Лауреаты нобелевской премии по физике. Премия по физике Материалы, изменившие мир

Нобелевская премия по физиологии и медицине за 2000 г. присуждена трем исследователям: шведскому фармакологу Арвиду Карлссону и двум американским нейробиологам - Полу Грингарду и Эрику Кенделу за открытия, касающиеся “передачи сигналов в нервной системе”.

Арвид Карлссон (Arvid Carlsson), один из патриархов нейропсихофармакологии, родился в 1923 г. в Упсале (Швеция). В 1951 г. окончил медицинский факультет Лундского университета, в котором начал работать ассистентом профессора на кафедре фармакологии. В 1959 г. получил должность профессора фармакологии в Гётеборгском университете, где и проработал бессменным заведующим кафедрой до своей отставки в 1989 г. В настоящее время продолжает научные исследования на этой кафедре.

Американский биохимик Пол Грингард (Paul Greengard) родился в 1925 г. в Нью-Йорке. Степень доктора философии получил в 1953 г. в Университете им.Дж.Гопкинса в Балтиморе, после чего проработал шесть лет в разных биохимических лабораториях в Лондоне и в Бетесде. Несколько лет возглавлял биохимические исследования в фармацевтической компании Гейги, а в 1968 г. продолжил карьеру университетского ученого, вначале в Йеле, а с 1983 г. (и до сих пор) руководит лабораторией молекулярной и клеточной нейробиологии в Рокфеллеровском университете в Нью-Йорке.

Признанный пионер исследований синаптических основ обучения Эрик Кендел (Eric Kandel) родился в 1929 г. в Вене, но вскоре эмигрировал с родителями в США, где в 1956 г. окончил медицинский факультет Нью-Йоркского университета. До 1965 г. работал психиатром в Гарвардском медицинском институте в Бостоне, а затем связал свою судьбу с Колумбийским университетом в Нью-Йорке, где и сейчас возглавляет одну из ведущих лабораторий мира, занимающихся изучением механизмов памяти.

Какие работы объединяют всех трех лауреатов? По решению Нобелевского комитета, премия присуждена за пионерные открытия, касающиеся определенного вида передачи сигналов от одной нервной клетки к другой, обозначаемого как “медленная синаптическая передача”. Чтобы понять, каково место и значение такой клеточной коммуникации в работе мозга, обратимся к истории исследования синаптических связей. История эта полна драматизма, научных коллизий, и многие из ее этапов уже были отмечены Нобелевскими премиями.

В XIX в. сложность строения и переплетения клеток в нервной системе давала основания думать, что нервные клетки соединены между собой ретикулярными или протоплазматическими связями в единую сеть. Одним из основных защитников этой теории был итальянский нейроанатом К.Гольджи, который изобрел получивший его имя способ окраски отдельных нервных клеток. Рухнула “ретикулярная теория” в значительной степени благодаря работам блестящего испанского нейроанатома С. Рамон-и-Кахаля: он использовал метод Гольджи для демонстрации дискретности нейронов, взаимодействующих друг с другом через специализированные контакты. В 1906 г. Рамон-и-Кахаль получил Нобелевскую премию, которую по иронии судьбы разделил со своим непримиримым оппонентом Гольджи.

Термин для обозначения зон контактов между нервными клетками ввел английский нейрофизиолог Ч. Шеррингтон. В 1890-х годах при подготовке раздела о нервной системе для руководства по физиологии он столкнулся с необходимостью как-то обозначить соединение между нейронами. Как позже вспоминал сам сэр Чарльз, он предложил редактору руководства М. Фостеру термин “синдесм”. Однако приятель Фостера, знаток Эврипида и специалист по древнегреческой литературе Верелл посоветовал использовать слово “синапс” - термин, ставший с тех пор одним из ключевых в науке о мозге. В 1932 г. Шеррингтону (совместно с Э.Д. Эдрианом ) была присуждена Нобелевская премия за исследования функций нервных клеток.

В начале ХХ в. среди физиологов господствовало представление, что сигналы от клетки к клетке передаются через синапс с помощью электрических импульсов. Однако исследования немецкого физиолога О. Леви, русского ученого А.Ф. Самойлова и английского исследователя Г. Дейла показали, что из окончаний нейронов выделяются химические вещества, которые передают информацию к постсинаптической клетке. Эти вещества получили название нейромедиаторов. Хрестоматийным примером стала история о том, что схему эксперимента, приведшего Леви к открытию первого нейромедиатора - ацетилхолина, - он увидел во всех деталях во сне. К середине 30-х годов химическая передача нервного импульса получила уже столько подтверждений, что в 1936 г. двум из ее первооткрывателей - О. Леви и Г. Дейлу - была присуждена Нобелевская премия.

Может быть, последним известным ученым, который, вопреки неумолимым доказательствам, упорно выступал против химической природы синаптической передачи, был ученик Шеррингтона Дж. Эклс. Его отрицание зашло так далеко, что отказываться от своих взглядов было невозможно. Так по крайней мере казалось Эклсу до тех пор, пока он не встретился во время работы в Канберре с одним из самых неортодоксальных философов ХХ в. К. Поппером, эмигрировавшим в Австралию из Австрии. Поппер сумел быстро доказать своему новому другу, что главный порок в науке - не совершать ошибки, а упорствовать в них. “Те из нас, кто боится подвергнуть риску опровержения свои идеи, - говорил Поппер, - не участвуют в научной игре”. И в 1945 г. Эклс публично заявил об отказе от своих прошлых взглядов и приступил к изучению химических механизмов синаптической передачи. Его блестящие исследования принесли ему в 1963 г. Нобелевскую премию. Эта награда зафиксировала достигнутые нейрофизиологией успехи в понимании механизмов передачи медиаторами (на примере ацетилхолина) электрических сигналов между нервными клетками.

Однако уже в 50-е годы стали появляться доказательства того, что центральная нервная система использует в синапсах не один или два, а гораздо больше нейромедиаторов. Причем некоторые из них ведут себя иначе, чем ацетилхолин.

Особенно необычными оказались катехоламиновые нейромедиаторы - дофамин, норадреналин и адреналин, - которые образуются в нервных клетках из поступающей с пищей аминокислоты тирозина посредством следующей цепи реакций: тирозин ® дигидроксифенилаланин ® дофамин ® норадреналин ® адреналин.

Одна из особенностей катехоламинов состоит в том, что в мозге очень мало нейронов, синтезирующих их. Из приблизительно 50-100 млрд нервных клеток в мозге человека, вероятно, только около 0.001% нейронов, расположенных локальными группами, используют эти медиаторы. Однако это компенсируется тем, что окончания катехоламиновых нейронов очень широко распространены по нервным структурам, буквально “заливая” выделяемым медиатором клетки мозга. Например, каждый из около 10 тыс. синтезирующих дофамин нейронов в черной субстанции мозга крыс образует примерно 500 тыс. синаптических бутонов в неостриатуме - структуре переднего мозга, связанной с регуляцией движений. У человека число бутонов одной дофаминовой клетки может достигать 5 млн.

Сначала полагали, что в цепи реакций синтеза катехоламинов дофамин лишь предшественник норадреналина и не выполняет медиаторных функций. Однако шведский фармаколог Арвид Карлссон, разработав высокочувствительный метод определения дофамина в нервной ткани, показал, что картина его распределения в мозге не повторяет таковую для других катехоламинов. В частности, чрезвычайно высоким оказалось содержание дофамина в неостриатуме. И, как и для других катехоламинов, концентрация дофамина резко падала под воздействием резерпина - препарата, истощающего запасы катехоламиновых медиаторов в синаптических пузырьках. При этом одним из побочных действий резерпина было появление у животных симптомов, напоминающих болезнь Паркинсона - заболевания нервной системы, характеризующегося тяжелыми расстройствами регуляции движений.

