Пищевая и биологическая ценность кисломолочных продуктов. Пищевая ценность кисломолочных продуктов. Пищевая ценность и химический состав

Пищевая ценность и химический состав

Молоко - биологическая жидкость, образующаяся в молочной железе млекопитающих и предназначенная для вскармливания новорожденного детеныша. Это - полноценный и полезный продукт питания, содержащий все необходимые элементы для построения организма. В его состав входят свыше 200 различных компонентов: 20 глицеридов жирных кислот, более 20 аминокислот, 30 макро- и микроэлементов, 23 витамина, 4 сахара и т.д. Состав молока различных млекопитающих зависит от условий окружающей среды, в которых происходит рост молодого организма, и может изменяться в результате заболеваний животных, микробиологических и других происходящих в нем процессов.

Вода. Молоко состоит на 85...89% из воды, которая принимает участие в различных реакциях, протекающих в организме животных: гидролизе, окислении и т.д. Основным источником ее служит кровь, и только часть образуется в процессе синтеза триглицеридов, при этом выделяются три молекулы воды.

Вода в молоке находится в свободном и связанном состоянии. Свободной воды значительно больше (83...86%), чем связанной (3,0...3,5%). Она принимает участие в биохимических реакциях и представляет собой раствор различных органических и неорганических веществ. В свободной воде растворяются молочный сахар, водорастворимые витамины, минеральные вещества, кислоты и т.п. Ее легко можно удалить при сгущении, высушивании молока. Свободная вода замерзает при 0°С.

Связанная вода (адсорбционно-связанная вода) удерживается около поверхности коллоидных частиц (белков, фосфолипидов, полисахаридов) молекулярными силами. Гидратация белковых молекул обусловлена присутствием на их поверхности полимерных групп (гидрофильных центров). К ним относятся карбоксильные, гидроксильные, аминные и другие группы. В результате вокруг частиц образуются плотные гидратные (водные) оболочки, препятствующие их соединению (агрегированию). Связанная вода по своим свойствам отличается от свободной воды молока. Она замерзает при температуре ниже 0 °С, не растворяет сахар, соли и другие вещества, при высушивании трудно удаляется.

Особая форма связанной воды -химически связанная вода. Это вода кристаллогидратов и кристаллизованная. Она связана с кристаллами молочного сахара С 12 Н 22 О м Н 2 0 (лактозой).

Сухие вещества. Сухих веществ (СВ) в молоке содержится в среднем 12,5%, их получают в результате высушивания молока при

102... 105 °С. В состав сухих веществ входят все компоненты молока, кроме воды. Питательная ценность молока определяется содержанием в нем сухого вещества. Расход сырья на 1 кг готовой продукции при переработке молока на творог, сыр, консервы и т.д. также зависит от количества сухого вещества.

Продуктивность и племенное качество животных оценивают не только по содержанию жира в молоке и удою, но и по содержанию в нем сухих веществ.

Белки молока. Белок -самый ценный компонент молока. В нем содержатся разнообразные белки, различающиеся по строению, свойствам и играющие строго определенную роль. Массовая доля белков в молоке 2,1 ...5%.

С химической точки зрения белки -это высокомолекулярные соединения, входящие в состав всех живых структур клеток, тканей и организма в целом. Белки -это строительный энергетический материал, выполняющий различные функции: транспортную, защитную, регуляторную. Построены они по одному принципу и состоят из четырех основных элементов: углерода, кислорода, водорода и азота. Все белки содержат незначительное количество серы, а некоторые-железо, кальций, фосфор, цинк и др. Структурными блоками белков служат остатки аминокислот, расположенных в определенном порядке и связанных между собой в цепочку. Белковая молекула состоит из более чем 20 аминокислот.

В состав кислот входят аминная (NH 2) и карбоксильная (СООН) группы. Аминная группа находится в ^-положении по отношению к карбоксиду. Аминокислоты могут содержать равное число карбоксильных и аминных групп (серин, аланин, цистеин, глицин, фенилаланин и т.д.) - они нейтральны, а есть аминокислоты, содержащие две карбоксильные группы (глутаминовая кислота) или две аминогруппы (лизин); их водные растворы показывают соответственно кислую или щелочную реакцию.

Белок представляет собой длинную цепь различных аминокислотных остатков. Соединение аминокислот в белковый полимер происходит следующим образом: аминогруппа одной аминокислоты вступает в реакцию с карбоксильной группой другой аминокислоты, при этом выделяются молекулы воды и образуется пептидная связь -СО-NH-.

Аминокислоты, соединяясь в разных комбинациях, образуют длинные полипептидные цепи с группами R в виде ответвлений. Последовательность полипептидной цепи аминокислотных остатков специфична для каждого белка. Молекулы белка обладают определенной гибкостью. В воде гидрофобные участки контактируют друг с другом, а гидрофильные - с водой и молекулой. Изгибаясь, молекула сворачивается таким образом, что все гидрофобные боковые цепи оказываются внутри глобулы, а гидрофильные -на ее поверхности, ближе к воде.

Первичная структура - вытянутая нить, вторичная - спираль, третичная - глобула, при объединении глобул в одно целое образуется четвертичная структура. В протеидах (сложных белках) в отличие от протеинов (простых белков) помимо белковой части существует еще и дополнительный компонент небелковой природы (остатки фосфорной кислоты в фосфопротеидах, жиры, углеводы и т.п.), влияющий на свойства белка. В воде белок образует устойчивый коллоидный раствор.

В молоке содержится более 20 различных белков, но основные-казеин и сывороточные белки: альбумин, глобулин и др. Питательная ценность сывороточных белков выше, чем казеина.

Казеин - основной белок молока, его содержание колеблется от 2 до 4,5%. В молоке казеин присутствует в виде коллоидных частиц (мицелл).

Строение казеина. На поверхности мицелл находятся заряженные группы (отрицательный знак) и гидратная оболочка, в связи с этим они не склеиваются и не коагулируют при приближении друг к другу. Частицы казеина в свежем молоке достаточно устойчивы. Как и другие животные белки, казеин содержит свободные аминогруппы (NH 2) и карбоксильные группы (СООН): первых-83, вторых-144, поэтому он обладает кислотными свойствами и имеет изоэлектри- ческую точку при pH 4,6...4,7. Кроме того, казеин содержит -ОН группы фосфорной кислоты, будучи не простым, а сложным белком-фосфопротеидом. В молоке казеин соединен с кальциевыми солями и образует казеинаткальцийфосфатный комплекс, который в свежевыдоенном молоке образует мицеллы, способные связывать значительное количество воды. Формула казеина:

Казеин, выделенный из молока, состоит из следующих фракций: а, Ь, с, п. Они различаются по физико-химическим свойствам, чувствительности к ионам кальция и растворимости. Так, а- и ^-казеин чувствительны к ионам кальция и под их действием выпадают в осадок, нестабильны и располагаются внутри мицелл; с-казеин нечувствителен к ионам кальция и располагается на поверхности. Под действием сычужного фермента осаждаются все три фракции казеина; четвертая фракция - п-казеин - не входит в состав мицелл и под действием сычужного фермента не осаждается, поэтому при производстве творога и сыра сычужным способом он теряется с сывороткой.

Свойства казеина. Выделенный из молока и обработанный спиртом казеин представляет собой аморфный порошок белого цвета без вкуса и запаха, плотностью 1,2...1,3 г/см 3 . Он хорошо растворяется в некоторых растворах солей, хуже -в воде; в эфире и в спирте нерастворим совсем.

Благодаря казеину цвет молока тоже белый. Казеин при нагревании не выпадает в осадок, но коагулирует под действием сычужного фермента, кислот и солей. Эти его свойства используют при производстве кисломолочных продуктов и сыра. Концентрация казеина и размер его частиц определяют скорость осаждения и прочность белковых сгустков. От размера частиц зависит термоустойчивость молока: чем они крупнее, тем оно менее термоустойчиво. Гидрофильные свойства казеина, т.е. его способность связывать и удерживать влагу, определяют качество получаемых кислотных и сычужных сгустков, а также консистенцию готовых кисломолочных продуктов и сыра. Характер взаимодействия казеина с водой зависит от его аминокислотного состава, реакции среды и концентрации в ней солей.

При осаждении белков кислотой, сычужным ферментом, после механической и тепловой обработки гидрофильные свойства казеина меняются в результате изменения структуры белковых частиц и перераспределения на их поверхности гидрофобных и гидрофильных групп. На гидрофильные свойства казеина большое влияние оказывают сывороточные белки молока, так как в процессе тепловой обработки они взаимодействуют с его частицами. Сывороточные белки активнее связывают воду, чем казеин; при этом повышаются его гидрофильные свойства. Эти свойства учитывают при выборе режимов пастеризации молока. Под действием кислот, сычужного фермента, хлорида кальция казеин выпадает в осадок, а коллоидный раствор белка превращается в сгусток, или гель; частицы белка соединяются друг с другом в цепочки и образуют пространственные сетки.

Сывороточные белки (альбумин и глобулин). Ихвмо- локе содержится значительно меньше, чем казеина (0,2...0,7%), т.е.

15...22% массы всех белков. Альбумин и глобулин содержат больше серы, чем казеин, они растворимы в воде и не свертываются под действием кислот и сычужного фермента, но выпадают в осадок при нагревании, а вместе с солями образуют «молочный камень».

Альбумин и глобулин имеют огромное значение для новорожденного животного. Иммуноглобулины, переходящие из крови животного в молоко, представляют собой антитела, нейтрализующие чужеродные клетки, т.е. выполняют защитную роль в организме. Особенно много этих белков в молозиве. Так, содержание альбумина может достигать 10...12%, глобулина-до 8...15%.

Сывороточные белки содержатся в молоке в виде мелких по сравнению с казеином частиц, на поверхности которых имеется суммарный отрицательный заряд. Частицы окружены прочной гидратной оболочкой, поэтому они не свертываются даже в изоэлектрической точке. При нагревании молока до 70...75 °С альбумин выпадает в осадок, а глобулин осаждается нагреванием до 80 °С. Нагреванием молока до 90...95 °С можно выделить из сыворотки альбумины и глобулины. Сывороточные белки можно выделить путем совместной тепловой, кальциевой или кислотной обработки. Полученную белковую массу используют при производстве белковых продуктов, плавленых сыров, продуктов детского и диетического питания. Белок оболочки составляет около 70% ее массы. Этот сложный белок представляет собой смесь белка и фосфолипидов. В жировых шариках оболочки белка содержится жироподобное вещество-лецитин. В отличие от других белков молока в сывороточных белках меньше азота, нет фосфора, кальция, магния.

Молочный жир. Представляет собой соединение сложных эфиров глицерина и жирных кислот. Глицерин, входящий в состав триглицеридов, является трехатомным спиртом.

Жирные кислоты содержат карбоксильную группу (СООН) и радикал, на конце которого находятся метальная группа (СН 3) и неодинаковое число углеродных атомов (от 0 до 24), образующих углеродные цепочки разной длины. Углерод может присутствовать в виде насыщенных метиленовых (-СН 2 -) соединений -в этом случае жирные кислоты будут насыщенными (предельными)-или ненасыщенных этиленовых соединений (-СН=) - кислоты будут ненасыщенными (непредельными).

Массовая доля жира в молоке в среднем составляет 3,8%. Жир синтезируется из кормов, составной частью которых являются протеины, углеводы и жиры. Эти вещества, попадая в желудочно-кишечный тракт животного, претерпевают сложные изменения. В желудках жвачных животных (в рубце) при брожении образуются уксусная кислота и другие летучие жирные кислоты (пропионовая, масляная и др.), которые являются предшественниками жира: чем больше образуется уксусной кислоты, тем жирнее молоко. Если увеличивается количество пропионовой кислоты, то содержание жира снижается, а повышается количество белка в молоке. Перечисленные летучие жирные кислоты всасываются сначала в лимфу, затем в кровь, которая переносит их в молочную железу, где происходит синтез жира. Источником молочного жира может быть также нейтральный жир крови, образующийся в печени.

Массовая доля жира в молоке зависит от породы, продуктивности, возраста и рациона кормления животного. В парном молоке жир присутствует в жидком состоянии и образует эмульсию в водной части. В холодном молоке жир твердый и находится в виде суспензии. Жир в молоке имеет форму шариков (рис. 1) с прочной упругой оболочкой, поэтому они не склеиваются. Диаметр шарика 3...4 мкм (размеры колеблются от 0,1 до 10 мкм, в отдельных случаях-до 20 мкм). В 1 мл молока содержится от 1 млрд до 12 млрд, в среднем от 3 млрд до 5 млрд жировых шариков. Содержание жировых шариков в молоке меняется в течение лактационного периода: в начале лактации они более крупные и их меньше, а к концу лактации-наоборот. Жировые шарики незначительного размера всплывают быстрее, так как они слипаются в комочки.

Физическая стабильность шариков жира в молоке и молочных продуктах зависит в основном от состава и свойств их оболочек. Оболочка жирового шарика состоит из двух слоев: внешний - рыхлый (диффузный), легко десорбирует при технологической обработке молока; внутренний-тонкий, плотно прилегающий к кристаллическому слою высокоплавких триглицеридов жировой глобулы (см. рис. 1).

