование

добавляют заведомый избыток реагента А и выделяется заместитель В в количестве, эквивалентном определяемому веществу:

Заместитель В титруется подходящим титрантом:

Закон эквивалентов для заместительного титрования:


с использованием соотношения (2.8) можно записать в виде:

Отсюда получают формулу для расчета молярной концентрации эквивалента определяемого вещества в растворе по результатам заместительного титрования:


которая имеет такой же вид, как и при прямом титровании (2.14). Именно поэтому все расчеты массы определяемого вещества в анализируемой задаче при заместительном титровании производят по формулам (2.15- 2.18) для прямого титрования. 4.6.3. Обратное титрование

К аликвотной доле определяемого веществадобавляют известный избыток первого титранта:

Затем избыток непрореагировавшего первого титранта оттитровывают вторым титрантомпри этом расходуется объем:

Закон эквивалентов в данном случае можно записать в виде:


Отсюда рассчитывают молярную концентрацию эквивалента вещества Х в растворе:


(2.19)

Подставляют полученное выражение в уравнение (2.2) и получают формулу для расчета массы определяемого вещества в анализируемом растворе, равном объему колбы, по результатам обратного титрования:

5. Выполнение и обеспечение практических работ по титриметрическому анализу

5.1. Общие положения

При изучении раздела «Титриметрический анализ» предусмотрено проведение работ по следующим темам.

Тема I. Методы кислотно-основного титрования.

Тема II. Методы окислительно-восстановительного титрования.

Тема III. Методы осадительного титрования.

Тема IV. Методы комплексонометрического титрования.

Занятие 1. Приготовление раствора хлороводородной кислоты и его стандартизация.

Занятие 2. Определение массы щелочи в растворе. Определение массы карбонатов в растворе. Определение массы щелочи и карбоната в растворе при совместном присутствии.

Занятие 3. Определение массы аммиака в растворах аммониевых солей.

а) Тест-контроль 1.

б) Определение массы аммиака в растворах аммониевых солей. Занятие 4. Перманганатометрическое титрование.

а) Письменная контрольная работа 1.

б) Определение массы водорода пероксида в растворе.

в) Определение массы железа(II) в растворе соли. Определение массовой доли железа(II) в образце соли.

Занятие 5. Йодометрическое титрование.

а) Определение массы водорода пероксида в растворе.

б) Определение массы меди(II) в растворе. Занятие 6. Йодиметрическое титрование.

Занятие 7. Броматометрическое титрование. Определение массы мышьяка(III) в растворе.

Занятие 8. Бромометрическое титрование. Определение массовой доли натрия салицилата в препарате.

Занятие 9. Нитритометрическое титрование.

а) Тест-контроль 2.

б) Определение массовой доли новокаина в препарате. Занятие 10. Аргентометрическое титрованиеи гексацианоферратоме-

трическое титрование.

а) Письменная контрольная работа 2.

б) Определение массы калия бромида и калия йодида в растворе методами аргентометрического титрования.

в) Определение массы цинка в растворе методом гексацианоферратометрического титрования.

Занятие 11. Комплексонометрическое определение массы цинка и свинца в растворе.

а) Тест-контроль 3.

б) Определение массы цинка и свинца в растворе.

Занятие 12. Комплексонометрическое определение железа(III) и кальция в растворе.

а) Письменная контрольная работа 3.

б) Определение массы железа(III) и кальция в растворе.

В зависимости от конкретной ситуации допускается проведение некоторых работ в течение не одного, а двух занятий. Возможно также смещение сроков проведения тест-контролей и письменных контрольных работ.

В конце каждой темы приводятся примеры тестовых пунктов для промежуточного контроля знаний студентов, содержание итоговой письменной контрольной работы, пример билета письменной контрольной работы.

В конце каждого занятия студент оформляет протокол, который включает дату и название выполненной работы, сущность методики, порядок выполнения работы, полученные экспериментальные данные, расчеты, таблицы, выводы. Все расчеты результатов анализа (концентрация раствора, масса определяемого вещества) студенты выполняют с точностью до четвертой значащей цифры, за исключением случаев, особо оговоренных по тексту.

Промежуточный контроль практических навыков и теоретических знаний осуществляется с помощью тестового контроля и письменных контрольных работ.

5.2. Материальное обеспечение занятий по титриметрическому анализу

Лабораторная посуда: бюретки вместимостью 5 мл, мерные пипетки вместимостью 2 и 5 мл, мерные колбы вместимостью 25, 50, 100 и 250 мл, конические колбы вместимостью 10-25 мл, стеклянные бюксы, стеклянные воронки диаметром 20-30 мм, склянки из обычного или темного стекла вместимостью 100, 200 и 500 мл, мерные цилиндры вместимостью 10, 100 мл.

Реактивы: в работе применяются реактивы квалификации «х.ч.» и «ч.д.а.», индикаторная бумага.

Приборы: весы аналитические с разновесами, весы технические с разновесами, сушильный шкаф, лабораторный термометр со шкалой 20-100 °C, штативы с лапками для закрепления бюреток и кольцами для асбестовых сеток, газовые горелки, водяные бани.

Вспомогательные материалы и принадлежности: моющие средства (сода, моющие порошки, хромовая смесь), ерши для мытья посуды, резиновые груши, асбестовые сетки, канцелярский клей, карандаши по стеклу, фильтровальная бумага.

Список литературы

1.Лекции для студентов по разделу «Титриметрический анализ».

2.Харитонов Ю.Я. Аналитическая химия (аналитика): В 2 т.- изд. 5-е - М.: Высшая школа, 2010 (далее именуется «Учебник»).

3.Лурье Ю.Ю. Справочник по аналитической химии.- М.: Химия, 1989 (далее именуется «Справочник»).

4.Джабаров Д.Н. Сборник упражнений и задач по аналитической химии.- М.: Русский врач, 2007.