Сопоставив все эти факты, Карлссон выступил в 1958 г. на Катехоламиновом симпозиуме в Бетесде (США) со смелой гипотезой, согласно которой дофамин - самостоятельный медиатор в мозге, чьи функции связаны с экстрапирамидной системой регуляции движений. Он также предположил, что болезнь Паркинсона вызвана ненормально низкими концентрациями дофамина в базальных ганглиях. Эта гипотеза получила подтверждение уже в 1961 г., когда в мозге пациентов, умерших от болезни Паркинсона, была измерена концентрация дофамина.

Но Карлссон сделал следующий шаг: стал давать крысам с истощенными резерпином запасами дофамина L-дигидроксифенилаланин (L-ДОФА) - предшественник синтеза дофамина. Это не только восстановило концентрацию дофамина в мозге, но и вернуло животным способность к нормальным движениям. Отсюда следовало логическое предположение, что больных паркинсонизмом можно лечить с помощью L-ДОФА. И действительно, первые испытания, проведенные в конце 60-х годов, показали, что у таких больных, получавших в течение нескольких недель высокие дозы L-ДОФА, наступает значительное улучшение. Сегодня этот прием остается одним из самых эффективных методов терапии при паркинсонизме.*

Помимо успешной борьбы с паркинсонизмом, работы Карлссона привели к пониманию действия целого ряда других основных психотропных препаратов. Например, он показал, что нейролептики - лекарства, используемые при лечении шизофрении - влияют на синаптическую передачу в мозге, блокируя дофаминовые рецепторы. В 1975 г. он ввел понятие “ауторецептор” для обозначения катехоламиновых рецепторов, расположенных на самих синтезирующих катехоламин нейронах и играющих важную роль в их работе. Кроме того, Карлссон внес большой вклад в создание нового поколения антидепрессивных препаратов, избирательно блокирующих обратный захват клетками из синапса еще одного медиатора - серотонина.

Итак, к началу 70-х годов выяснили, что дофамин, норадреналин и серотонин - медиаторы в центральной нервной системе, оказывающие необычное воздействие на клетки-мишени. В отличие от быстрых, наступающих за миллисекунды, эффектов классических аминокислотных медиаторов и ацетилхолина действие катехоламинов нередко развивается за сотни миллисекунд или секунды и может длиться даже часами. Такой способ передачи сигналов между нейронами назвали “медленной синаптической передачей”.

В 1979 г. Эклс в соавторстве с двумя канадскими биохимиками, супругами Мак-Гир, опубликовал статью, в которой предложил называть эффекты классических быстрых медиаторов ионотропными, имея в виду, что они воздействуют на ионные каналы в синаптической мембране, а медленные эффекты - метаботропными, предполагая, что они требуют вовлечения метаболических процессов внутри постсинаптического нейрона. Как писали эти авторы в 1978 г., полная история катехоламинов не может быть рассказана, потому что наиболее важные открытия - расшифровка их эффектов на постсинаптические клетки - еще не сделаны.

Завесу неизвестности над этим вопросом приоткрыл Пол Грингард. Он показал, что медленная синаптическая передача через метаботропные рецепторы вызывает внутри нервных клеток химическую реакцию, фосфорилирование, т.е. присоединение к белкам фосфатных групп с последующим изменением формы и функции этих белков. Грингард с сотрудниками обнаружили, что связывание дофамина с рецепторами на клеточной мембране повышает в клетке содержание “вторичного посредника” - циклического аденозинмонофосфата (цАМФ). Это активирует фермент протеинкиназу А, которая способна фосфорилировать многие белки в нервной клетке. Среди фосфорилируемых белков находятся, в частности, мембранные белки различных ионных каналов, которые контролируют возбудимость нервной клетки и обеспечивают генерацию и передачу нервных импульсов нейроном. Поэтому дофамин и другие медиаторы, действующие через метаботропные рецепторы, способны модулировать посредством этого механизма возбудимость нервных клеток и их реакции на медиаторы, действующие через ионотропные рецепторы.

Впоследствии Грингард показал, что в клетках мозга протекают еще более сложные процессы. Медиаторы, подобные дофамину, действующие через метаботропные рецепторы, могут вызывать не только фосфорилирование, но и дефосфорилирование белков. При этом многие из их сложных эффектов внутри клетки опосредуются воздействием на регуляторный белок DARPP-32, который в свою очередь влияет на функции многих других белков в клетке. Эти работы Грингарда позволили также понять эффекты некоторых антипсихотропных препаратов, которые, как оказалось, специфически влияют на фосфорилирование белков в различных нервных клетках.

Таким образом, исследования Грингарда раскрыли окно в новый мир внутриклеточных эффектов медиаторов, осуществляющих медленную синаптическую передачу. Они продемонстрировали, что, помимо классических эффектов, реализующихся через ионотропные рецепторы и непосредственное изменение электрических мембранных потенциалов, многие нейромедиаторы (катехоламины, серотонин и некоторые нейропептиды) оказывают влияние и на биохимические процессы в цитоплазме нейронов. Именно этими метаботропными эффектами и обусловлено необычно медленное действие таких медиаторов и их длительное, модулирующее влияние на функции нервных клеток. Поэтому такие нейромедиаторы часто вовлечены не в передачу быстрых сигналов для восприятия, движения, речи, а в оркестровку сложных состояний нервной системы - эмоций, настроений, мотиваций. Иллюстрацией этому тезису может служить недавняя статья Грингарда и его сотрудников в “Science”, показывающая, что дофамин и DARPP-32 участвуют в регуляции полового поведения у крыс.

Одну из важнейших функций мозга, в которой задействованы механизмы медленной синаптической передачи и фосфорилирования белков, многие годы исследовал третий нобелевский лауреат, американский нейробиолог Эрик Кендел. Это процессы формирования памяти.

Кендел начал изучать механизмы обучения на млекопитающих, но затем понял, что их мозг слишком сложен для расшифровки фундаментальных клеточных основ памяти. Поэтому в начале 60-х годов он поехал во Францию к выдающемуся нейробиологу чешского происхождения Ладиславу Тауку, чтобы научиться у него работать с морским зайцем (Aplysia ). У этого моллюска относительно простая нервная система, состоящая примерно из 20 тыс. нервных клеток. Многие из них настолько велики, что видны невооруженным глазом и могут быть идентифицированы по положению в нервных ганглиях. При этом морской заяц имеет простые защитные реакции, которые можно использовать для исследования фундаментальных механизмов обучения.

Кендел обнаружил, что определенные стимулы усиливают защитный рефлекс втягивания жабры у аплизии. Эта измененная реакция сохраняется на протяжении часов или даже дней и поэтому служит удобной моделью для изучения механизмов памяти и обучения. Исследования лаборатории Кендела показали, что в основе такой длительной реакции лежит повышение эффективности синаптической передачи между сенсорными нейронами моллюска и двигательными нервными клетками, которые активируют мышцы для защитной реакции.

Сначала Кендел и его сотрудники исследовали модификации защитного рефлекса, сохраняющиеся на протяжении минут или часов - аналог так называемой кратковременной памяти. Они установили, что в основе этой формы пластичности лежит усиленный вход ионов кальция в клетку, который повышает выделение нейромедиатора сенсорным нейроном при каждом нервном импульсе и, следовательно, усиливает оборонительную реакцию. Эти изменения происходят за счет фосфорилирования белков определенных ионных каналов по механизму, описанному Грингардом.

Более сильные и продолжительные стимулы формируют у моллюска разновидности долговременной памяти, которая может длиться дни и даже недели. Эти стимулы увеличивают содержание в клетке цАМФ и активируют протеинкиназу А. Далее такие сигналы через фосфорилирование определенных белков, так называемых транскрипционных факторов, достигают ядра нервной клетки, где меняют активность ряда генов. В результате синтез некоторых из белков заметно увеличивается, а других уменьшается. Многие из этих генов кодируют белки, участвующие в построении и функции синапсов. Благодаря каскаду молекулярных реакций изменяются функции и форма синапсов нейрона, что ведет к долговременным изменениям синаптической эффективности, лежащей в основе длительных модификаций защитного рефлекса у аплизии.