В состав оболочного вещества входят белки, фосфолипиды, сте- рины, 6-каротин, витамины A, D, Е, минеральные вещества Си, Fe, Mo, Mg, Se, Na, К и др.

Рис. 1.

1 - жировая глобула: 2 - внутренний слой; 3 - наружный слой

Рис. 2.

1 - гидрофильная оболочка: 2 - липофильная оболочка: 3 - жир: 4 - вода

Внутренний слой включает лецитин и в незначительном количестве кефалин, сфингомиелин. Фосфолипиды - хорошие эмульгаторы, их молекула состоит из двух частей: липофильной, сходной с жиром, и гидрофильной - присоединяет гидратную воду.

Белковые компоненты оболочки включают две фракции: растворимую в воде и плохо растворимую в воде. Водорастворимая белковая фракция содержит гликопротеид с высоким содержанием углеводов и ферменты: фосфотазу, холинэстеразу, ксантиноксидазу и др.

Плохо растворимая в воде фракция содержит 14% азота, аргинина больше, чем в молоке, и меньше лейцина, валина, лизина, аскорбиновой и глютаминовой кислот. В ее состав входят также в значительном количестве гликопротеиды, содержащие гексозы, гексозамины и сиаловую кислоту. Внешний слой оболочки жирового шарика состоит из фосфатидов, оболочного белка и гидратной воды. Состав и структура оболочек жировых шариков изменяются после охлаждения, хранения и гомогенизации молока и сливок.

Белковая оболочка шариков разрушается также при механическом и химическом воздействии. При этом жир выделяется из оболочки и образует сплошную массу. Эти свойства используют при производстве сливочного масла и при определении жирности молока.

В результате технологической обработки молока в первую очередь изменяется внешний слой оболочки из-за неровной, шероховатой, рыхлой поверхности и довольно большой толщины после перемешивания, встряхивания и хранения. Оболочки шариков жира становятся более гладкими и тонкими в результате десорбции липопроте- идных мицелл из оболочек в плазму. Одновременно с десорбцией мицелл происходит сорбция белков и других компонентов плазмы молока на поверхности мембраны шариков жира. Эти два явления-десорбция и сорбция - вызывают изменение состава и поверхностных свойств оболочек, что приводит к снижению их прочности и частичному разрыву.

Уже в процессе тепловой обработки молока происходит частичная денатурация мембранных белков, что способствует дальнейшему снижению прочности оболочек шариков жира. Они могут разрушиться довольно быстро и в результате специального механического воздействия: при производстве масла, а также под действием концентрированных кислот, щелочей, амилового спирта.

Стабильность жировой эмульсии в первую очередь обусловлена возникновением на поверхности капелек жира электрического заряда благодаря содержанию на поверхности оболочки жирового шарика полярных групп - фосфолипидов, СООН, NH 2 (рис. 2). Таким образом, на поверхности образуется суммарный отрицательный заряд (изоэлектрическая точка при pH 4,5). К отрицательно заряженным группам присоединяются катионы кальция, магния и др. В результате образуется второй электрический слой, силы отталкивания которого превышают силы притяжения, поэтому расслоения эмульсии не происходит. Кроме того, жировую эмульсию дополнительно стабилизирует гидратная оболочка, которая образуется вокруг полярных групп мембранных компонентов.

Вторым фактором устойчивости жировой эмульсии является образование на границе раздела фаз структурно-механического барьера, обусловленного тем, что оболочки жировых шариков обладают повышенной вязкостью, механической прочностью и упругостью, т.е. свойствами, которые препятствуют слиянию шариков. Таким образом, для обеспечения устойчивости жировой эмульсии молока и сливок в процессе выработки молочных продуктов необходимо стремиться сохранить неповрежденными оболочки шариков жира и не снижать степень их гидратации. Для этого необходимо сократить до минимума механические воздействия на дисперсную фазу молока при транспортировании, хранении и обработке, избегать его вспенивания, правильно проводить тепловую обработку, так как длительная выдержка при высоких температурах может вызвать значительную денатурацию структурных белков оболочки и нарушение ее целостности.

Дополнительное диспергирование жира путем гомогенизации стабилизирует жировую эмульсию. Если при выработке одних молочных продуктов перед инженером-технологом стоит задача предотвратить агрегирование и опалесценцию шариков жира, то при получении масла, наоборот, необходимо разрушить (деэмульгировать) стабильную жировую эмульсию и выделить из нее дисперсную фазу.

Молочный жир отличается от других видов жиров тем, что легче переваривается и усваивается. В нем содержится более 147 жирных кислот. Жиры животного и растительного происхождения содержат

5...7 низкомолекулярных жирных кислот с числом углеродных атомов от 4 до 14.

Молочный жир обладает приятным вкусом и ароматом, но под влиянием света, высокой температуры, кислорода, ферментов, растворов щелочей и кислот он может приобрести неприятный запах, прогорклый вкус, привкус сала. Такие изменения происходят при гидролизе, окислении и прогоркании жира.

Гидролиз жира - процесс действия воды на триглицериды при повышенной температуре, в результате которого триглицериды расщепляются на глицерин и жирные кислоты. При гидролизе повышается кислотность жира. Происхождение и способ получения молочного жира могут влиять на скорость гидролиза. Если молочный жир получают вытапливанием при 65 °С, то гидролиз протекает быстрее, чем при 85 °С. Гидролиз протекает медленнее при пониженной температуре (4 °С) и в герметичной упаковке.

Окисление жира происходит под действием солнечных лучей, повышенной температуры или катализаторов, в результате чего по месту двойных связей присоединяются водород и кислород. В процессе окисления молочного жира в результате обесцвечивания каротиноидов обесцвечивается и жир, а также изменяются запах и вкус. Окисление жира возникает в результате перехода жидких ненасыщенных кислот в твердые насыщенные. Прогоркание жира приводит к появлению в молочном жире горького вкуса и специфического запаха, обусловленных образованием пероксида, альдегидов и т.д. Процесс прогоркания происходит под воздействием ферментов, кислорода, тяжелых металлов, микроорганизмов.

Все перечисленные изменения, происходящие в жире, сложно разграничить, так как они протекают совместно и сопровождаются побочными процессами, поэтому в производственных условиях определяют физико-химические константы жира, которые зависят от его количественного и качественного состава. К ним относятся кислотное число, число Рейхерта-Мейссля, йодное число (число Гюбля), число омыления (Кеттсторфера), температура застывания и кипения.

Углеводы. В молоке они представлены лактозой - молочным сахаром-и состоят из углерода, водорода и кислорода. Лактоза относится к дисахаридам (С |2 Н 22 О п) и включает остатки двух простых сахаров - галактозы и глюкозы. Средняя массовая доля лактозы 4,7%.

Углеводы необходимы для обмена веществ, работы сердца, печени, почек; входят в состав ферментов.

Лактоза образуется в железистой ткани молочной железы путем соединения галактозы, глюкозы и молекулы воды. Молочный сахар содержится только в молоке. Чистая лактоза - белый кристаллический порошок, в 5...6 раз менее сладкий, чем сахар (сахароза). Лактоза хуже растворяется в воде, чем сахароза.

В молоке лактоза присутствует в двух формах: аи Ь, которые различаются физическими и химическими свойствами и могут переходить одна в другую со скоростью, которая зависит от температуры. В перенасыщенном растворе лактоза образует кристаллы более или менее правильной формы.

Кристаллическую лактозу получают из молочной сыворотки. Кристаллизация лактозы происходит также при выработке сгущенного молока с сахаром.

При нагревании молока до температуры выше 150 °С в нем происходит реакция между лактозой и белками или некоторыми свободными аминокислотами. В результате образуются меланоидины - вещества темного цвета, с выраженными запахом и вкусом. При нагревании до 110... 130°С лактоза теряет кристаллизационную воду, а при нагревании до 185 °С происходит ее карамелизация. Разложение молочного сахара в растворах начинается при температуре выше 100 °С, при этом образуются молочная и муравьиная кислоты.

Под действием фермента лактазы, выделяемой молочнокислыми и другими бактериями, лактоза расщепляется на простые сахара. Процесс распада лактозы под действием микроорганизмов называется брожением. До стадии образования пировиноградной кислоты (С 3 Н 4 0 2) все типы брожения идут одинаково. Дальнейшее превращение кислоты проходит в разных направлениях. В результате образуются различные продукты: кислоты (молочная, уксусная, пропионовая, масляная и др.); спирты (этиловый, бутиловый и др.); углекислый газ и т.д.

Различают следующие виды брожения: молочнокислое, спиртовое, пропионово-кислое, маслянокислое.

Молочнокислое брожение вызывается молочнокислыми бактериями (стрептококками и палочками). В процессе брожения пировиноградная кислота восстанавливается в молочную кислоту. Из одной молекулы сахара образуется четыре молекулы молочной кислоты:

После накопления определенного количества молочной кислоты в процессе сбраживания молочнокислые бактерии погибают. Для палочек предел накопления молочной кислоты выше, чем для кокковых форм. Образовавшаяся в процессе брожения молочная кислота имеет большое значение для коагуляции казеина в производстве большинства кисломолочных продуктов - она придает продукту кислый вкус. Выход молочной кислоты зависит от вида молочнокислых бактерий, входящих в состав закваски.

Наряду с молочной кислотой при молочнокислом брожении образуются летучие кислоты (муравьиная, пропионовая, уксусная и др.), спирты, уксусный альдегид, ацетон, ацетоин, диацетил, углекислый газ и др. Многие из них придают готовому продукту специфические кисломолочные вкус и запах. Для улучшения этих свойств кроме молочнокислых бактерий используют и ароматобразующие микроорганизмы, которые из пировиноградной кислоты образуют ароматические вещества -ацетоин, уксусный альдегид, диацетил. Для накопления диацетила необходимо присутствие лимонной кислоты, которую добавляют в молоко, что улучшает вкус и аромат продукта. При производстве кисломолочных продуктов используют разные комбинации молочнокислых бактерий, а также вкусовые и ароматические вещества.

Спиртовое брожение вызывают дрожжи, содержащиеся в бактериальных заквасках (кефирные грибки). Под действием этих заквасок пировиноградная кислота расщепляется до уксусного альдегида и диоксида углерода. Уксусный альдегид затем восстанавливается в этиловый спирт. В результате из одной молекулы лактозы образуется по четыре молекулы спирта и диоксида углерода:

Образующиеся продукты, в которых накапливается 0,2...3% спирта, придают кисломолочным продуктам (кефир, кумыс, айран) острый освежающий вкус.

Пропионово-кислое брожение происходит в созревающих сырах под действием ферментов, которые выделяются пропио- ново-кислыми бактериями. Это брожение начинается после образования молочной кислоты в присутствии молочнокислых бактерий. К продуктам пропионово-кислого брожения относятся пропионовая и уксусная кислоты, диоксид углерода, вода:

Маслянокислое брожение. Этот процесс вызывают спорообразующие маслянокислые бактерии, выделяющие ферменты. Этот вид брожения нежелателен при производстве кисломолочных продуктов. Сыры приобретают неприятные вкус, запах и вспучиваются.

Маслянокислые бактерии попадают в молоко из почвы, навоза, пыли и выдерживают пастеризацию. Их присутствие -результат несоблюдения санитарных правил получения исходного сырья.

Минеральные вещества. Молоко -постоянный источник поступления в организм минеральных веществ. В зависимости от содержания их подразделяют на макро- и микроэлементы. В среднем в молоке содержится 0,7% в виде солей неорганических и органических кислот.

Макроэлементы. Из этой группы важное значение имеют кальций, фосфор, калий, натрий, магний, сера и хлор. В молоке они присутствуют в виде неорганических и органических солей (средних и кислых) и в свободном состоянии. Кислые соли наряду с другими веществами обусловливают кислотность свеженадоенного молока. Основная часть солей находится в молоке в ионном и молекулярном состоянии, а соли фосфорной кислоты образуют коллоидные растворы. Среднее содержание макроэлементов в молоке: натрий- 50 мг%, калий -145, кальций -120, магний -13, фосфор-95, хлор - 100, сульфат - 10, карбонат -20, цитрат (в форме остатка лимонной кислоты) - 175 мг%.

О солевом составе молока можно судить по содержанию и соотношению макроэлементов. Преимущественно в молоке присутствуют соли калия, кальция и натрия, а также неорганических и органических кислот: фосфорнокислые (фосфаты), лимоннокислые (цитраты), хлористые (хлориды). Ионы кальция укрепляют гидратную оболочку, так как адсорбируются на поверхности мицелл казеина и тем самым повышают их устойчивость. В буферной системе молока принимают участие фосфаты, цитраты и карбонаты.

Кальций имеет большое значение для процессов переработки молока. Содержание его в молоке колеблется от 112 до 128 мг%. Около 22% всего кальция связано с казеином, а остальное количество представлено солями- фосфатами и цитратами. Низкое содержание кальция в молоке обусловливает медленное сычужное свертывание казеина при выработке сыра и творога, а его избыток -свертывание белков молока при стерилизации. При скисании молока почти весь кальций переходит в сыворотку, так как под действием молочной кислоты он отщепляется от казеинового комплекса. От содержания кальция в молоке зависят свойства и качество молочных продуктов. Важная роль принадлежит кальцию при производстве плавленых сыров. Он связывает соли-плавители, переходит из казеината кальция в пластичный казеинат натрия. В последнем жир лучше эмульгирует, при этом формируется характерная консистенция сыра. От содержания кальция зависят также качество получаемого сгущенного молока и растворимость сухого молока при производстве восстановленного молока.

Фосфор в молоке входит в состав казеинаткальцийфосфатного комплекса. Устойчивость белка к воздействиям протеолитических ферментов зависит от содержания фосфора. Фосфор придает стабильность оболочке жировых шариков. Развитие микроорганизмов в молоке в производстве кисломолочных продуктов связано с фосфором.

Микроэлементы. В молоке обнаружено 19 микроэлементов. В 1 кг молока содержится примерно (мг): меди -0,067...0,205; марганца-0,1 16...0,365; молибдена- 0,015...0,090; кобальта-0,001...0,009; цинка - 0,082...2,493; магния -84,05... 140; железа-2,55...77,10; алюминия - 1,27...22,00; никеля-0,017...0,323; свинца- 0,017...0,091; олова - 0,004...0,071; серебра - 0,0002...0,11; кремния - 1,73...4,85; йода-0,012...0,020; титана, хрома, ванадия, сурьмы и стронция-десятичные доли и следы. Содержание микроэлементов в молоке зависит от рациона, стадии лактации животных и других факторов. В молозиве некоторых микроэлементов, например железа, меди, йода, кобальта, цинка, значительно больше, чем в молоке. Микроэлементы входят в состав витаминов и ферментов.

Микроэлементам принадлежит важная роль в организме человека. Так, марганец действует как катализатор при окислительных процессах и необходим для синтеза витамина С, а также витаминов В! и D. Кобальт входит в состав витамина В 12 . Йод стимулирует деятельность щитовидной железы. Некоторые микроэлементы способствуют образованию пороков в молоке, так как катализируют химические реакции. Излишнее количество меди приводит к окислению жира, и молоко приобретает окисленный привкус; недостаток ее замедляет процесс молочнокислого брожения.

Витамины. Содержащиеся в молоке витамины практически все переходят в него из корма, поедаемого животными, а также синтезируются микрофлорой рубца. Их количество зависит от времени года, породы, индивидуальных особенностей животных. Недостаток или отсутствие витаминов приводит к нарушению обмена веществ и возникновению таких заболеваний, как рахит, цинга, авитаминоз и др.

Витамины служат регуляторами обмена веществ, поскольку многие из них входят в состав различных органических соединений: кислот, спиртов, аминов и т.п. Отмечена чувствительность витаминов к высокой температуре, действию кислот, кислорода и света. Большинство витаминов растворяется в воде, некоторые -в жирах, эфире, хлороформе и т.д. В связи с этим витамины подразделяют на водорастворимые и жирорастворимые.

Водорастворимые витамины включают витамины В, В 2 , В 6 , В 12 , PP, холин и фолиевую кислоту.

Витамин В / (тиамин) в чистом виде представляет собой белый кристаллический порошок. В 1 кг молока содержится около 500 мг тиамина и количество его зависит от сезона года, а также от микрофлоры желудочно-кишечного тракта. В щелочных растворах витамин разлагается, в кислых он стабилен. При сушке разрушается до 10% тиамина, при сгущении-до 14%.

Витамин В, стимулирует рост микроорганизмов, в том числе и молочнокислых бактерий, так как является коферментом дикар- боксилазы. В связи с этим количество этого витамина в кисломолочных продуктах увеличивается на 30%. В обезжиренном молоке содержание витамина В, повышается и достигает 340 мг/кг, в сыворотке-270, пахте -350 мг/кг. Суточная потребность человека в тиамине составляет 1...3 мг.

Витамин В 2 (рибофлавин) синтезируется в желудочно-кишечном тракте животного. В молоке его содержится 1,6 мг/кг; в молозиве -6; в сыре -3,07 мг/кг; в масле -следы. Рибофлавин устойчив к воздействию высоких температур, пастеризации, в кисломолочных продуктах его количество увеличивается до 5% по сравнению с исходным молоком, и только при сушке его становится меньше на 10... 15%. Витамин В 2 входит в состав ферментов и принимает участие в углеводном и белковом обменах, от него зависит окислительно-восстановительный потенциал молока.

Рибофлавин придает зеленовато-желтый цвет сыворотке и желтую окраску сахару-сырцу. При недостатке витамина В 2 наблюдаются задержка роста, заболевания глаз и т.д. Суточная потребность в витамине В 2 для взрослых людей 1,2...2 мг.

Витамин В 3 (пантотеновая кислота) стимулирует развитие молочнокислых бактерий, входит в состав кофермента А, принимающего участие в синтезе жирных кислот, стирола и других компонентов. В молоке его содержится 2,7 мг/кг; в молочной сыворотке- 4,4; в пахте -4,6; в обезжиренном молоке -3,6 мг/кг. Витамин В 3 разрушается при стерилизации.

Витамин В 6 (пиридоксин) в молоке содержится в свободном и связанном с белками состоянии. В свободном состоянии количество его в молоке составляет 1,8 мг/кг; в связанном - 0,5; в масле -2,6; в сгущенном молоке с сахаром -0,33...0,4 мг/кг. Пиридоксин стимулирует рост микроорганизмов, устойчив к высоким температурам. Недостаток витамина В 6 в организме приводит к заболеваниям нервной системы и кишечника.

Витамин В /2 (кобаломин) синтезируется микрофлорой желудочно-кишечного тракта. Содержание в молоке - 3,9 мг/кг. В весенний и летний периоды в молоке содержится значительно меньше витамина В 12 , чем в осенний период. Снижение содержания витамина происходит также при обработке молока высокими температурами (стерилизация), потери могут составлять 90%. При производстве кефира на 10...35% количество кобаломина снижается в связи с тем, что он используется молочнокислыми бактериями.

Кобаломин принимает участие в обменных процессах, катализирует реакции кровообращения.

Витамин С (аскорбиновая кислота) - кристаллическое соединение, легко растворимое в воде с образованием кислых растворов. Содержание: в сыром молоке -3...35 мг/кг; в сыворотке -4,7; в сухом молоке -2,2; в сгущенном -3,9; в сыре -1,25 мг/кг.

Витамин синтезируется в организме, участвует в окислительновосстановительных процессах, инактивирует токсины, улучшает всасывание гормонов. Отсутствие витамина вызывает болезнь десен, при недостатке его организм становится менее устойчивым к инфекционным заболеваниям. При хранении сырого молока содержание витамина С значительно снижается. Длительная пастеризация, а также сгущение уменьшают содержание витамина С до 30%.

Витамин PP (никотиновая кислота, или инацин) синтезируется микрофлорой кишечника. В сыром молоке его содержится 1,51 мг/кг (колебания 1,82... 1,93 мг/кг). Много витамина PP в сухом молоке-4,8 мг/кг; в твороге -1,5; в сливках -1,0; в сметане -0,9; в сыре-0,37 мг/кг. В простокваше его меньше на 27...73%, а при производстве сгущенного молока содержание инацина уменьшается на 10%.

Витамин Н (биотин) устойчив к высоким температурам как при пастеризации, так и при стерилизации. Содержание в молоке-0,047 мг/кг. В летнее время количество биотина в молоке увеличивается в 2 раза. При сушке и сгущении молока содержание витамина снижается на 10... 15%. Биотин благоприятно действует на рост микроорганизмов (дрожжей и т.п.).

Холин входит в состав лецитиново-белковой оболочки жирового шарика. Содержание: в молоке - 60...480 мг/кг, в молозиве - в 2,5 раза больше, в сухом молоке - 1500, в сыре - 500 мг/кг. Холин неустойчив к высоким температурам, при пастеризации потери достигают 15%. При производстве кисломолочных продуктов содержание холина увеличивается в простокваше на 37%, в кефире-в 2 раза.

Фолиевая кислота содержится в сыром молоке в количестве 0,5...2,6 мг/кг. Она синтезируется молочнокислыми бактериями, поэтому в кисломолочных продуктах содержание фолиевой кислоты увеличивается на 50%. В пастеризованном молоке фолиевой кислоты на 6...7% больше, чем в сыром (из-за высвобождения связанных форм витамина).

Жирорастворимые витамины включают витамины A, D, К, Е и F.

Витамин А (ретинол) образуется в печени животных из поступающего с кормами провитамина (^-каротина) под действием кароти- назы. При расщеплении одной молекулы каротина образуются две молекулы витамина А, который поступает сначала в кровь, а затем в молоко. Таким образом, содержание витамина А в молоке полностью зависит от содержания каротина в кормах.

В весенне-летний период с кормами поступает больше каротина, чем в осенне-зимний.

В сыром молоке содержится 0,15 мг/кг витамина А, в молозиве-в 5... 10 раз больше, в масле -4 мг/кг. В пастеризованном сухом молоке распылительной сушки и при хранении содержание витамина А снижается до 15%, а в кисломолочных продуктах -повышается до 33%.

Отсутствие витамина вызывает поражение глаз («куриная слепота») и сухость роговицы. Присутствие витамина А в рационе повышает сопротивляемость организма к инфекционным заболеваниям, способствует росту молодых животных и т.д. Суточная потребность человека в витамине А составляет 1,5...2,5 мг.

Витамин D (кальциферол) образуется под действием ультрафиолетовых лучей. В молоке его содержится в среднем 0,5 мг/кг; в молозиве-2,125 мг/кг в первые сутки и 1,2 мг/кг во вторые; в топленом масле- 2,0...8,5; в сладкосливочном масле (летом)-до 2,5 мг/кг. Пастбищное содержание коров увеличивает количество витамина D.

Витамин принимает участие в минеральном обмене, т.е. в обмене солей кальция. При продолжительном недостатке витамина D кости становятся мягкими, хрупкими, возникает рахит.

Витамин Е (токоферол) является антиокислителем в жире молока и способствует лучшему усвоению витамина А. Содержание в молоке зависит от его содержания в корме. В молоке оно составляет 0,6...1,23 мг/кг; в масле -3,4...4,1; в сухом молоке - 6,2; в молозиве-4,5; в сметане -3,0; в простокваше -0,6 мг/кг. При пастбищном содержании коров количество витамина Е увеличивается, при стойловом -уменьшается. К концу лактации содержание токоферола в молоке достигает 3,0 мг/кг. Длительное хранение молока при температуре ниже 10 °С приводит к снижению содержания витамина.

Витамин К синтезируется зелеными растениями и некоторыми микроорганизмами, по биологической активности сходен с витамином Е.

Витамин F нормализует жировой и водный обмены, предупреждает заболевания печени и дерматиты. В молоке его содержится примерно 1,6...2,0 мг/кг.

Ферменты. В молоке содержатся различные биологические катализаторы - ферменты, ускоряющие химические реакции и способствующие расщеплению крупных молекул пищевых веществ на более простые. Действие ферментов строго специфично. Они чувствительны к изменению температуры и реакции среды. В молоке присутствует более 20 истинных, или нативных, ферментов, а также ферменты, которые вырабатываются микроорганизмами, попадающими в молоко. Одна часть нативных ферментов образуется в клетках молочной железы (фосфотаза и др.), другая переходит из крови в молоко (пероксидаза, каталаза и др.) Содержание нативных ферментов в молоке постоянно, но их увеличение указывает на нарушение секреции. Количество ферментов, вырабатываемых бактериями, зависит от степени обсемененности молока.

Ферменты подразделяют на группы в зависимости от их специфического действия на различные субстраты: гидролазы и фосфори- лазы; ферменты расщепления; окислительно-восстановительные.

Изгидролаз и фосфорилаз для молочного дела наибольший интерес представляют липаза, фосфотаза, протеаза, карбоги- драза и др.

Липаза катализирует гидролиз триглицеридов молочного жира, при этом высвобождаются жирные кислоты. В молоке содержатся нативная и бактериальная липазы. Бактериальной липазы больше, нативной меньше.

Нативная липаза связана с казеином, а небольшая ее часть адсорбируется на поверхности оболочек жировых шариков. Молочный жир свежего молока обычно не подвергается самопроизвольному воздействию липазы.

Гидролиз жира под действием липазы называют липолизом. Липо- лиз молока происходит при механическом воздействии (гомогенизации, перекачивании молока насосом, сильном перемешивании, а также при замораживании и оттаивании, быстрой смене температуры).

Бактериальная липаза, обладающая высокой активностью, выделяется плесневыми грибками и бактериями, которые могут вызывать прогорклый вкус молока, масла и других продуктов.

Нативная липаза инактивируется при температуре пастеризации 80 °С, а бактериальная более устойчива к высоким температурам.

Протеаза - результат жизнедеятельности молочнокислых бактерий. Этот фермент активен при 37...42 °С, разрушается при 70 °С в течение 10 мин или при 90 °С в течение 5 мин. Много протеазы в сырах, которая образуется в них в процессе созревания. Она придает сырам характерные вкус и запах, но в молоке и масле может вызывать пороки вкуса.

Карбогидразы включают амилазу и лактазу. Амилаза вырабатывается клетками железистой ткани и из них попадает в молоко. Ее очень много в первых порциях молозива, и увеличивается количество амилазы при воспалении молочной железы. Фермент не устойчив к высоким температурам. При температуре 65 °С в течение 30 мин разрушается. Предполагают, что в молочной железе идет превращение гликогена в лактазу.