Таким образом, в отличие от кратковременной памяти, требующей фосфорилирования уже присутствующих в клетке белков, долговременная память основывается на экспрессии генов и синтезе новых белков. Значит, если заблокировать синтез белков в нервной системе, исчезает долговременная память, а кратковременная остается неповрежденной. Замечательная особенность этой цепи клеточных процессов состоит в том, что фундаментальные ее звенья и компоненты чрезвычайно схожи при обучении у моллюсков и у млекопитающих, оставаясь, по-видимому, неизменными на протяжении многих миллионов лет эволюции нервной системы. Это позволило Кенделу начиная с 90-х годов перенести значительную часть обнаруженных им на морском моллюске закономерностей на модели сложного обучения у мышей. Используя технологию гомологических рекомбинаций, позволяющую удалять у этих животных отдельные гены, Кендел и его сотрудники показали, что основные компоненты молекулярного каскада формирования памяти, описанные ими для аплизии, необходимы и при консолидации памяти у млекопитающих.

Подобная универсальность роли медленной синаптической передачи в формировании памяти, безусловно, открывает новые возможности биохимической коррекции нарушенной памяти у человека. Действительно, несколько лет назад Кендел основал биотехнологическую компанию, направленную на поиск принципиально новых средств регуляции памяти. Эти исследования особенно важны потому, что болезнь Альцгеймера и другие виды возрастных патологий (особенно характерных для развитых стран) начинаются именно с нарушений памяти.

Итак, Нобелевская премия 2000 г. за исследование механизмов “медленной синаптической передачи”, достойно завершила историю изучения клеточных основ деятельности мозга в ХХ в. Что же дальше? Хочу закончить свой короткий рассказ о лауреатах премии 2000 г. следующим эпизодом.

Кендел еще в 1963 г., после известия о награждении Нобелевской премией А.Ходжкина, А.Хаксли и Дж.Эклса за изучение мембранных процессов нервного возбуждения и торможения, заявил, что следующая премия будет присуждена за исследование синаптических механизмов памяти. И взялся за изучение этого вопроса. Теперь понятно, что, хотя его труд по достоинству увенчался наградой, о которой он мечтал, Кендел ошибся как минимум дважды. Как это не раз бывало с присуждением Нобелевских премий, он получил ее за исследование не той проблемы, которой посвятил всю свою жизнь. Более того, за 37 лет, истекших с момента его предсказания, около дюжины Нобелевских премий присуждено за исследования мозга и ни одна из них - за расшифровку механизмов памяти. Современная нейронаука слишком мало знает о механизмах высших функций мозга, и на долю следующего века остается еще много фундаментальных открытий, касающихся этого самого сложного из всех известных нам во Вселенной объектов.

© К.В. Анохин,
доктор медицинских наук
Институт нормальной физиологии им. П.К. Анохина РАМН
Москва

Имена лауреатов Нобелевской премии по физике. Согласно завещанию Альфреда Нобеля, премией награждается тот, "кто сделает наиболее важное открытие или изобретение" в этой области.

Редакция ТАСС-ДОСЬЕ подготовила материал о порядке присуждения этой премии и ее лауреатах.

Присуждение премии и выдвижение кандидатов

Премию присуждает Шведская королевская академия наук, расположенная в Стокгольме. Ее рабочий орган - Нобелевский комитет по физике, состоящий из пяти - шести членов, которые избираются Академией на три года.

Правом выдвигать кандидатов на премию обладают ученые разных стран, включая членов Шведской королевской академии наук и лауреатов Нобелевской премии по физике, которые получили специальные приглашения от комитета. Предлагать кандидатов можно с сентября до 31 января следующего года. Затем Нобелевский комитет с помощью научных экспертов отбирает наиболее достойные кандидатуры, а в начале октября академия большинством голосов выбирает лауреата.

Лауреаты

Первым премию в 1901 году получил Вильям Рентген (Германия) за открытие излучения, названного его именем. В числе наиболее известных лауреатов Джозеф Томсон (Великобритания), отмеченный в 1906 году за исследования прохождения электричества через газы; Альберт Эйнштейн (Германия), получивший премию в 1921 году за открытие закона фотоэффекта; Нильс Бор (Дания), награжденный в 1922 году за исследования атома; Джон Бардин (США), двукратный обладатель премии (1956 год - за исследования полупроводников и открытие транзисторного эффекта и 1972 год - за создание теории сверхпроводимости).

На сегодняшний день в списке награжденных 203 человека (с учетом Джона Бардина, награжденного дважды). Всего две женщины были отмечены этой премией: в 1903 году Мария Кюри разделила ее со своим мужем Пьером Кюри и Антуаном Анри Беккерелем (за изучение явления радиоактивности), а в 1963 году Мария Гопперт-Майер (США) получила награду вместе с Юджином Вигнером (США) и Хансом Йенсеном (ФРГ) за работы в области структуры атомного ядра.

Среди лауреатов 12 советских и российских физиков, а также ученых, родившихся и получивших образование в СССР и принявших второе гражданство. В 1958 году премию получили Павел Черенков, Илья Франк и Игорь Тамм за открытие излучения заряженных частиц, движущихся со сверхсветовой скоростью. Лев Ландау в 1962 году стал лауреатом за теории конденсированных сред и жидкого гелия. Так как Ландау находился в больнице после тяжелых травм, полученных в автокатастрофе, премия была вручена ему в Москве послом Швеции в СССР.

Николай Басов и Александр Прохоров были удостоены премии в 1964 году за создание мазера (квантового усилителя). Их работы в этой области впервые были опубликованы в 1954 году. В том же году американский ученый Чарлз Таунс независимо от них пришел к аналогичным результатам, в итоге Нобелевскую премию получили все трое.

В 1978 году Петр Капица был награжден за открытие в физике низких температур (этим направлением ученый начал заниматься в 1930-х годах). В 2000 году лауреатом стал Жорес Алфёров за разработки в полупроводниковой технике (разделил награду с немецким физиком Гербертом Кремером). В 2003 году Виталий Гинзбург и Алексей Абрикосов, принявший американское гражданство в 1999 году, были отмечены премией за основополагающие работы по теории сверхпроводников и сверхтекучих жидкостей (вместе с ними награду разделил британо-американский физик Энтони Леггетт).

В 2010 году премию получили Андре Гейм и Константин Новосёлов, которые проводили эксперименты с двумерным материалом графеном. Технология получения графена была разработана ими в 2004 году. Гейм родился в 1958 году в Сочи, а в 1990 году покинул СССР, впоследствии получил гражданство Нидерландов. Константин Новосёлов родился в 1974 году в Нижнем Тагиле, в 1999 году уехал в Нидерланды, где начал работать с Геймом, позже ему было предоставлено гражданство Великобритании.

В 2016 году премия была присуждена британским физикам, работающим в США: Дэвиду Таулесу, Данкану Холдейну и Майклу Костерлицу "за теоретические открытия топологических фазовых переходов и топологических фаз вещества".

Статистика

В 1901-2016 годах премия по физике присуждалась 110 раз (в 1916, 1931, 1934, 1940-1942 годах не удавалось найти достойного кандидата). 32 раза премия была поделена между двумя лауреатами и 31 - между тремя. Средний возраст лауреатов - 55 лет. До сих пор самым молодым обладателем премии по физике остается 25-летний англичанин Лоуренс Брэгг (1915), а самым пожилым - 88-летний американец Реймонд Дэвис (2002).

Лауреатами Нобелевской премии в нынешнем году снова стали российские ученые. Напомним, что в 2000 году премии по физике удостоился другой российский физик Жорес Алферов. Премию за разработку полупроводниковых гетероструктур для оптоэлектроники и электроники высоких скоростей он разделил c Гербертом Кремером и Джеком Килби.

В нынешнем году лауреатами премии стали сразу двое российских ученых - Виталий Гинзбург и Алексей Абрикосов. Последний, впрочем, является гражданином и России, и США и работает в Аргонской национальной лаборатории в США. Виталий Гинзбург, которому сейчас 87 лет, работал в Физическом институте им. П.Н. Лебедева РАН. Третьим лауреатом премии стал гражданин Великобритании и США Энтони Леггетт, работающий в Иллинойском университете в Урбана-Шампейн. Стоит отметить, что в очередной раз Нобелевская премия по физике вручается за достаточно давние открытия. В нынешнем году премия была вручена за исследования в области явлений сверхпроводимости и сверхтекучести, проведенные в 50-е и 70-е годы XX века, соответственно.

Явления сверхпроводимости и сверхтекучести наблюдаются при температурах всего на несколько градусов выше абсолютного нуля. При этом сверхпроводящие материалы можно разделить на две группы. Сверхпроводники I рода обладают свойством полностью или частично вытеснять магнитные потоки, и исследования этих сверхпроводников были отмечены премией за 1972 год. Сверхпроводники II рода могут пропускать ток без сопротивления, с сохранением сильного магнитного поля. Алексей Абрикосов теоретически обосновал свойства этих сверхпроводников на основе теории сверхпроводимости I, созданной при участии Виталия Гинзбурга. Что касается Энтони Леггетта, то ему принадлежит авторство теории, объясняющей взаимодействие атомов изотопа гелия. He в сверхтекучем состоянии.

Алексей Алексеевич Абрикосов, гражданин России и США, родился в 1928 г. в Москве. Окончил МГУ (1948), 1948...1965 гг. - работал в Институте физических проблем АН СССР, докторская диссертация по вопросам квантовой электродинамики высоких энергий (1955), 1965...1988 гг. - заведующий отделом Института теоретической физики им. Л.Д. Ландау АН СССР, 1988...1989 гг. - заведующий кафедрой теоретической физики МИСиС, с 1989 - директор Института высоких давлений им. Л.Ф. Верещагина АН СССР (с 1992 г. - Институт физики высоких давлений РАН). С 1966 г. - профессор МГУ. С 1991 г. работает в Аргоннской национальной лаборатории, США, по контракту. Основные труды в области теории сверхпроводимости, физики твердого тела и квантовой жидкости, астрофизики, статистической физики, физики плазмы, квантовой электродинамики.

Виталий Лазаревич Гинзбург, гражданин России, родился в 1916 г. в Москве. Окончил физический факультет Московского государственного университета. Кандидат наук с 1940 г., доктор физико-математических наук с 1942 г., профессор с 1945 г., член-корр. АН СССР с 1953 г., академик АН СССР (теперь РАН) с 1966 г. С 1940 г. В.Л. Гинзбург работает в Отделении теоретической физики им. И.Е. Тамма Физического института им. П.Н. Лебедева РАН. По совместительству с 1945 г. до 1961 г. был профессором в Горьковском государственном университете, заведовал кафедрой радиофакультета. С 1968 г. профессор, заведующий кафедрой проблем физики и астрофизики Московского физико-технического института. Основные труды по распространению радиоволн, астрофизике, происхождению космических лучей, излучению Черенкова - Вавилова, сверхпроводимости, физике плазмы, кристаллооптике и др. Ленинская премия (1966), Государственная премия СССР (1953).

Энтони Дж. Леггетт, гражданин Великобритании и США, родился в 1938 г. в Лондоне. Докторская степень по физике в Оксфордском университете в 1964 г. Работает в Иллинойском университете в США. Член Американского физического общества и иностранный член Российской академии наук.

В завершающем году XX века Нобелевская премия по физиологии и медицине присуждена за открытия в нейрофизиологии - науке, современные достижения которой помогают лучше понять, как организмы взаимодействуют с окружающей средой. Лауреаты - Арвид Карлссон (Arvid Carlsson), Пол Грингард (Paul Greengard) и Эрик Кэндел (Eric Kandel) - почти полвека старались разгадать процессы, протекающие в головном мозге. В результате получены новые лекарства для борьбы с заболеваниями нервной системы.
В человеческом мозге более ста миллиардов нервных клеток. И все они связаны между собой. Информация от одной из них к другой передается химическими веществами (медиаторами) в особых контактных точках (синапсах), которых у клетки тысячи. Открытия лауреатов помогли осознать, что сбои при такой (синаптической) передаче могут привести
к неврологическим и психическим болезням. Арвид Карлссон, профессор фармакологии университета Гетеборга (Швеция), еще в 50-е годы установил, что нейрогормон дофамин является медиатором и локализуется в базальных ганглиях головного мозга, которые контролируют движения конечностей. Эксперименты на мышах, терявших способность контролировать свои движения при недостатке дофамина, привели ученого к догадке, что страшная болезнь Паркинсона у человека обусловлена теми же причинами. Недостаток дофамина в организме можно устранить, вводя изомер дофамина - леводофу. «Болезнь Паркинсона смертельна, - говорит Ральф Паттерсон, председатель Нобелевского комитета Каролинского института в Стокгольме, - но сегодня миллионы противостоят ей, применяя леводофу. Это - почти волшебство!» Исследования Карлссона привели к созданию лекарств (в частности, «Прозака»), с успехом применяемых для лечения депрессий. Биохимик Пол Грингард, руководитель лаборатории молекулярной и клеточной неврологии Рокфеллеровского университета в Нью-Йорке, отмечен за открытие механизма действия дофамина и ряда других медиаторов при синаптической передаче. Действуя на рецептор клеточной мембраны, медиатор запускает реакции фосфорилирования особых «ключевых» белков. Измененные белки, в свою очередь, формируют в мембране ионные каналы, по которым и передаются сигналы. Различные ионные каналы клетки и определяют ее ответы на воздействия.
Синаптическая передача особенно важна для речи, движения и сенсорного восприятия. Работа Грингарда позволила лучше понять механизм действия многих известных лекарств и разработать новые. Узнав о присуждении ему Нобелевской премии, Грингард пошутил: «Мы работали столько лет без всякой конкуренции, потому что нас считали не совсем нормальными». Но зато вполне серьезно он намерен передать свою часть премии в университетский фонд для поощрения женщин, работающих в биомедицине.
Эрик Кэндел, профессор Колумбийского университета (тоже в Нью-Йорке), нашел способ менять эффективность синапсов. Он стремился понять, как фосфорилирование белков в синапсах влияет на обучение и память. «Мы становимся самими собой благодаря тому, что обучаемся и запоминаем. На нас влияет жизненный опыт, способный травмировать», - отмечает он. Интерес к механизмам памяти развился у него под впечатлениями о войне, когда в 1939 г. семья 9-летнего Эрика покинула родную Вену, спасаясь от гитлеровцев. «Понять, что происходит с мозгом человека, когда он пережил события, пожизненно врезавшиеся в память, - важнейшая задача», - считает он.

В нервной системе брюхоногого моллюска аплизии, на котором Кэндел изучал механизмы обучения и памяти у животных, всего 20 тыс. клеток. Ее простой защитный рефлекс, оберегающий жабры, определенные стимулы закрепляли на несколько дней. Кэндел показал, что изменения в синапсах - основа запоминания. Слабое внешнее воздействие формировало кратковременную память - на десятки минут. В клетке запоминание начинается с описанного Грингардом фосфорилирования белков в синапсах, которое ведет к избытку в них медиатора и усиливает рефлекс. Для развития долговременной памяти, сохраняющейся иногда до конца жизни организма, обычно необходимы более сильные и продолжительные стимулы. При этом в синапсе синтезируются новые белки. Если же эти белки не вырабатываются, отсутствует и долговременная память. Кэндел заключил, что в синапсах фактически и сосредоточена память. В 90-е годы он воспроизвел работу с аплизией на мышах, относящихся, как и человек, к классу млекопитающих, и убедился, что описанные процессы свойственны и нашей нервной системе. Эти исследования, ставшие классикой нейрофизиологии, дали ключ к лечению болезни Альцгеймера и других заболеваний, связанных с потерей памяти. Сам же Кэндел, нашедший, как говорят его коллеги, «физическое воплощение памяти», очень скромен: «От моей работы до клинической отдачи - огромная дистанция».