Фосфотаза синтезируется секреторными клетками вымени и некоторыми микроорганизмами молока. Она катализирует отщепление от фосфорных эфиров остатков фосфорной кислоты. В молоке присутствуют кислотная и щелочная фосфотазы. Последней больше, и она попадает в молоко из клеток молочной железы. Щелочная фосфотаза чувствительна к нагреванию, она полностью разрушается при нагревании молока до 74 °С и при экспозиции 15...20 с. Это свойство фосфотазы лежит в основе метода контроля эффективности пастеризации молока. Кислотная фосфотаза устойчива к нагреванию и разрушается при нагревании молока свыше 100 °С.

Из ферментов расщепления наибольший интерес для молочного дела представляет каталаза. В молоке она образуется из секреторных клеток молочной железы и в результате деятельности гнилостных бактерий. Молочнокислые бактерии каталазу не выделяют. При добавлении пероксида водорода она разлагается под действием каталазы на молекулярный кислород и воду.

Каталазу идентифицируют добавлением в молоко пероксида водорода.

Окислительно-восстановительные ферменты включают редуктазу и пероксидазу. С их помощью определяют качество молока и результаты пастеризации.

Редуктаза в отличие от других ферментов выделяется только микроорганизмами и является продуктом их жизнедеятельности. Молочная железа редуктазу не синтезирует. В асептическом молоке редуктаза не содержится, поэтому ее присутствие свидетельствует о бактериальной обсемененности продукта.

По редуктазной пробе оценивают качество молока. В свежевыдо- енном молоке микробов очень мало. По мере их накопления содержание редуктазы увеличивается. При добавлении в молоко окислительно-восстановительной краски (метиленовый синий или резазу- рин) она восстанавливается: чем больше в молоке фермента, тем быстрее оно обесцвечивается.

Пероксидаза вырабатывается молочной железой, ее используют для определения пастеризации молока.

Гормоны. Они необходимы для нормальной жизнедеятельности организма, а также для регулирования образования и выделения молока, в которое они попадают из крови.

Пролактин стимулирует выделение молока, вырабатывается передней долей гипофиза.

Лютеостерон затормаживает действие пролактина и выделение молока, является гормоном желтого тела, активизируется при глубокой стельности лактирующих животных.

Фолликулин стимулирует развитие железистой ткани вымени у первотелок и сухостойных коров, образуется в тканях яичника.

Тироксин - гормон щитовидной железы. Регулирует в организме жировой, белковый и углеводный обмены, содержит йод. В молоке присутствуют и другие гормоны: инсулин (гормон поджелудочной железы), адреналин (гормон надпочечников) и др.

Пигменты. К ним относятся каротиноиды, обеспечивающие кремовый цвет молока. Содержание их в молоке зависит от сезона года, кормов, породы коров.

Иммунные тела. К иммунным телам относятся агглютинины, антитоксины, оксонины, преципитины и др. В молозиве их содержится значительно больше, чем в молоке. От иммунных тел до некоторой степени зависят бактериальные и бактерицидные свойства молока. В молоке животных, перенесших какие-либо заболевания, содержится больше иммунных тел, чем в молоке здоровых. Содержание в молозиве иммунных тел обеспечивает теленку иммунитет.

Газы. В свежевыдоенном молоке содержатся газы, в том числе диоксид углерода, которые присутствуют в крови животных. Они легко адсорбируются во время дойки, обработки и хранения. Кислорода в молоке - 5.. Л 0%, азота - 20...30, диоксида углерода-55...70%. Последний растворяется в плазме и является одним из компонентов, обеспечивающих ее кислотность. В момент процеживания молока через фильтры содержание кислорода увеличивается до 25%, азота-до 50%, диоксида углерода - снижается до 25%. При нагревании количество газов в молоке уменьшается.

Молоко и молочные продукты относятся к незаменимым продуктам питания. Они являются основными продуктами диетического и лечебного питания и отличаются от других продуктов питания тем, что в их составе представлены все необходимые для организма вещества в оптимально сбалансированном состоянии. Молоко обеспечивает нормальный рост, развитие и жизнедеятельность организма. Высокие пищевые, биологические и лечебные свойства молока давно оценены; в древности молоку присваивали такие наименования, как “сок жизни”, “белая кровь”, “источник здоровья” и др.

Великий русский физиолог И.П. Павлов рассматривал молоко, “как удивительную пищу, приготовленную самой природой и характеризующуюся легкой удобоваримостью и питательностью”. Усвояемость молока и молочных продуктов в организме человека составляет 95-98%. Включение молочных продуктов в любой рацион повышает его полноценность и качественные показатели, способствует лучшему усвоению других компонентов.

Физиологическая ценность (ФЦ) - способность компонентов пищевых продуктов активизировать деятельность основных систем организма. ФЦ обеспечивается физиологически активными веществами (ФАВ).

В зависимости от действия на организм человека физиологически активные вещества можно подразделить на следующие группы:

1. ФАВ, оказывающие возбуждающее действие на нервную систему человека. К ним относятся алкалоиды: никотин, кофеин, теобромин, а также этиловый спирт.

2. ФАВ, влияющие на сердечно-сосудистую систему. В эту группу входят минеральные вещества, калий, магний, кальций; витамины В 1 , PP,

3. ФАВ, активизирующие пищеварительную систему. Включают минеральные вещества: натрий, хлор, ферменты, фосфолипиды, витамины, клетчатку, гемицеллюлозы, пектиновые, ароматические вещества, гликозиды, азотистые и безазотистые экстрактивные вещества, хмелевые смолы и кислоты.

4. ФАВ, усиливающие иммунную систему. К ним относятся вещества с выраженным бактерицидным и фунгицидным действием: полифенолы, красящие, ароматические вещества, витамины: В 1 , РР, гликозиды, органические кислоты, среди которых выделяются наибольшей бактерицидностью бензойная, салициловая, галловая, лимонная, молочная кислоты.

5. ФАВ, способствующие выведению из организма вредных веществ: шлаков, токсичных элементов, бактериальных идр. ядов. Эта группа представлена пектинами, клетчаткой, некоторыми белками.

Необходимо отметать, что вредными считаются вещества, не имеющие ценности для организма человека (например, бактериальные и грибные токсины), а также и полезные вещества, которые оказывают негативное воздействие на организм человека в дозах, превышающих ПДК.



Приведенный перечень ФАВ, относящихся к разным группам свидетельствует, что многие вещества пищевых продуктов отличаются многофункциональностью.

На организм человека благоприятно воздействуют нутрицевтические компоненты в молоке: кальций, лактоферрин, лактопероксидаза, иммуноглобулины, сывороточные белки, линоленовая кислота, олигосахариды, фосфолипиды и др.

Намного больше нутрицевтических компонентов содержит молозиво, и некоторые из них присутствуют в значительно более высоких концентрациях, чем в обычном молоке.

Молоко и молочные продукты являются исключительно ценными и незаменимыми продуктами при профилактике и лечении таких заболеваний, как желудочно-кишечные, болезни сердца и кровеносных сосудов, печени, почек, сахарного диабета, ожирения, острого гастрита и др. Они должны употребляться как часть сбалансированной диеты для поддержания тонуса и как фактор увеличения продолжительности жизни.

Молочные продукты имеют исключительное значение в питании детей, особенно в начальные период их жизни, т.к. содержит значительное количество фосфолипидов, незаменимых аминокислот, нормализирующих процессы роста и развития организма.

Физиологическая ценность молока значительно повышается при употреблении его в виде кисломолочных напитков. Употребление их способствует созданию кислой среды в кишечном тракте и как следствие подавлению гнилостной микрофлоры и нормализации пищеварения. Поэтому молочные продукты широко используются как лечебные средства при интоксикации организма ядовитыми продуктами гнилостной микрофлоры. Кисломолочные продукты усваиваются значительно легче и быстрее, чем молоко. Кроме этого в них содержится большое количество антибиотических веществ, обладающих бактерицидным действием.

Молоко (в количестве 1л) удовлетворяет суточную потребность человека в животном жире, кальции, фосфоре; на 53% – в животном белке; на 35% – в незаменимых жирных кислотах и витаминах А, С, тиамине; на 12,6% – в фосфолипидах и на 26% – в энергии.

Благодаря своему уникальному химическому составу молочные продукты могут заменить все другие пищевые продукты. Химический состав молока и молочных продуктов чрезвычайно разнообразный и все их компоненты имеют существенное значение в физиологии питания.

Молочные продукты содержат воду, белки, жиры, углеводы, минеральные вещества, витамины, органические кислоты, красящие вещества, иммунные тела, ферменты, газы и др. На химический состав оказывают влияние различные факторы: вид животного, возраст, условия кормления и содержания, период года и др. (табл. 2)

Таблица 2

Химический состав коровьего молока

Белковые вещества молочных продуктов . Они являются наиболее ценной в пищевом отношении частью молочных продуктов, состоят из казеина и сывороточных белков – альбумина и глобулина. Кроме них, в молочных продуктах содержатся белки оболочек жировых шариков и некоторые другие малоизученные белковые вещества, а также азотистые соединения.

Белки молочных продуктов имеют чрезвычайно благоприятный количественный и качественный состав аминокислот, в числе которых находятся все незаменимые аминокислоты. Поэтому белки молочных продуктов относят к полноценным. Кроме того, молочные белки в отличие от других животных белков сравнительно легко воспроизводимы и признаны наиболее дешевыми, что позволяет применять их с каждым годом все шире в качестве пищевых добавок к немолочным продуктам.

Молочный белок превосходит идеальный белок по аминокислотному составу, что и определяет его высокую физиологическую ценность (см. таблицу 3).

Издавна считалось, что кисломолочные продукты оздоравливают организм человека. Поэтому различные виды кислого молока широко употребляют в пищу.

В состав кисломолочных продуктов входят все незаменимые вещества для организма человека - это белки, жиры, углеводы, витамины, органические кислоты, минеральные вещества (кальций, фосфор, железо, магний и др.), необходимые для нормального роста и развития организма.

Кисломолочные продукты имеют большое значение в питании человека благодаря лечебным и диетическим свойствам, приятному вкусу, легкой усвояемости.

Пищевая ценность кисломолочных продуктов обусловлена составом и свойствами исходных компонентов молока.

Высокая усвояемость кисломолочных продуктов является следствием их воздействия на секреторную деятельность желудка и кишечника, в результате чего железы пищеварительного тракта интенсивнее выделяют ферменты, которые ускоряют переваривание пищи.

Диетические и лечебные свойства кисломолочных продуктов во многом объясняются благоприятным воздействием на организм человека молочнокислых бактерий и веществ, образующихся в результате их жизнедеятельности при сквашивании молока (молочной кислоты, углекислого газа, спирта, витаминов, антибиотиков и др.).

Действие кисломолочных продуктов на организм человека впервые изучил великий русский ученый И.И. Мечников. С развитием микробиологии были научно обоснованы диетические, а с открытием антибиотиков и лечебные свойства этих продуктов. Установлено, что содержащиеся в них молочная кислота задерживает развитие микроорганизмов в кишечнике человека и благотворно влияет на процесс пищеварения.

Исследованиями установлено, что ацидофильная палочка, которая является постоянным обитателем кишечника, и некоторые кисломолочные бактерии выделяют антибиотики, уничтожающие возбудителей туберкулеза, дифтерии, тифа и ряда других заболеваний.

В результате жизнедеятельности некоторых микроорганизмов происходит синтез витаминов В 1 , В 2 , В 12 , С, Е, РР.

Полезны кисломолочные продукты для лечения и предупреждения атеросклероза, гипертонической болезни.

Усвояемость кисломолочных продуктов повышается за счет частичной пептонизации в них белков, то есть распада их на более простые соединения. Кроме того, в продуктах, полученных в результате смешанного молочнокислого и спиртового брожения белковый сгусток пронизывают мельчайшие пузырьки углекислого газа, благодаря чему он более доступен воздействию ферментов пищеварительного тракта.

Кисломолочные продукты обладают приятным, слегка освежающим и островатым вкусом, возбуждают аппетит и тем самым улучшают общее состояние организма. Кисломолочные продукты, полученные спиртовым брожением, обогащенные незначительным количеством спирта и углекислотой, улучшая работу дыхательных центров, слегка возбуждают центральную нервную систему. Все это повышает приток кислорода в легкие, активизирует окислительно-восстановительные процессы в организме.

Установлено, что в результате молочнокислого и спиртового брожения содержание большинства основных витаминов в кисломолочных продуктах возрастает, поэтому при регулярном употреблении их в пищу укрепляется нервная система.

Бактерицидные свойства кисломолочных продуктов связаны с антибиотической активностью развивающихся в них бактерий и дрожжей, которые в результате жизнедеятельности вырабатывают следующие антибиотики: лизин, лактолин, диплоконцин, стрептоцин и др. Эти антибиотики оказывают на некоторые микроорганизмы бактерицидное (убивают) и бактериостатическое (подавляют жизнедеятельность) воздействие.