Совместив несовместимое
Нобелевскую премию по химии за 2000 г. за открытие и изучение электропроводящих полимеров разделили американские исследователи Алан Хигер (Alan J. Heeger), профессор физики и директор Института полимеров и органических жидкостей Калифорнийского университета в Санта-Барбаре, и Алан Макдиармид (Alan G. MacDiarmid), профессор химии Пенсильванского университета в Филадельфии, а также японский ученый Хидеки Сиракава (Hideki Shirakawa), профессор химии в Институте материаловедения университета Цукуба. Лауреаты совершили это открытие свыше 20 лет назад, но только сейчас мировое научное сообщество смогло оценить его выдающееся значение.

Каждый школьник знает, что полимеры, в отличие от металлов, не проводят электрический ток. Однако новые нобелевские лауреаты доказали, что это не так. Как бы развивая тезис о том, что для науки нет ничего невозможного, они совместили в одном материале несовместимые свойства. Как же синтезировали проводящие полимеры? Основная заслуга лауреатов состояла в том, что они «угадали» структуру молекулы органического проводника. Такая молекула должна состоять из атомов углерода, соединенных по очереди одинарными и двойными химическими связями. Кроме того, в ней должны присутствовать так называемые «потенциально заряженные группы». Например, если в такую молекулу внедрить функциональную группу, легко расстающуюся со своими электронами, в полимере образуется много свободных носителей электрического заряда. И тогда этот полимер будет проводить ток почти так же хорошо, как привычные нам алюминий или медь.
Проводящие полимеры получили широкое распространение в самых разных областях: из них делают антистатическую подложку для фото-, видео- и другой пленки, защитные экраны для мониторов (например, в персональных компьютерах), «умные» окна, избирательно фильтрующие солнечное излучение. В последнее время их стали применять в светодиодах, солнечных батареях, экранах мини-телевизоров и мобильных телефонов. Еще более захватывающими выглядят перспективы - на основе электропроводящих полимеров ученые надеются создать «молекулярные транзисторы», которые позволят в недалеком будущем «втиснуть» суперкомпьютеры, занимающие ныне огромные шкафы, в наручные часы или украшения.

Материалы, изменившие мир

Наконец-то достижения российской науки по достоинству оценены мировым научным сообществом. Нобелевской премии по физике за 2000 г. удостоен вице-президент Российской академии наук, председатель Президиума Санкт-Петербургского научного центра РАН, директор Физико-технического института им. А.Ф. Иоффе РАН, академик Жорес Иванович Алферов.

Присуждение Нобелевской премии академику РАН Ж.И. Алферову, по мнению многих российских ученых, должно изменить отношение к науке в стране, способствовать повышению ее статуса и, главное, - обеспечить ей пристойную государственную поддержку. Ж.И. Алферов разделил премию с американскими коллегами - Гербертом Кремером (Herbert Kroemer), профессором физики Калифорнийского университета в Санта-Барбаре, и Джеком Килби (Jack S. Kilby) из фирмы Texas Instruments в Далласе. Так оценен их вклад в создание принципиально новых полупроводниковых материалов, ставших основой современных компьютеров, информационных технологий и электроники. Высшая научная награда присуждена за открытие и разработку опто- и микроэлектронных элементов, так называемых полупроводниковых гетероструктур - многослойных компонентов быстродействующих диодов и транзисторов (важнейших составных частей электронных устройств).
Г.Кремер в 1957 г. разработал транзистор на гетероструктурах. Шестью годами позже он и Ж.И. Алферов независимо друг от друга предложили принципы, которые легли в основу конструкции гетероструктурного лазера. В том же году Алферов запатентовал свой знаменитый оптический инжекционный квантовый генератор. Дж. Килби внес огромный вклад в создание интегральных схем.

Фундаментальные работы лауреатов сделали принципиально возможным создание волоконно-оптических коммуникаций, в том числе Интернета. Лазерные диоды, основанные на гетероструктурной технологии, можно обнаружить в проигрывателях CD-дисков, устройствах для прочтения штрих-кодов и многих других аппаратах, ставших неотъемлемыми атрибутами нашего быта. Быстродействующие транзисторы используются в спутниковой связи и мобильных телефонах.

Список использованной литературы :

Журнал "Экология и жизнь". Статья Ю.Н. Елдышева, Е.В. Сидорова.

НОБЕЛЕВСКИЕ ПРЕМИИ

Нобелевские премии - международные премии, названные по имени их учредителя шведского инженера-химика А. Б. Нобеля. Присуждаются ежегодно (с 1901) за выдающиеся работы в области физики, химии, медицины и физиологии, экономики (с 1969), за литературные произведения, за деятельность по укреплению мира. Присуждение Нобелевских премий поручено Королевской АН в Стокгольме (по физике, химии, экономике), Королевскому Каролинскому медико-хирургическому институту в Стокгольме (по физиологии и медицине) и Шведской академии в Стокгольме (по литературе); в Норвегии Нобелевский комитет парламента присуждает Нобелевские премии мира. Нобелевские премии не присуждаются дважды и посмертно.

АЛФЁРОВ Жорес Иванович (род. 15 марта 1930, Витебск Белорусская ССР, СССР) - советский и российский физик, лауреат Нобелевской премии по физике 2000 года за разработку полупроводниковых гетероструктур и создание быстрых опто- и микроэлектронных компонентов, академик РАН, почётный член Национальной Академии наук Азербайджана (с 2004 года), иностранный член Национальной академии наук Белоруссии. Его исследование сыграло большую роль в информатике. Депутат Госдумы РФ, являлся инициатором учреждения в 2002 году премии «Глобальная энергия», до 2006 года возглавлял Международный комитет по её присуждению. Является ректором-организатором нового Академического университета.


(1894-1984), российский физик, один из основателей физики низких температур и физики сильных магнитных полей, академик АН СССР (1939), дважды Герой Социалистического Труда (1945, 1974). В 1921-34 в научной командировке в Великобритании. Организатор и первый директор (1935-46 и с 1955) Института физических проблем АН СССР. Открыл сверхтекучесть жидкого гелия (1938). Разработал способ сжижения воздуха с помощью турбодетандера, новый тип мощного сверхвысокочастотного генератора. Обнаружил, что при высокочастотном разряде в плотных газах образуется стабильный плазменный шнур с температурой электронов 105-106 К. Государственная премия СССР (1941, 1943), Нобелевская премия (1978). Золотая медаль имени Ломоносова АН СССР (1959).


(р. 1922), российский физик, один из основоположников квантовой электроники, академик РАН (1991; академик АН СССР с 1966), дважды Герой Социалистического Труда (1969, 1982). Окончил Московский инженерно-физический институт (1950). Труды по полупроводниковым лазерам, теории мощных импульсов твердотельных лазеров, квантовым стандартам частоты, взаимодействию мощного лазерного излучения с веществом. Открыл принцип генерации и усиления излучения квантовыми системами. Разработал физические основы стандартов частоты. Автор ряда идей в области полупроводниковых квантовых генераторов. Исследовал формирование и усиление мощных импульсов света, взаимодействие мощного светового излучения с веществом. Изобрел лазерный метод нагрева плазмы для термоядерного синтеза. Автор цикла исследований мощных газовых квантовых генераторов. Предложил ряд идей по использованию лазеров в оптоэлектронике. Создал (совместно с А. М. Прохоровым) первый квантовый генератор на пучке молекул аммиака - мазер (1954). Предложил метод создания трехуровневых неравновесных квантовых систем (1955), а также использование лазера в термоядерном синтезе (1961). Председатель правления Всесоюзного общества «Знание» в 1978-90. Ленинская премия (1959), Государственная премия СССР (1989), Нобелевская премия (1964 , совместно с Прохоровым и Ч. Таунсом). Золотая медаль им. М. В. Ломоносова (1990). Золотая медаль им. А. Вольты (1977).

ПРОХОРОВ Александр Михайлович (11 июля 1916, Атертон, штат Квинсленд, Австралия - 8 января 2002, Москва) - выдающийся советский физик, один из основоположников важнейшего направления современной физики - квантовой электроники, лауреат Нобелевской премии по физике за 1964 год (совместно с Николаем Басовым и Чарлзом Таунсом), один из изобретателей лазерных технологий.

Научные работы Прохорова посвящены радиофизике, физике ускорителей, радиоспектроскопии, квантовой электронике и её приложениям, нелинейной оптике. В первых работах он исследовал распространение радиоволн вдоль земной поверхности и в ионосфере. После войны он деятельно занялся разработкой методов стабилизации частоты радиогенераторов, что легло в основу его кандидатской диссертации. Он предложил новый режим генерации миллиметровых волн в синхротроне, установил их когерентный характер и по результатам этой работы защитил докторскую диссертацию (1951).

Разрабатывая квантовые стандарты частоты, Прохоров совместно с Н. Г. Басовым сформулировал основные принципы квантового усиления и генерации (1953), что было реализовано при создании первого квантового генератора (мазера) на аммиаке (1954). В 1955 они предложили трёхуровневую схему создания инверсной населенности уровней, нашедшую широкое применение в мазерах и лазерах. Несколько следующих лет были посвящены работе над парамагнитными усилителями СВЧ-диапазона, в которых было предложено использовать ряд активных кристаллов, таких как рубин, подробное исследование свойств которого оказалось чрезвычайно полезным при создании рубинового лазера. В 1958 Прохоров предложил использовать открытый резонатор при создании квантовых генераторов. За основополагающую работу в области квантовой электроники, которая привела к созданию лазера и мазера, Прохоров и Н. Г. Басов были награждены Ленинской премией в 1959, а в 1964 совместно с Ч. Х. Таунсом - Нобелевской премией по физике.

С 1960 года Прохоров создал ряд лазеров различных типов: лазер на основе двухквантовых переходов (1963), ряд непрерывных лазеров и лазеров в ИК-области, мощный газодинамический лазер (1966). Он исследовал нелинейные эффекты, возникающие при распространении лазерного излучения в веществе: многофокусная структура волновых пучков в нелинейной среде, распространение оптических солитонов в световодах, возбуждение и диссоциация молекул под действием ИК-излучения, лазерная генерация ультразвука, управление свойствами твёрдого тела и лазерной плазмы при воздействии световыми пучками. Эти разработки нашли применение не только для промышленного производства лазеров, но и для создания систем дальней космической связи, лазерного термоядерного синтеза, волоконно-оптических линий связи и многих других.

(1908-68), российский физик-теоретик, основатель научной школы, академик АН СССР (1946), Герой Социалистического Труда (1954). Труды во многих областях физики: магнетизм; сверхтекучесть и сверхпроводимость; физика твердого тела, атомного ядра и элементарных частиц, физика плазмы; квантовая электродинамика; астрофизика и др. Автор классического курса теоретической физики (совместно с Е. М. Лифшицем). Ленинская премия (1962), Государственная премия СССР (1946, 1949, 1953), Нобелевская премия (1962).

(1904-90), российский физик, академик АН СССР (1970), Герой Социалистического Труда (1984). Экспериментально обнаружил новое оптическое явление (излучение Черенкова - Вавилова). Труды по космическим лучам, ускорителям. Государственная премия СССР (1946, 1952, 1977), Нобелевская премия (1958 , совместно с И. Е. Таммом и И. М. Франком).

Российский физик, академик АН СССР (1968). Окончил Московский университет (1930). Ученик С. И. Вавилова, в лаборатории которого начал работать еще будучи студентом, исследуя тушение люминесценции в жидкостях.

После окончания университета работал в Государственном оптическом институте (1930-34), в лаборатории А. Н. Теренина, изучая фотохимические реакции оптическими методами. В 1934 перешел по приглашению С. И. Вавилова в Физический институт им. П. Н. Лебедева АН СССР (ФИАН), где он работал до 1978 (с 1941 заведующий отделом, с 1947 - лабораторией). В начале 30-х гг. по инициативе С. И. Вавилова начал заниматься изучением физики атомного ядра и элементарных частиц, в частности, открытого незадолго до этого явления рождения гамма-квантами электронно-позитронных пар. В 1937 выполнил совместно с И. Е. Таммом классическую работу по объяснению эффекта Вавилова - Черенкова. В военные годы, когда ФИАН был эвакуирован в Казань, И. М. Франк занимался исследованиями прикладного значения этого явления, а в середине сороковых годов интенсивно включился в работу, связанную с необходимостью решения в кратчайший срок атомной проблемы. В 1946 организовал лабораторию атомного ядра ФИАН. В это время Франк является организатором и директором Лаборатории нейтронной физики Объединенного института ядерных исследований в Дубне (с 1947), заведующим Лабораторией Института ядерных исследований АН СССР, профессором Московского университета (с 1940) и зав. лабораторией радиоактивных излучений Научно-исследовательского физического института МГУ (1946-1956).

Основные работы в области оптики, нейтронной и ядерной физики низких энергий. Разработал теорию излучения Черенкова - Вавилова на основе классической электродинамики, показав, что источником этого излучения являются электроны, движущиеся с скоростью, большей фазовой скорости света (1937, совместно с И. Е. Таммом). Исследовал особенности этого излучения.

Построил теорию эффекта Доплера в среде с учетом ее преломляющих свойств и дисперсии (1942). Построил теорию аномального эффекта Доплера в случае сверхсветовой скорости источника (1947, совместно с В. Л. Гинзбургом). Предсказал переходное излучение, возникающие при переходе движущимся зарядом плоской границы раздела двух сред (1946, совместно с В. Л. Гинзбургом). Исследовал образование пар гамма-квантами в криптоне и азоте, получил наиболее полное и корректное сравнение теории и эксперимента (1938, совместно с Л. В. Грошевым). В середине 40-х гг. осуществлял широкие теоретические и экспериментальные исследования размножения нейтронов в гетерогенных уран-графитовых системах. Разработал импульсный метод изучения диффузии тепловых нейтронов.

Обнаружил зависимость среднего коэффициента диффузии от геометрического параметра (эффект диффузионного охлаждения) (1954). Разработал новый метод спектроскопии нейтронов.

Явился инициатором исследования короткоживущих квазистационарных состояний и деления ядер под действием мезонов и частиц высоких энергий. Выполнил ряд экспериментов по исследованию реакций на легких ядрах, в которых испускаются нейтроны, взаимодействия быстрых нейтронов с ядрами трития, лития и урана, процесса деления. Принял участие в строительстве и запуске импульсных реакторов на быстрых нейтронах ИБР-1 (1960) и ИБР-2 (1981). Создал школу физиков. Нобелевская премия (1958). Государственные премии СССР (1946, 1954,1971). Золотая медаль С. И. Вавилова (1980).

(1895-1971), российский физик-теоретик, основатель научной школы, академик АН СССР (1953), Герой Социалистического Труда (1953). Труды по квантовой теории, ядерной физике (теория обменных взаимодействий), теории излучения, физике твердого тела, физике элементарных частиц. Один из авторов теории излучения Черенкова - Вавилова. В 1950 предложил (совместно с А. Д. Сахаровым) применять нагретую плазму, помещенную в магнитном поле, для получения управляемой термоядерной реакции. Автор учебника «Основы теории электричества». Государственная премия СССР (1946, 1953). Нобелевская премия (1958 , совместно с И. М. Франком и П. А. Черенковым). Золотая медаль им. Ломоносова АН СССР (1968).