Тема 5. Санитарно-гигиеническая оценка молока

и молочных продуктов

Пищевая и биологическая ценность молока и молочных продуктов. Пищевая и биологическая ценность молока заключается в оптимальной сбалансированности его компонентов, легкой усвояемости (на 95-98%) и высокой используемости всех необходимых для организма пластических и энергетических веществ. Молоко содержит все необходимые организму пищевые вещества, поэтому молоко и молочные продукты незаменимы в питании больных, детей и лиц пожилого возраста. В нем содержатся полноценные белки, жиры, витамины, минеральные соли. Всего в молоке обнаружено около 100 биологически важных веществ. Включение молока и молочных продуктов в пищевой рацион улучшает сбалансированность аминокислотного состава белков всего рациона и значительно повышает снабжение организма кальцием. Химический состав коровьего молока следующий: белков 3,5%, жиров 3,4% (не менее 3,2%), углеводов в виде молочного сахара (лактозы) – 4,6%, минеральных солей 0,75%, воды 87,8%. Химический состав молока колеблется в зависимости от породы животных, времени года, характера кормов, возраста животных, периода лактации, технологии переработки молока.

Белки молока представлены казеином, альбумином (лактоальбумином) и глобулином (лактоглобулин). Они являются полноценными и содержат все необходимые для организма аминокислоты. Белки молока легкодоступны для пищеварительных ферментов, а казеин оказывает регулирующее влияние на повышение усвояемости других пищевых веществ. Казеин при скисание молока отщепляет кальций и створаживается. Альбумин – наиболее ценный белок молока, при кипячении свертывается, образуя пенку, и частично выпадает в осадок.

В питании человека используется молоко коровье, козье, овечье, кобылье, ослиное, оленье, верблюжье, буйволиное. Особо высокими пищевыми и энергетическими свойствами обладает буйволиное и овечье молоко. Самое питательное – оленье молоко, содержащее до 20% жира, белка – 10,5%, витаминов в 3 раза больше, чем в коровьем молоке. Женское молоко содержит 1,25% белка, следовательно, и коровье и всякое другое молоко требует разбавления при вскармливании грудных детей. По характеру белков молоко различных животных можно подразделить на казеиновое (казеина 75% и более) и альбуминовое (казеина 50% и менее). К казеиновому молоку относится молоко большинства лактирующих сельскохозяйственных животных, в том числе коровье, козье. К альбуминовому молоку относится кобылье и ослиное. Особенностями альбуминового молока является более высокая его биологическая и пищевая ценность, обусловленная лучшей сбалансированностью аминокислот, высоким содержанием сахара и способностью при скисании образовывать мелкие, нежные хлопья. Альбуминовое молоко по свойствам приближается к женскому молоку и является наилучшим его заменителем. Частицы альбумина в 10 раз меньше казеина, частицы которого крупнее и при створаживании в желудке грудного ребенка белок коровьего молока образует трудно усвояемые крупные, плотные, грубые хлопья.

Основным белком коровьего молока является казеин , которого в молоке 81,9% от общего количества белков молока. Лактоальбумин содержится в молоке в количестве 12,1%, лактоглобулина 6%. Молочный жир относится к жирам наиболее ценным по пищевым и биологическим свойствам. Он находится в состоянии эмульсии и высокой степени дисперсности. Этот жир обладает высокими вкусовыми свойствами. В молочном жире представлены фосфолипиды (0,03 г в 100 г коровьего молока) и холестерин (0,01 г). Благодаря низкой температуре плавления (в пределах 28-36˚С) и высокой дисперсности молочный жир усваивается на 94-96%. Как правило, содержание жира в молоке осенью, зимой и весной выше, чем летом. При хорошем уходе за животными количество жира в коровьем молоке может достигать 6-7%. Углеводы в молоке находятся в виде молочного сахара – лактозы. Это единственный углевод молока, нигде более ни встречающийся. Лактоза относится к дисахаридам; при гидролизе она распадается на глюкозу и галактозу. Поступление лактозы в кишечник оказывает нормализующее действие на состав полезной кишечной флоры. Непереносимость молока, отмечаемая у многих людей, обуславливается отсутствием в организме ферментов, расщепляющих галактозу.

Молочный сахар имеет большое значение в производстве молочнокислых продуктов. Под действием молочно-кислотных бактерий он превращается в молочную кислоту; при этом свертывается казеин. Этот процесс наблюдается при производстве сметаны, простокваши, творога, кефира.

Минеральные вещества. В молоке представлен большой ассортимент макро- и микроэлементов. В минеральном составе молока особое значение имеют кальций и фосфор. Также в его состав входят калий, натрий, железо, сера. Они находятся в молоке в легкоусвояемой форме. Из микроэлементов содержится цинк, медь, йод, фтор, марганец и др. Содержание кальция в молоке – 1,2 г/кг.

Витамины. В молоке в небольших количествах представлены почти все известные витамины. Основными витаминами молока являются витамины А и Д, а также содержатся некоторые количества аскорбиновой кислоты, тиамина, рибофлавина, никотиновой кислоты. Летом, когда животные питаются сочными зелеными кормами, содержание витаминов в молоке повышается. Калорийность молока невысока и составляет в среднем 66ккал на 100г продукта. В молоке имеется ряд ферментов.

Молоко вызывает слабую секрецию желудочных желез и поэтому показано при язвенной болезни и гиперацидных гастритах. Благодаря наличию лактозы при употреблении молока в кишечнике развивается микрофлора, задерживающая гнилостные процессы. В молоке мало соли, и поэтому его рекомендуют лицам, страдающим нефритом и отеками. В молоке нет нуклеиновых соединений, следовательно, оно показано лицам с нарушенным пуриновым обменом. Для лихорадящих больных молоко является одновременно легкой пищей и питьем.

Общая сбалансированность всех веществ, входящих в состав молока, характеризуется антисклеротической направленностью, которая оказывает нормализующее влияние на уровень холестерина сыворотки крови.

К кисломолочным продуктам относятся: сметана, простокваша, творог, ацидофильное молоко, кефир, кумыс и другие. Их получают путем сбраживания предварительно пастеризованного молока заквасками кисломолочных микробов. Лечебные свойства молочнокислых продуктов объясняются тем, что они усваиваются в 2-3 раза легче и быстрее, чем молоко, которое образует в желудке плотные крупные сгустки, подавлением роста гнилостной микрофлоры кишечника, наличием вырабатываемых палочкой молочного брожения антибиотиков, воздействующих на патогенные микробы. И.И. Мечников придавал большое значение кисломолочным продуктам в предупреждении преждевременного старения, одну из причин которого он усматривал в “самоотравлении” организма продуктами, образующимися при процессах гниения в кишечнике.

Простокваша по своим питательным свойствам близка к молоку. Свежая однодневная простокваша усиливает перистальтику кишечника и обладает послабляющим действием. Двух – трехдневная простокваша может оказывать закрепляющее действие. Под влиянием обычной простокваши микрофлора кишечника изменяется, однако содержащиеся в простокваше молочнокислые микробы не находят в кишечнике благоприятных условий для приживания.

Ацидофильная палочка хорошо приживается в кишечнике человека и используется для изготовления ацидофильных молочнокислых продуктов. Она более эффективна в борьбе с гнилостной микрофлорой. Ацидофильное молоко применяется для подготовки больных к операции, для лечения гнилостных колитов, диспепсий у детей, запоров и других заболеваний. Если обычное молоко через час усваивается на 32%, то молочнокислые продукты за это время на 91%.

Для приготовления кефира молоко заквашивают кефирными грибами. При изготовлении кумыса молоко (кобылье или коровье) заквашивают чистыми культурами болгарской палочки или молочных дрожжей. В зависимости от сроков созревания кефир и кумыс подразделяют на слабый (односуточный), средний (двухсуточный) и крепкий (трехсуточный). Содержание алкоголя в слабом кефире – 0,2%, в среднем – 0,4%, в крепком – 0,6%. Слабый кефир обладает послабляющим свойством, употребляется для устранения и профилактики запоров. Кумыс представляет собой хорошо газированный напиток благодаря наличию углекислоты. Содержание алкоголя в кумысе от 1 до 2,5%. Он оказывает укрепляющее действие, улучшает пищеварение, обмен веществ и широко используется в лечебных целях при хронических бронхитах, легочном туберкулезе и анацидных гастритах.

Творог представляет собой своеобразный концентрат белка и кальция, поэтому обладает высокой биологической ценностью. Он способствует предупреждению ожирения печени. Обладает антисклеротическими свойствами, повышает диурез и широко применяется в питании детей и лиц пожилого возраста.

Молоко представляет собой хорошую среду для развития микроорганизмов. Основными заболеваниями, передающимися человеку через молоко, являются туберкулез, бруцеллез, ящур и кокковые инфекции. Через молоко могут передаваться кишечные инфекции (дизентерия), полиомиелит, которые могут быть внесены в молоко на всех этапах его получения, транспортировки, переработки и распределения. С молоком возбудители инфекций могут быть перенесены в масло, творог, простоквашу и другие молочные продукты. В простокваше возбудители брюшного тифа выживают до 5 суток, в твороге до 26 суток, в масле до 21 дня. Возбудитель полиомиелита сохраняет жизнеспособность в молочных продуктах до 3 месяцев. Доказана возможность передачи чрез молоко дифтерии и скарлатины. Инфицирование молока, как правило, связано с бациллоносителями, работающими на молокозаводах и других молочных объектах.

Особо опасные инфекции. Молоко животных, больных сибирской язвой, бешенством, инфекционной желтухой, чумой рогатого скота и другими заболеваниями подлежит уничтожению на месте в присутствии представителей ветеринарно-санитарного надзора.

Туберкулез. Наибольшую опасность для человека представляет молоко от животных с выраженными клиническими проявлениями болезни, особенно при туберкулезе вымени. Молоко таких животных не разрешается использовать в пищу. Животных с положительной реакцией на туберкулез выделяют в особые стада, а молоко на фермах обязательно обеззараживают нагреванием до 85˚С в течение 30 минут.

Бруцеллез . Бруцеллезом заболевают коровы, овцы и козы. Молоко от больных бруцеллезом животных подвергается обязательному кипячению на месте получения в течение 5 минут с последующей повторной пастеризацией на молокозаводах.

Ящур – заболевание вызывается фильтрующим вирусом, который не стоек к нагреванию. Нагревание молока до 80˚С в течение 30 минут или 5-минутное кипячение уничтожает вирус. Молоко допускается для реализации внутри хозяйства только после термической обработки.

Тема 3. Санитарно-гигиеническая оценка мяса

и мясных продуктов

Санитарно-гигиеническая экспертиза пищевых продуктов п роводится санитарным врачом в плановом порядке и вне плана при наличии особых эпидемиологических показаний. Цель санитарной экспертизы – установить качественное состояние пищевых продуктов и выявить свойства, которые могут отрицательно влиять на здоровье населения. Качество пищевых продуктов, выпускаемых пищевыми предприятиями, регламентируется установленными в стране стандартами и нормативами.

В процессе хранения, транспортировки и реализации пищевые продукты могут изменять свои первоначальные свойства: вкус, внешний вид, запах; в продукты могут попасть вредные примеси или микроорганизмы, которые делают их опасными для здоровья. Все продукты в зависимости от их качества принято делить на следующие категории:

    Доброкачественные (стандартные) – продукты, отвечающие всем требованиям стандарта. Их употребление в пищу не вызывает опасений. Такие продукты разрешается использовать в пищу без ограничений.

    Условно годные – продукты с определенными пороками, в натуральном виде представляющие опасность для здоровья человека и нуждающиеся в обязательной (чаще всего термической) обработке для их обезвреживания. Например, свежая рыба, в мышечной ткани которой обнаружены личинки широкого лентеца; мясо животных, больных бруцеллезом, лейкозом, туберкулезом, ящуром и др.

    Продукты с пониженной пищевой ценностью (нестандартные) – это продукты, имеющие пороки, которые снижают их пищевую ценность, но не препятствуют их употреблению в пищу при обычных условиях, то есть не представляющие опасности для здоровья человека. Эти продукты приготовлены с нарушением режима технологической обработки, условий и сроков хранения или других причин. Например, молоко с низким содержанием жира, хлеб с повышенной влажностью.

    Фальсифицированные продукты – это продукты, которым искусственно приданы какие-либо свойства и признаки с целью скрыть недостатки (или с целью наживы). Например, сода может быть добавлена в молоко, чтобы скрыть повышенную кислотность. Нейтрализуя молочную кислоту, сода не задерживает развития гнилостных микроорганизмов и способствует разрушению витамина С. Такое молоко не пригодно для употребления в пищу.

    Суррогаты – продукты, сходные с натуральными по органолептическим признакам (запах, вкус, окраска, внешний вид), но приготовленные искусственным путем с соответствующим указанием на этикетке. Таковы суррогаты кофе, сделанные из злаков; фруктовые эссенции вместо натуральных соков; соевые мясо, майонез, черная икра.

    Недоброкачественные продукты – это продукты, не пригодные в пищу как в натуральном, так и в переработанном виде, так как опасны для здоровья человека или непригодны для употребления из-за неудовлетворительных органолептических свойств. Нарушение качества пищевых продуктов может быть обусловлено разложением их составных частей, в частности белка под влиянием гнилостной микрофлоры, жира под влиянием физических и химических факторов. Недоброкачественными продукты могут стать вследствие заражения личинками гельминтов, а также загрязнения пестицидами и другими ядовитыми веществами выше ПДК. Примером недоброкачественных продуктов являются прогорклые жиры, заплесневелый хлеб, гниющее мясо, мука с высоким содержанием спорыньи.