ЛАУРЕАТЫ НОБЕЛЕВСКОЙ ПРЕМИИ ПО ФИЗИКЕ

1901 Рентген В. К. (Германия) Открытие “x”-лучей (рентгеновских лучей)

1902 Зееман П., Лоренц Х. А. (Нидерланды) Исследование расщепления спектральных линий излучения атомов при помещении источника излучения в магнитное поле

1903 Беккерель А. А. (Франция) Открытие естественной радиоактивности

1903 Кюри П., Склодовская-Кюри М. (Франция) Исследование явления радиоактивности, открытого А. А. Беккерелем

1904 Стретт [лорд Рэлей (Рейли)] Дж. У. (Великобритания) Открытие аргона

1905 Ленард Ф. Э. А. (Германия) Исследование катодных лучей

1906 Томсон Дж. Дж. (Великобритания) Исследование электропроводимости газов

1907 Майкельсон А. А. (США) Создание высокоточных оптических приборов; спектроскопические и метрологические исследования

1908 Липман Г. (Франция) Открытие способа цветной фотографии

1909 Браун К. Ф. (Германия), Маркони Г. (Италия) Работы в области беспроволочного телеграфа

1910 Ваальс (ван-дер-Ваальс) Я. Д. (Нидерланды) Исследования уравнения состояния газов и жидкостей

1911 Вин В. (Германия) Открытия в области теплового излучения

1912 Дален Н. Г. (Швеция) Изобретение устройства для автоматического зажигания и гашения маяков и светящихся буев

1913 Камерлинг-Оннес Х. (Нидерланды) Исследование свойств вещества при низких температурах и получение жидкого гелия

1914 Лауэ М. фон (Германия) Открытие дифрации рентгеновских лучей на кристаллах

1915 Брэгг У. Г., Брегг У. Л. (Великобритания) Исследование структуры кристаллов с помощью рентгеновских лучей

1916 Не присуждалась

1917 Баркла Ч. (Великобритания) Открытие характеристического рентгеновского излучения элементов

1918 Планк М. К. (Германия) Заслуги в области развития физики и открытие дискретности энергии излучения (кванта действия)

1919 Штарк Й. (Германия) Открытие эффекта Доплера в канальных лучах и расщепления спектральных линий в электрических полях

1920 Гильом (Гийом) Ш. Э. (Швейцария) Создание железоникелевых сплавов для метрологических целей

1921 Эйнштейн А. (Германия) Вклад в теоретическую физику, в частности открытие закона фотоэлектрического эффекта

1922 Бор Н. Х. Д. (Дания) Заслуги в области изучения строения атома и испускаемого им излучения

1923 Милликен Р. Э. (США) Работы по определению элементарного электрического заряда и фотоэлектическому эффекту

1924 Сигбан К. М. (Швеция) Вклад в развитие электронной спектроскопии высокого разрешения

1925 Герц Г., Франк Дж. (Германия) Открытие законов соударения электрона с атомом

1926 Перрен Ж. Б. (Франция) Работы по дискретной природе материи, в частности за открытие седиментационного равновесия

1927 Вильсон Ч. Т. Р. (Великобритания) Метод визуального наблюдения траекторий электрически заряженных частиц с помощью конденсации пара

1927 Комптон А. Х. (США) Открытие изменения длины волны рентгеновских лучей, рассеяния на свободных электронах (эффект Комптона)

1928 Ричардсон О. У. (Великобритания) Исследование термоэлектронной эмиссии (зависимость эмиссионного тока от температуры - формула Ричардсона)

1929 Бройль Л. де (Франция) Открытие волновой природы электрона

1930 Раман Ч. В. (Индия) Работы по рассеянию света и открытие комбинационного рассеяния света (эффект Рамана)

1931 Не присуждалась

1932 Гейзенберг В. К. (Германия) Участие в создании квантовой механики и применение ее к предсказанию двух состояний молекулы водорода (орто- и параводород)

1933 Дирак П. А. М. (Великобритания), Шредингер Э. (Австрия) Открытие новых продуктивных форм атомной теории, то есть создание уравнений квантовой механики

1934 Не присуждалась

1935 Чедвик Дж. (Великобритания) Открытие нейтрона

1936 Андерсон К. Д. (США) Открытие позитрона в космических лучах

1936 Гесс В. Ф. (Австрия) Открытие космических лучей

1937 Дэвиссон К. Дж. (США), Томсон Дж. П. (Великобритания) Экспериментальное открытие дифракции электронов в кристаллах

1938 Ферми Э. (Италия) Доказательства существования новых радиоактивных элементов, полученных при облучении нейтронами, и связанное с этим открытие ядерных реакций, вызываемых медленными нейтронами

1939 Лоуренс Э. О. (США) Изобретение и создание циклотрона

1940-42 Не присуждалась

1943 Штерн О. (США) Вклад в развитие метода молекулярных пучков и открытие и измерение магнитного момента протона

1944 Раби И. А. (США) Резонансный метод измерения магнитных свойств атомных ядер

1945 Паули В. (Швейцария) Открытие принципа запрета (принцип Паули)

1946 Бриджмен П. У. (США) Открытия в области физики высоких давлений

1947 Эплтон Э. В. (Великобритания) Исследование физики верхних слоев атмосферы, открытие слоя атмосферы, отражающего радиоволны (слой Эплтона)

1948 Блэкетт П. М. С. (Великобритания) Усовершенствование метода камеры Вильсона и сделанные в связи с этим открытия в области ядерной физики и физики космических лучей

1949 Юкава Х. (Япония) Предсказание существования мезонов на основе теоретической работы по ядерным силам

1950 Пауэлл С. Ф. (Великобритания) Разработка фотографического метода исследования ядерных процессов и открытие -мезонов на основе этого метода

1951 Кокрофт Дж. Д., Уолтон Э. Т. С. (Великобритания) Исследования превращений атомных ядер с помощью искусственно разогнанных частиц

1952 Блох Ф., Перселл Э. М. (США) Развитие новых методов точного измерения магнитных моментов атомных ядер и связанные с этим открытия

1953 Цернике Ф. (Нидерланды) Создание фазово-контрастного метода, изобретение фазово-контрастного микроскопа

1954 Борн М. (Германия) Фундаментальные исследования по квантовой механике, статистическая интерпретация волновой функции

1954 Боте В. (Германия) Разработка метода регистрации совпадений (акта испускания кванта излучения и электрона при рассеянии рентгеновского кванта на водороде)

1955 Куш П. (США) Точное определение магнитного момента электрона

1955 Лэмб У. Ю. (США) Открытие в области тонкой структуры спектров водорода

1956 Бардин Дж., Браттейн У., Шокли У. Б. (США) Исследование полупроводников и открытие транзисторного эффекта

1957 Ли (Ли Цзундао), Янг (Ян Чжэньнин) (США) Исследование так называемых законов сохранения (открытие несохранения четности при слабых взаимодействиях), которое привело к важным открытиям в физике элементарных частиц

1958 Тамм И. Е., Франк И. М., Черенков П. А. (СССР) Открытие и создание теории эффекта Черенкова

1959 Сегре Э., Чемберлен О. (США) Открытие антипротона

1960 Глазер Д. А. (США) Изобретение пузырьковой камеры

1961 Мессбауэр Р. Л. (Германия) Исследование и открытие резонансного поглощения гамма-излучения в твердых телах (эффект Мессбауэра)

1961 Хофстедтер Р. (США) Исследования рассеяния электронов на атомных ядрах и связанные с ними открытия в области структуры нуклонов

1962 Ландау Л. Д. (СССР) Теория конденсированной материи (в особенности жидкого гелия)

1963 Вигнер Ю. П. (США) Вклад в теорию атомного ядра и элементарных частиц

1963 Гепперт-Майер М. (США),Йенсен Й. Х. Д. (Германия) Открытие оболочечной структуры атомного ядра

1964 Басов Н. Г., Прохоров А. М. (СССР), Таунс Ч. Х. (США) Работы в области квантовой электроники, приведшие к созданию генераторов и усилителей, основанных на принципе мазера-лазера

1965 Томонага С. (Япония), Фейнман Р. Ф., Швингер Дж. (США) Фундаментальные работы по созданию квантовой электродинамики (с важными следствиями для физики элементарных частиц)

1966 Кастлер А. (Франция) Создание оптических методов изучения резонансов Герца в атомах

1967 Бете Х. А. (США) Вклад в теорию ядерных реакций, особенно за открытия, касающиеся источников энергии звезд

1968 Альварес Л. У. (США) Вклад в физику элементарных частиц, в том числе открытие многих резонансов с помощью водородной пузырьковой камеры

1969 Гелл-Ман М. (США) Открытия, связанные с классификацией элементарных частиц и их взаимодействий (гипотеза кварков)

1970 Альвен Х. (Швеция) Фундаментальные работы и открытия в магнитогидродинамике и ее приложения в различных областях физики