Пищевая и биологическая ценность мяса и мясных продуктов. Мясо теплокровных животных - важнейший продукт питания, являющийся источником полноценного белка, жира, витаминов, минеральных солей, а также экстрактивных веществ (креатин, пуриновые основания, молочная кислота, гликоген, глюкоза, молочная кислота и др.). Мясо животных по своему химическому составу обеспечивает организм жизненно необходимыми белками и содержит благоприятно сбалансированные все незаменимые аминокислоты. По сравнению с растительными продуктами мясо обладает более высокой усвояемостью, малой «приедаемостью», высокой насыщаемостью.

Химический состав, органолептические свойства и пищевая ценность мяса значительно варьируют в зависимости от вида, возраста и характера питания животного, а также от части туши. Содержание белков в мясе 11-21%. Количество жира колеблется в зависимости от упитанности животного, например в говядине от 3 до 23%, в свинине до 37%. Мясо упитанных животных не только имеет большую энергетическую ценность, но и содержит больше незаменимых аминокислот и биологически ценных жиров. Углеводов (гликогена) в мясе немного, менее 1%. Из минеральных веществ основное значение имеют такие макроэлементы, как фосфор, магний, калий, натрий, содержание которых мало отличается в различных видах мяса. Мясо является также источником некоторых микроэлементов - железа , меди, цинка, йода и др. Железо в 3 раза лучше усваивается из мяса, чем из растительных продуктов. В мясе содержатся различные витамины: тиамин, рибофлавин, пиридоксин, никотиновая и пантотеновая кислоты, а также холин. Внутренности (субпродукты) – печень, почки и др. содержат меньше белков, но очень богаты витаминами А, группы В и другими.

Растворимые в воде азотистые экстрактивные вещества мяса придают ему своеобразный аромат и вкус и возбуждают секрецию пищеварительных соков и деятельность нервной системы. При варке мяса от 1/3 до 2/3 экстрактивных веществ переходит в бульон, поэтому отварное мясо предпочтительно в химически щадящих диетах. Вываренное мясо широко используется в диетическом питании при гастритах, язвенной болезни, заболеваниях печени и других болезнях органов пищеварения.

Усвояемость мяса высокая: жиры усваиваются на 94%; белки нежирной свинины и телятины на 90%, говядины – 75%, баранины – 70%.

Основной особенностью жиров мяса является их тугоплавкость. Жиры мяса отличаются значительным содержанием твердых, насыщенных жирных кислот, имеющих высокую температуру плавления. Со снижением упитанности существенные изменения возникают в составе жира: уменьшается содержание полиненасыщенных жирных кислот (ПНЖК) и резко повышается содержание насыщенных, твердых жирных кислот, в связи с чем возрастает температура плавления жиров. Жир мяса тощего скота обладает меньшей биологической ценностью и характеризуется низкой усвояемостью. В говядине и баранине преобладают насыщенные жирные кислоты, а содержание незаменимых полиненасыщенных жирных кислот (линолевой, линоленовой) незначительно. В свинине много ПНЖК. По биологическим свойствам лучшим является свиной жир. Холестерина в мышечной ткани теплокровных животных в 1,5 раза меньше, чем в жировой.

Мясо птицы содержит больше белков: куры – 18-20%, индейка – 24,7% и экстрактивных веществ; белки и жиры усваиваются лучше. В липидах мяса птицы больше ПНЖК, чем в говядине и баранине. Белое мясо богато фосфором, серой и железом. Мясо уток и гусей не используется в диетическом питании, так как содержание жира составляет 36 – 38%.

Мясо относится к скоропортящимся продуктам. При его гниении происходит разложение аминокислот с выделением аммиака, сероводорода и других дурно пахнущих газов. При окислении жиров выделяются летучие жирные кислоты. Это не только ухудшает органолептические свойства продукта, но и снижает его пищевую ценность.

Мясо может быть причиной пищевых отравлений, вызываемых чаще всего сальмонеллами. Через мясо человеку могут передаваться инфекционные болезни животных (зоонозы). Мясо животных, больных сибирской язвой и другими особо опасными инфекциями, не допускается в пищу и должно уничтожаться. При менее опасных инфекциях (бруцеллез, туберкулез, ящур, лейкоз и др.) мясо используют как условно годное. Такое мясо может быть реализовано только через предприятия общественного питания, где чаще всего применяют его тщательное проваривание в течение 2,5 – 3 часов кусками весом не более 2 кг и толщиной до 8 см. Мясо животных может быть также источником заражения человека некоторыми гельминтами (финноз, трихинеллез).

Охрана здоровья потребителей от этих заболеваний обеспечивается ветеринарным надзором. Убой скота производят на мясокомбинатах и на бойнях под наблюдением и контролем ветеринарно-санитарной службы.

Инфицирование мяса животных может быть прижизненным или послеубойным. У истощенных и переутомленных животных возможна прижизненная бактериемия и проникновение сальмонелл и другой микрофлоры из кишечника в мышечную ткань и внутренние органы. В процессе забоя животных и удаления внутренностей возможно непосредственное загрязнение туши содержимым кишечника. Во избежание этого кишечник следует удалять только после наложения двойных лигатур на оба его конца. Чтобы предотвратить обильное размножение микробов, мясо должно храниться при температуре воздуха от 0˚ до +4˚С, а мороженое мясо – при температуре ниже 0˚С.

ХЛЕБ

Пищевая и биологическая ценность хлеба. Из хлебных злаков (пшеница, рожь, кукуруза, овес, ячмень) делают муку, из которой выпекают хлеб, лепешки, используют при приготовлении различных блюд. Свойства муки зависят от качества помола и % «выхода» (отношения массы полученной муки к массе исходного зерна): мука грубого помола (выход – 95-99 %) содержит отруби, при более тонком помоле (выход 10-75 %) пшеничная мука тем белее и нежнее, чем меньше % выхода. Из муки грубого помола усваивается 74-85 % белков, из муки тонкого помола – до 92 %, но при этом мука содержит меньше витаминов группы В и минеральных веществ. При выпечке хлеба и хлебобулочных изделий используют дрожжи, а также молоко, яйца, вкусовые и ароматические вещества.

Белков в ржаном хлебе 5,0-5,2 %, в ржано-пшеничном – 6,3 %, в пшеничном хлебе и булочках – от 6,7 до 8,7 %; жиров в ржаном, ржано-пшеничном и пшеничном хлебе 0,7-1,2 %, в белых булочках – до 1,9 %; углеводов от 42,5 % в ржаном до 52,7 % в изделиях из пшеничной муки высшего сорта. Калорийность черного хлеба – 204-221 ккал, белого – 229-266 ккал.

Выпускаются диетические сорта хлебобулочных изделий: белково-пшеничные хлеб и сухари рекомендуются при сахарном диабете, ожирении, диатезах; хлеб белково-отрубный – при тех же заболеваниях, сопровождающихся запорами; бессолевые (ахлоридные) хлеб и сухари – при болезнях почек, сердца, гипертонической болезни, а также при различных воспалительных процессах, сопровождающихся отеками. Пшенично-отрубный (докторский) хлеб рекомендуется беременным женщинам и кормящим матерям, а также при запорах и нервных заболеваниях; хлеб из дробленого пшеничного зерна – при ожирении и привычных запорах. При обострениях гиперацидного гастрита, язвы желудка и 12-перстной кишки используются сухари с пониженной кислотностью. Молочные и калорийные булочки применяются при тех же болезнях желудка, а также в питании беременных и кормящих женщин, в детском питании, при рахите, туберкулезе, переломах костей.

При хранении хлеб черствеет в результате изменения коллоидной структуры крахмала (синерзиса) и выделения воды. Задерживают очерствение хлеба стабилизаторы или замораживание. Хлеб должен храниться в хорошо проветриваемых помещениях при температуре 16-18ºС. Перевозят хлеб и хлебобулочные изделия в лотках специализированным транспортом.

Свежеиспеченный хлеб не содержит микроорганизмов, но при повышенной влажности, пониженной кислотности и длительном хранении в нем могут размножаться бактерии (спорообразующая «картофельная палочка» - Bac. Mesentericus, условно патогенный вегетативный анаэроб «чудесная палочка» - Bac. prodegiosus,) и плесневые грибы (Aspergillus, Penicillium, Fusarium, Cephalosporium, Trichoderma, Stachibotris). Мякиш хлеба, пораженного «картофельной палочкой» - полупрозрачный, вязкий, липкий, коричневатого цвета с неприятным запахом гниющего картофеля или фруктов (раздражает желудок, вызывая диспептические явления). При поражении «чудесной палочкой» в мякише появляются ярко красные слизистые пятна. Плесневые грибы могут вызывать тяжелые пищевые отравления (микотоксикозы): эрготизм, фузариозы, афлатоксикозы.

Пищевые отравления (ПО) - заболевания, обусловленные употреблением в пищу продуктов, обильно обсемененных микроорганизмами или содержащих токсичные вещества микробной или химической природы. Пищевые отравления не передаются от больного человека к здоровому.

Пищевые отравления микробной природы. Причиной ПО микробной природы служат микроорганизмы (бактерии и микроскопические плесневые грибки) и/ или токсичные продукты их жизнедеятельности.

Пищевые отравления бактериальной природы представлены токсикоинфекциями и бактериальными токсикозами.

Пищевые токсикоинфекции представляют собой группу острых бактериальных кишечных инфекций, вызываемых патогенными и условно патогенными бактериями, вырабатывающими эндотоксины. В ЖКТ заболевшего человека возбудители остаются живыми 7-15 дней, вызывая симптомы, характерные для инфекционных заболеваний с выраженными токсическими проявлениями. Основные признаки пищевых токсикоинфекций: одновременное заболевание группы лиц, употреблявших одну и ту же пищу; территориальная ограниченность заболевания; четкая связь с употреблением пищевых продуктов; внезапность возникновения (вспышка) заболевания при инкубационном периоде от 6-24 час, быстрое прекращение вспышки после изъятия эпидемически опасного продукта. Профилактика: 1. предупреждение инфицирования пищевых продуктов и готовой пищи; 2. обеспечение условий хранения, исключающих массивное размножение микроорганизмов; 3. надежная термическая обработка перед употреблением сомнительных (зараженных) пищевых продуктов.

Сальмонеллез. Эндогенный путь инфицирования мяса и яиц домашней птицы может быть связан с прижизненным заболеванием первичным сальмонеллезом (инфекционный аборт и паратифозный энтерит крупного рогатого скота, тиф поросят, паратиф телят и водоплавающих птиц) предназначенных на убой животных и вторичным сальмонеллезом ослабленных животных. Экзогенный путь обусловлен нарушением санитарных правил при разделке туш, транспортировке, хранении и кулинарной обработке, а также бактерионосительством работника предприятия общественного питания. Выживаемость сальмонелл: 1) в холодильнике при 7–10°С 6-13 дней в колбасе и колбасных изделиях, 45 дней в пастеризованном молоке, 60–65 дней в сырых яйцах, омлете и сырой свинине; 2) в морозилке до 13 мес. в замороженном мясе. Сальмонеллы сохраняются при высоких концентрациях соли и кислот в пищевых продуктах. Сальмонеллы гибнут при кипячении мгновенно, при 56 0 С – через 1-2 мин. Однако для ликвидации сальмонелл в больших кусках мяса и плотных продуктах требуется более длительная обработка. Большинство случаев сальмонеллеза связано с мясом (70-80%), молоком (10%), рыбой (3,5%). Часты случаи заражения через яйца прижизненно инфицированных водоплавающих птиц (уток, гусей), а также кондитерские изделия, приготовленные с использованием куриных яиц с загрязненной поверхностью без термической обработки. Если источником сальмонелл служит бактерионоситель, то любые пищевые продукты могут вызвать сальмонеллез.

Характерные признаки сальмонеллеза : инкубационный период 12-24 ч.; внезапное острое начало; бактериемия с выделением экзотоксина сальмонелл и выделение эндотоксина в кровь после отмирания сальмонелл; температура тела больного 38-40 0 С; многократная рвота; стул 1-3 дня обильный, жидкий, с зеленой слизью и прожилками крови (особенно часто появление крови в стуле у детей, что обусловлено вовлечением в инфекционный процесс толстого кишечника); обезвоживание организма; признаки общего токсикоза (бледность, слабость, снижение аппетита, головная боль, мышечные судороги и боли); продолжительность заболевания - 3-5 дней, возможно последующее длительное выделение бактерий с испражнениями. Известны 2 принципиально различающиеся клинические формы сальмонеллеза: тифоподобная (со всеми признаками гастроэнтерита) и гриппоподобная (наряду с диспептическими нарушениями катаральные явления). Летальность составляет около 1%.

3718 0

«Пирамида питания»

Различные продукты являются преимущественными источниками различных нутриентов.

Это позволило для наглядности разделить все употребляемые продукты на 5 основных групп (табл. 8.7) и создать «пирамиду питания» .

Таблица 8.7. Нутриенты, преимущественно потребляемые из разных групп продуктов

Молоко и молочные продукты

Молоко и молочные продукты обладают диетическими свойствами и широко используются в лечебном питании, они служат источником полноценных белков и полноценного легкоусваиваемого жира (табл. 8.8). Так коровье молоко содержит около 3% белков, связанных с кальцием и фосфором казеина, небольшое количество альбумина и глобулина, превосходящих казеин по содержанию незаменимых аминокислот. Жиры молока содержат холестерин, сбалансированный с лецитином. В зависимости от жирности в 100 г молока содержится от 30 до 80 ккал. Молоко служит основным источником кальция , относительно много в его содержании калия и фосфора.

В небольшом количестве молоко содержит все витамины, особенно В2, А и D. Сравнительно много витамина А содержится в цельном молоке и сливочном масле в летний период, когда животные находятся на подножном корму и едят много травы, богатой каротином. В питании используют коровье, козье и кобылье молоко. Причем в кобыльем молоке содержится меньше жира и белка, но больше лактозы, незаменимых жирных кислот и витаминов С и А, чем в коровьем. В козьем молоке по сравнению с коровьим также больше незаменимых жирных кислот, и за счет меньшего размера частиц жира оно легче переваривается.

В лечебном питании широко используются кисломолочные напитки, которые по сравнению с молоком легче перевариваются, стимулируют секрецию пищеварительных желез, а также нормализуют двигательную функцию кишечника и кишечную микрофлору. Промышленность выпускает более 100 наименований кисломолочных напитков: жирные - 3,2-6%, маложирные - 1-2,5% и нежирные с нормальным и повышенным содержанием сухого обезжиренного молочного остатка (белка, лактозы, минеральных солей).

Хорошим источником полноценного белка и жира, а также кальция, фосфора и витаминов группы В служит творог, приготовленный из цельного молока. Содержание белка в таком твороге в среднем 15%, жира 18%. В тощем твороге, который готовится из обезжиренного молока, белка 17%, жира 0,5%.

Творог содержит ряд полезных веществ (холин, метионин и др.), предупреждающих развитие атеросклероза. Творог разной жирности применяется при заболеваниях сердечно-сосудистой системы, сахарном диабете, ожирении, остеопорозе, после ожогов и переломов костей. Систематическое употребление молока, молочнокислых продуктов и, в частности, творога рекомендуется в пожилом возрасте.

Пищевые вещества молока в концентрированном виде содержатся в сыре. Содержание белка в сыре достигает 23-26%, а жира - 25-30%. Сыр также содержит очень много легкоусвояемого кальция и фосфора. Неострые, малосоленые и нежирные сыры применяются в диетах при туберкулезе, хронических заболеваниях кишечника и печени, в период выздоровления после инфекций, при остеопорозе, переломах костей.

К молочным продуктам относится и мороженое. В зависимости от вида мороженого в нем содержится от 3 до 15% жира при одинаковом количестве белка (3%) и сахара (15%), энергетическая ценность при этом составляет от 125 до 225 ккал.

Таблица 8.8. Пищевая ценность молока и молочных продуктов (по Скурихину Н. М., 2004)

Пищевые вещества и энергия Молоко, стакан, 250 г Кефир, стакан, 250 г Сыр голландский, 100 г Творог жирный, 100 г Сырки или творожная масса, 100 г Сливочное мороженое, 100 г
Белок, г 7,3 (10) 7,0 (10) 26,8 (38) 14,0 (19) 7,1 (10) 3,3 (5)
Жиры, г 8,0 (9) 8,0 (9) 27,3 (31) 18,0 (20) 23,0 (26) 10,0 (11)
Углеводы, г 11,8 (3) 10,3 (3) - 2,8 (1) 27,5 (8) 20,2 (6)
Кальций, мг 303 (38) 300 (38) 1040 (130) 150 (19) 135 (17) 140 (18)
Фосфор, мг 228 (19) 238 (20) 544 (45) 216 (18) 200 (17) 108 (9)
Магний, мг 35 (9) 36 (9) 56 (14) 23 (6) 23 (6) 22 (6)
Железо, мг 0,2 (1) 0,2 (1) 1,1 (8) 0,5 (4) 0,4 (3) 0,1 (1)

Витамин А, мг
В-каротин, мг

Витамин В 1 , мг

0,08 (6) 0,08 (6) 0,03 (2) 0,05 (4) 0,03 (2) 0,03 (2)

Витамин В 2 , мг

0,33 (22) 0,43 (29) 0,38 (25) 0,30 (20) 0,30 (20) 0,20 (13)
Витамин РР, мг 1,79 (11) 1,89 (12) 12,06 (75) 3,83 (24) 1,81 (11) 0,76 (5)
Витамин С, мг 2,5 (4) 1,8 (3) 2,8 (4) 0,5(1) 0,05 (1) 0,06 (
Витамин D, мкг 0,13 (5) 0,13 (5) - - - 0,02 (
Энергетическая ценность, ккал 148 (6) 141 (6) 353 (14) 232 (9) 340 (14) 181 (7)

Примечание:

Мясо, птица и продукты их переработки

Мясо, птица и продукты их переработки являются прежде всего источником полноценных белков и основным источником железа для организма (табл. 8.9).

В лечебном питании используют говядину, телятину, постные сорта свинины и баранины, мясо кролика, кур, индеек. Допустимы конина, оленина, верблюжатина, которые применяются в питании населения некоторых регионов. Мясо уток и гусей обычно исключают из лечебного питания в связи с большим содержанием в них жира - в среднем до 30%. Белки мышечной ткани мяса животных являются полноценными, а по сбалансированности аминокислот говядина, баранина и свинина мало отличаются друг от друга.

Белки соединительной ткани (эластин, коллаген) и хрящей считаются неполноценными. Мясо, в котором много соединительных тканей, остается жестким даже после кулинарной обработки, а питательная ценность и усвояемость белков такого мяса снижается. Особенно устойчива к тепловой обработке соединительная ткань старых животных. В говядине в зависимости от упитанности животного содержится различное количество жира и белка.

Таблица 8.9. Пищевая ценность 100 г изделий из мяса и птицы (по Скурихину Н. М., 2004)

Пищевые вещества и энергия

Говядина отварная

Котлеты говяжьи

Сосиски молочные

Колбаса отдельная

Курица отварная

Бульон куриный

Белки, г 25,8 (35) 14,6 (20) 11,0 (15) 11,0 (15) 25,2 (35) 0,5 (
Жиры, г 16,8 (19) 11,8 (13) 23,9 (27) 20,0 (22) 7,4 (8) 0,1 (
Углеводы, г - 13,6 (4) - 1,8 (1) - -
Кальций, мг 30 (4) 22 (3) 39 (5) 17 (2) 36 (5) 5 (
Фосфор, мг 184 (15) 130 (11) 159 (13) 167 (14) 166 (14) 100 (8)
Железо, мг 1,4 (10) 1,4 (10) 1,8 (13) 2,1 (15) 2,2 (16) -

Витамин В 1 , мг

0,05 (4) 0,08 (6) - 0,12 (9) 0,04 (3) 0,01 (

Витамин В 2 , мг

0,16 (11) 0,12 (8) - 0,16 (11) 0,12 (8) 0,02 (1)
Витамин РР, мг 8,54 (53) 5,70 (36) - 5,38 (34) 12,72 (80) 0,31 (2)

Витамин В 12 , мкг

2,60 (87) 1,30 (43) - - 0,5 (17) -

Энергетическая ценность, ккал

254 (10) 220 (9) 266 (11) 240 (10) 170,6 (7) 3 (

Примечание:

По содержанию насыщенных жирных кислот первое место занимает бараний жир, после него - говяжий и затем - свиной жир. Поэтому бараний жир наиболее тугоплавок, труднее переваривается и хуже усваивается по сравнению с говяжьим и особенно свиным жиром. В последнем больше ненасыщенных жирных кислот, чем в бараньем и говяжьем жирах. В жирах старых животных возрастает количество насыщенных жирных кислот. В тощем мясе жиров мало, но они трудно усваиваются.

Мясо является важным источником хорошо усвояемого железа, а также фосфора и калия, однако оно бедно кальцием и магнием. В мясе содержатся витамины группы В, при варке на 10-15% переходящие в бульон. Свинина особенно богата витамином В1.

Мясо также содержит экстрактивные вещества, которые стимулируют работу пищеварительных желез, повышают аппетит, вызывают возбуждение центральной нервной системы. Больше всего этих веществ в свинине, меньше в баранине, содержание их выше в мясе взрослых животных, чем молодых. При варке мяса от 1/3 до 2/3 всех экстрактивных веществ переходит в бульон, поэтому в химически щадящих диетах используют отварное мясо.

В состав экстрактивных веществ входят пурины, из которых в организме человека образуется мочевая кислота. Поэтому при подагре и мочекаменной болезни с уратурией (повышенным содержанием в моче соли мочевой кислоты) содержание пуринов в питании резко ограничивают. Больше всего пуринов в свинине, меньше - в говядине и особенно в баранине.

Мясо кролика содержит до 21% белка, 7-15% жира, в нем мало соединительной ткани и сухожилий, мышечные волокна мелкие, что способствует более легкому его перевариванию. По сравнению с мясом других животных в крольчатине меньше холестерина, больше фосфолипидов, железа; все это позволяет широко использовать мясо кролика в различных диетах.

В конине содержится до 21% белка и 4-10% жира с большим, чем в мясе других животных, количеством ненасыщенных жирных кислот. Однако конина имеет специфический запах, долго варится, бульон имеет неприятный вкус.

Из субпродуктов (внутренние органы и части туши) наиболее важна в лечебном питании печень - концентрат кроветворных микроэлементов и всех витаминов (особенно витаминов А, В2, В12, РР, холина). В ней содержится до 18% белка, 3% жира, много холестерина (200-300 мг на 100 г против 60-70 мг в мясе). Кроветворные вещества хорошо усваиваются из вареной, тушеной, жареной печени, паштетов, поэтому нет необходимости употреблять в пищу полусырую и тем более сырую печень для улучшения кроветворения.

Большую пищевую ценность имеют язык, сердце, почки. Язык легко переваривается, в нем мало соединительной ткани и экстрактивных веществ, до 16% белка и только 3% жира, высокое содержание железа.

Все перечисленные субпродукты содержат пурины и противопоказаны при подагре и уратурии. При заболеваниях желудка с высокой кислотностью ограничивают употребление печени из-за ее сильного сокогонного действия.

По сравнению с говядиной и свининой мясо кур и индеек содержит несколько больше белков и экстрактивных веществ, меньше соединительной ткани, причем белки и жиры птицы лучше усваиваются. Цыплята беднее экстрактивными веществами и дают менее крепкий бульон, чем куры. Мясо кур и индеек очень ценно в лечебном питании.

Перевариваемость мяса зависит от вида, возраста и упитанности животного, части туши, кулинарной обработки. Вареное или рубленое мясо переваривается лучше, чем жареное. Очень тощее мясо переваривается хуже упитанного, старое - хуже молодого. Части туши, бедные соединительной тканью, перевариваются лучше, чем богатые ею.

В лечебном питании можно использовать лишь некоторые сорта вареных колбас: докторскую, диетическую, детскую, диабетическую, молочную. В этих колбасах мало пряностей, фарш тонко измельчен, в их состав добавляют молоко, яйца. В диабетической колбасе отсутствует крахмал и сахар, в ней больше говядины, чем в докторской и молочной, в которых преобладает свинина. В докторской и диетической колбасах отсутствует перец, в состав диабетической и молочной он входит.

Яйца

Яйца являются важным источником хорошо сбалансированных пищевых веществ. Химический состав яичного белка и желтка различен. В желтке больше жира и белков и относительно мало воды. Соответственно в желтках около 16% белков и 33% жиров, богатых лецитином и холестерином. Жиры желтка также содержат значительное количество фосфатидов. В их виде фосфор хорошо усваивается организмом. Из минеральных веществ в яйцах, кроме фосфора, содержится кальций (в 1 яйце около 30 мг). Яйца богаты витаминами А, D, Е и витаминами группы В. Усваиваются они на 97-98%. Желтки яиц усиливают моторную функцию желчного пузыря и оказывают желчегонное действие.

По своему составу яйца различных сельскохозяйственных птиц практически не различаются.

Рыба и морепродукты

Рыба и морепродукты являются не менее ценным источником белка, чем мясо.
  • малобелковые рыбы (макрорус, мойва и др.) - содержание белка 10-13%;
  • высокобелковые рыбы (горбуша, кета, семга, лосось, тунец, сиг, белуга, севрюга и др.) - содержание белка 21-22%.
Белки рыбы содержат все необходимые для организма незаменимые аминокислоты. В отличие от мяса, в белках рыбы имеется в большом количестве незаменимая аминокислота - метионин. Преимуществом рыбного белка является низкое содержание соединительных тканей, которые представлены коллагеном, легко переходящим в растворимую форму - желатин (глютин). Благодаря этому рыба легко разваривается, ткани ее становятся рыхлыми, легко поддаются воздействию пищеварительных соков, что обеспечивает более полное усвоение пищевых веществ. Белки рыбы усваиваются на 93-98%, в то время как белки мяса - на 87-89%.

Рыба и морепродукты обладают высокой пищевой ценностью не только благодаря белку, но и за счет повышенного содержания в жирных сортах рыбы (таких как лосось, семга, радужная форель, скумбрия, сельдь, тунец, сардины) w-3 и w-6 жирных кислот. Эти полиненасыщенные жирные кислоты, обладающие высокой физиологической активностью, крайне важны для межклеточных процессов, имеют противовоспалительный эффект, оказывают гиполипидемическое действие.

Вся рыба богата микроэлементами: калием, магнием и особенно фосфором. Она также является важным источником витаминов группы В, в печени многих рыб высокое содержание витаминов A, D, E (табл. 8.10).

Морская рыба и морепродукты богаты йодом и фтором. Особенно богаты йодом кальмары, морской гребешок, креветки, морская капуста. Они также улучшают аминокислотный состав рациона. Кроме того, в морской капусте содержатся гепариноподобные вещества, препятствующие тромбообразованию. Для приготовления блюд лучше всего использовать свежую (не мороженую) рыбу, в которой содержание белка достаточно высоко.

Нежирные сорта свежей рыбы перевариваются в желудке и кишечнике быстрее, чем мясо. Обычно они дают ощущение сытости меньшее, чем мясная пища; это объясняется тем, что мясо рыбы содержит несколько больше воды, чем мясо теплокровных животных.

Таблица 8.10. Пищевая ценность 100 г приготовленной рыбы без гарнира и соуса (по Скурихину Н. М., 2004)

Пищевые вещества и энергия

Палтус припущенный

Судак отварной

Морской окунь отварной

Белки, г 13,9(19) 21,3 (29) 19,9(27)
Жиры, г 17,4 (20) 1,3(1) 3,6 (4)
Кальций, мг 21(3) 37(5) 24(3)
Фосфор, мг 133(11) 175(15) 156(13)
Магний, мг 39(10) 18(5) 11(3)
Железо, мг 0,9 (6) 1,4(10) 1,3 (9)
Витамин А, мг 0,09(10) 0,01 (1) 0,01(1)
Витамин Bj мг 0,07 (5) 0,06 (5) 0,08 (6)
Витамин РР, мг 4,20 (26) 3,96 (25) 4,89(31)

Витамин В 12 , мкг

1,00(33) - 1,68(56)
Витамин С, мг - 2,1 (3) 0,9(1)

Энергетическая ценность

212(8) 97(4) 112(4)

Примечание: в скобках - примерная доля от суточной потребности в нутриентах и энергии взрослого человека, %.

При посоле рыбы некоторая часть питательных веществ теряется, переходя в рассол. То же происходит во время вымачивания соленой рыбы.

Большую пищевую ценность имеет икра рыб. В икре осетровых и лососевых рыб содержится около 30% высокоценных белков и 12% легкоусвояемых белков. Она богата лецитином, витаминами А, D, Е и группы В, а также железом. Однако в икре много холестерина и 4-6% поваренной соли.

Грибы

Свежие грибы содержат около 2% белка, но значительная часть его не усваивается организмом. В свежих грибах имеется около 1% жиров и 2-4% углеводов, много клетчатки, небольшое количество кальция, витаминов С, B1 и РР. Содержат от 84 до 93% воды и отличаются низкой энергоценностью: в 100 г грибов содержится 15-20 ккал. В грибах содержится много ароматических и экстрактивных веществ, которые обусловливают их высокие вкусовые качества и по стимуляции секреции пищеварительных желез превосходят овощные отвары. В связи с плохой перевариваемостью редко используются в лечебном питании.

Сахар

Сахар-рафинад содержит 99,9% чистой сахарозы, поэтому он легко усваивается и используется в напитках и блюдах в качестве легкоусвояемого источника энергии (калорийная ценность 100 г - 380 ккал). Но, несмотря на эти преимущества сахара, избыточное его потребление (более 50-60 г в день при низкой физической активности) здоровым людям не рекомендуется. Сахар более полезен в виде фруктово-ягодных и кондитерских изделий: варенья, повидла, компотов и др., которые, будучи ценным источником энергии, одновременно обогащают пищу полезными питательными веществами.

В отличие от сахарозы фруктоза слаще и для ее усвоения почти не требуется инсулин, что позволяет употреблять ее в меньших дозах (30-40 г в день). При окислении в организме 1 г фруктозы дает около 4 ккал.

Источником простых углеводов является пчелиный мед, который содержит 36% глюкозы, 38% фруктозы и 2% сахарозы. В состав меда в небольшом количестве входят почти все витамины, минеральные вещества, органические кислоты, ферменты. В 100 г меда содержится 314 ккал. Суточная доза меда не должна превышать 60-80 г при уменьшении количества других сахаристых продуктов (1 г сахара = 1,25 г меда).

Овощи, фрукты и ягоды

Овощи, фрукты и ягоды в большей своей части содержат мало белка и ничтожное количество жиров (кроме облепихи и авокадо). Так в 100 г съедобной части в среднем содержится 0,5-1,5 г белков, аминокислотный состав которых имеет невысокую биологическую ценность и трудно перевариваются. Больше неплохо усвояемых белков содержится в картофеле и цветной капусте - 2-2,5%, а также в горошке зеленом и стручковой фасоли 4-5%. Однако многие из них относительно богаты углеводами и содержат витамины и минеральные вещества. В овощах содержится 3-5% углеводов, во фруктах и ягодах - 5-10%.

Наиболее богаты усвояемыми углеводами финики - 69% и сухофрукты - 55-65%. Клетчатки много содержится в сухофруктах, финиках, инжире, большинстве ягод, цитрусовых, бобовых, свекле, моркови, капусте белокочанной, баклажанах, сладком перце; относительно мало - в арбузе, дыне, тыкве, кабачках, томатах, салате, зеленом луке. Пектинами в большей степени богаты свекла, яблоки, смородина черная, слива, персики, клубника, в меньшей - морковь, груша, апельсины, виноград.

Овощи, фрукты и ягоды имеют низкую энергоценность, которую почти полностью обеспечивают углеводы: в 100 г съедобной части овощей - 20-40 ккал, фруктов и ягод - 30-50 ккал. Исключения составляют картофель, зеленый горошек, виноград и бананы - 70-90 ккал, в облепихе - 200 ккал, а в финиках - 270 ккал.

Овощи, фрукты и ягоды - практически единственный в питании источник витамина С, главный источник каратиноидов, включая р-каротин, биофлавоноидов (витамин Р), важный источник фолацина (фолиевой кислоты) и витамина К. В то же время в растительной пище отсутствуют витамины В12, А и D. В овощах мало витамина В2 (рибофлавина) и только некоторые из них, например шпинат, цветная и брюссельская капуста, могут служить дополнительными источниками этого витамина в пище.

Овощи и фрукты бедны кальцием, фосфором, натрием. Зато это основной источник калия. Источниками калия являются сухофрукты, картофель, зеленый горошек, томаты, свекла, редис, зеленый лук, черешня, смородина, виноград, абрикосы, персики.

Благодаря содержанию полезных органических кислот, дубильных и пектиновых веществ, клетчатки, овощи, фрукты и ягоды играют важную роль в процессах пищеварения и способствуют нормальной деятельности кишечника .

Изделия из зерновых культур

Продукты этой группы - наш основной источник энергии, а также пищевых волокон. Пищевая ценность зерновых культур зависит от вида зерна и способа обработки. При удалении оболочки (например, шлифовке и полировке круп) резко уменьшается количество пищевых волокон, но возрастает их усвояемость.

Наиболее распространены крупы из проса, пшеницы, ячменя, гречихи, овса, риса и кукурузы. В крупах содержится от 9 до 13% белков, однако белок зерновых имеет низкую биологическую ценность в связи с дефицитом эссенциальных аминокислот. Недостаток незаменимых аминокислот в крупах можно пополнять, сочетая крупы с молоком, например гречневую или овсяную кашу с молоком. Такие смеси белков животного и растительного происхождения по своему аминокислотному составу близко подходят к белкам мяса и лучше усваиваются.

Наиболее ценные белки по составу и усвояемости содержатся в овсяной, гречневой, манной крупе, рисе. Белки кукурузной крупы и пшена менее полноценны.

Манную крупу получают при сортовом помоле пшеницы путем отбора крупки из центральной части зерна. Манная крупа богата белком, крахмалом, содержит мало клетчатки.

Овсяные хлопья отличаются повышенным содержанием белка и наибольшим, по сравнению с другими видами круп, количеством растительного жира; все овсяные крупы богаты солями железа. Но из-за того, что овсяные крупы содержат довольно много жира, они плохо хранятся. Это относится, прежде всего, к овсяным хлопьям, которые долго хранить нельзя.

Гречневая крупа принадлежит к наиболее ценным в пищевом отношении крупам. Она содержит относительно высокое (около 13%) количество белка, причем в нем, в отличие от белков других растительных продуктов, довольно много лизина. Гречневая крупа отличается высоким содержанием витаминов группы В и солей железа (вдвое больше, чем в других крупах). В ней, как и в овсяной крупе, содержится относительно много клетчатки, поэтому усвояемость пищевых веществ гречневой крупы несколько понижена.

Рис по сравнению с другими крупами содержит относительно мало белка. В рисе много крахмала, который обладает способностью сильно набухать при варке крупы. Рис высшего и 1-го сортов содержит мало клетчатки, легко переваривается и хорошо усваивается.

Почти все крупы содержат много фосфора и совсем недостаточное количество солей кальция. Чтобы достичь правильного соотношения этих минеральных элементов в питании, кулинарные изделия из любых круп рекомендуется готовить с добавлением молока или других молочных продуктов. Благодаря этому не только компенсируется недостаток кальция в крупах, но и значительно повышается полноценность их белков.

Незаменимым продуктом в повседневной пище каждого человека является хлеб. Он ценится как богатый источник углеводов (крахмала). Хлеб из ржаной муки или из пшеничной муки грубого помола содержит витамины В1, В2 и РР, много клетчатки. Хлеб богат растительными белками.

Благодаря возможности легко изменять рецептуру, именно в виде хлеба чаще всего производятся продукты диетического и функционального питания.

У народов всего мира широко распространены разнообразные блюда из круп. Изделия из круп, так же как и хлеб, являются богатыми источниками углеводов (крахмала) и служат хорошим источником энергии (табл. 8.11).

Таблица 8.11. Пищевая ценность некоторых готовых продуктов из зерновых культур (каш, макаронных изделий) (по Скурихину Н. М., 2004)

Пищевые вещества и энергия

Рисовая каша рас сыпчатая, порция 250 г

Гречневая каша рас сыпчатая, порция 250 г

Манная каша вяз кая, пор ция 300 г

Овсяная (геркулесовая) каша, вязкая, порция 300 г

Макароны отварные, порция 250 г

Белки, г 6,2 (8) 14,8 (20) 7,5 (10) 8,7 (12) 10,3 (14)
Жиры, г 0,4 (0) 3,9 (4) 0,5 (1) 4,2 (5) 0,9 (1)
Углеводы, г 66,0 (19) 76,4 (21) 50,5 (14) 44,5 (13) 47,7 (13)
Кальций, мг 38 (5) 81 (10) 36,(5) 56 (7) 19 (2)
Фосфор, мг 25 (6) 94 (24) 15 (4) 89 (22) 31(8)
Железо, мг 85 (7) 351 (29) 56 (5) 218 (18) 58 (5)
Витамин В[, мг 1,0 (7) 8,0 (57) 0,7 (5) 2,5 (18) 1,6 (11)

Витамин В 2 , мг

0,05 (4) 0,36 (28) 0,8 (6) 0,22 (17) 0,09 (7)
Витамин РР, мг 0,03 (2) 0,19 (13) 0,02 (1) 0,05 (3) 0,02 (1)

Витамин В 12 , мкг

2,70 (17) 7,79 (49) 2,6 (13) 3,85 (24) 2,66 (17)

Энергетическая ценность, ккал

298 (12) 407 (16) 240 (10) 254 (10) 244 (10)

Примечание: в скобках - примерная доля от суточной потребности в нутриентах и энергии взрослого человека, %.

Напитки

Суточное потребление жидкости должно составлять для здорового человека 1,5-2 л/сут. Чай, кофе и какао содержат алкалоиды - вещества, оказывающие уже в малых дозах сильное воздействие на организм человека.

В состав чая входят дубильные вещества (главным образом танин), обусловливающие несколько вяжущий вкус чая, эфирное масло, очень небольшое количество белков и витамина С, витамин Р, минеральные вещества, ферменты и алкалоид теин, по своему действию на организм сходный с кофеином. В одном стакане чая умеренной крепости содержится 0,03-0,05 г теина. В этой дозе теин оказывает умеренное возбуждающее действие на нервную систему, благоприятно влияет на сердечно-сосудистую систему и на пищеварение.

Зеленый (натуральный) чай содержит больше танина (теина), чем черный чай. Суррогаты чая совсем не содержат теина.

В жареных кофейных бобах содержится около 15% азотистых веществ, до 20% жира, около 4% минеральных солей, до 40% экстрактивных веществ, небольшое количество сахара, дубильные вещества и 1,1% кофеина.

В порошке какао содержится 20,2% жиров, 23,6% белков, 40,2% углеводов, 2,4% алкалоидов - кофеина и теобромина. Кроме того, в состав какао входят дубильные, минеральные и ароматические вещества.

Теобромин и кофеин оказывают возбуждающее действие на нервную систему и сердечную деятельность.

А.Ю. Барановский