1970 Неель Л. Э. Ф. (Франция) Фундаментальные работы и открытия в области антиферромагнетизма и их приложение в физике твердого тела

1971 Габор Д. (Великобритания) Изобретение (1947-48) и развитие голографии

1972 Бардин Дж., Купер Л., Шриффер Дж. Р. (США) Создание микроскопической (квантовой) теории сверхпроводимости

1973 Джайевер А. (США),Джозефсон Б. (Великобритания), Эсаки Л. (США) Исследование и применение туннельного эффекта в полупроводниках и сверхпроводниках

1974 Райл М., Хьюиш Э. (Великобритания) Новаторские работы по радиоастрофизике (в частности, апертурный синтез)

1975 Бор О., Моттельсон Б. (Дания), Рейнуотер Дж. (США) Разработка так называемой обобщенной модели атомного ядра

1976 Рихтер Б., Тинг С. (США) Вклад в открытие тяжелой элементарной частицы нового типа (джипси-частица)

1977 Андерсон Ф.,Ван Флек Дж. Х. (США),Мотт Н. (Великобритания) Фундаментальные исследования в области электронной структуры магнитных и неупорядоченных систем

1978 Вильсон Р. В., Пензиас А. А. (США) Открытие микроволнового реликтового излучения

1978 Капица П. Л. (СССР) Фундаментальные открытия в области физики низких температур

1979 Вайнберг (Уэйнберг) С., Глэшоу Ш. (США), Салам А. (Пакистан) Вклад в теорию слабых и электромагнитных взаимодействий между элементарными частицами (так называемое электрослабое взаимодействие)

1980 Кронин Дж. У, Фитч В. Л. (США) Открытие нарушения фундаментальных принципов симметрии в распаде нейтральных К-мезонов

1981 Бломберген Н., Шавлов А. Л. (США) Развитие лазерной спектроскопии

1982 Вильсон К. (США) Разработка теории критических явлений в связи с фазовыми переходами

1983 Фаулер У. А., Чандрасекар С. (США) Работы в области строения и эволюции звезд

1984 Мер (Ван-дер-Мер) С. (Нидерланды), Руббиа К. (Италия) Вклад в исследования в области физики высоких энергий и в теорию элементарных частиц [открытие промежуточных векторных бозонов (W, Z0)]

1985 Клитцинг К. (Германия) Открытие “квантового эффекта Холла”

1986 Бинниг Г. (Германия), Рорер Г. (Швейцария), Руска Э. (Германия) Создание сканирующего туннельного микроскопа

1987 Беднорц Й. Г. (Германия), Мюллер К. А. (Швейцария) Открытие новых (высокотемпературных) сверхпроводящих материалов

1988 Ледерман Л. М., Стейнбергер Дж., Шварц М. (США) Доказательство существования двух типов нейтрино

1989 Демелт Х. Дж. (США), Пауль В. (Германия) Развитие метода удержания одиночного иона в ловушке и прецизионная спектроскопия высокого разрешения

1990 Кендалл Г. (США), Тейлор Р. (Канада), Фридман Дж. (США) Основополагающие исследования, имеющие важное значение для развития кварковой модели

1991 Де Жен П. Ж. (Франция) Достижения в описании молекулярного упорядочения в сложных конденсированных системах, особенно в жидких кристаллах и полимерах

1992 Шарпак Ж. (Франция) Вклад в развитие детекторов элементарных частиц

1993 Тейлор Дж. (младший), Халс Р. (США) За открытие двойных пульсаров

1994 Брокхауз Б. (Канада), Шалл К. (США) Технология исследования материалов путем бомбардирования нейтронными пучками

1995 Перл М., Рейнес Ф. (США) За экспериментальный вклад в физику элементарных частиц

1996 Ли Д., Ошерофф Д., Ричардсон Р. (США) За открытие сверхтекучести изотопа гелия

1997 Чу С., Филлипс У. (США), Коэн-Тануджи К. (Франция) За развитие методов охлаждения и захвата атомов с помощью лазерного излучения.

1998 Роберт Беттс Лафлин (англ. Robert Betts Laughlin; 1 ноября 1950, Визалия, США) - профессор физики и прикладной физики в Стэнфордском университете, лауреат Нобелевской премии по физике в 1998 г., совместно с Х. Штермером и Д. Цуи, «за открытие новой формы квантовой жидкости с возбуждениями, имеющими дробный электрический заряд».

1998 Хорст Лю?двиг Ште?рмер (нем. Horst Ludwig St?rmer; род. 6 апреля 1949, Франкфурт-на-Майне) - немецкий физик, лауреат Нобелевской премии по физике в 1998 году (совместно с Робертом Лафлином и Дэниелом Цуи) «за открытие новой формы квантовой жидкости с возбуждениями, имеющими дробный электрический заряд».

1998 Дэ?ниел Чи Цуи (англ. Daniel Chee Tsui, пиньинь Cu? Q?, палл. Цуй Ци, род. 28 февраля 1939, провинция Хэнань, Китай) - американский физик китайского происхождения. Занимался исследованиями в области электрических свойств тонких пленок, микроструктуры полупроводников и физики твёрдого тела. Лауреат Нобелевской премии по физике в 1998 году (совместно с Робертом Лафлином и Хорстом Штермером) «за открытие новой формы квантовой жидкости с возбуждениями, имеющими дробный электрический заряд».

1999 Герард "т Хоофт (нидерл. Gerardus (Gerard) "t Hooft, родился 5 июля 1946, Хелдер, Нидерланды), профессор Утрехтского университета (Нидерланды), лауреат Нобелевской премии по физике за 1999 год (совместно с Мартинусом Вельтманом). "т Хоофт вместе со своим преподавателем Мартинусом Вельтманом разработали теорию, которая помогла прояснить квантовую структуру электрослабых взаимодействий. Эту теорию создали в 1960-е годы Шелдон Глэшоу, Абдус Салам и Стивен Вайнберг, предположившие, что слабое и электромагнитное взаимодействия являются проявлением единого электрослабого взаимодействия. Но применение теории для расчёта свойств частиц, которые она предсказывала, было безрезультатным. Разработанные "т Хоофтом и Вельтманом математические методы позволили предсказать некоторые эффекты электрослабого взаимодействия, позволили оценить массы W и Z промежуточных векторных бозонов, предсказанных теорией. Полученные значения хорошо согласуются с экспериментальными значениями. Методом Вельтмана и "т Хоофта также была рассчитана масса топ-кварка, экспериментально обнаруженного в 1995 годе в Национальной лаборатории им. Э. Ферми (Фермилаб, США).

1999 Мартинус Вельтман (род. 27 июня 1931, Валвейк, Нидерланды) - нидерландский физик, лауреат Нобелевской премии по физике в 1999 г. (совместно с Герардом ’т Хоофтом). Вельтман работал совместно со своим студентом, Герардом ’т Хоофтом, над математической формулировкой калибровочных теорий - теорией перенормировки. В 1977 г. ему удалось предсказать массу топ-кварка, что послужило важным шагом для его обнаружения в 1995 г. В 1999 г. Вельтман, совместно с Герардом ’т Хоофтом, был награждён Нобелевской премией по физике «за прояснение квантовой структуры электрослабых взаимодействий».

2000 Жорес Иванович Алфёров (род. 15 марта 1930, Витебск Белорусская ССР, СССР) - советский и российский физик, лауреат Нобелевской премии по физике 2000 года за разработку полупроводниковых гетероструктур и создание быстрых опто- и микроэлектронных компонентов, академик РАН, почётный член Национальной Академии наук Азербайджана (с 2004 года), иностранный член Национальной академии наук Белоруссии. Его исследование сыграло большую роль в информатике. Депутат Госдумы РФ, являлся инициатором учреждения в 2002 году премии «Глобальная энергия», до 2006 года возглавлял Международный комитет по её присуждению. Является ректором-организатором нового Академического университета.

2000 Герберт Крёмер (нем. Herbert Kr?mer; род. 25 августа 1928, Веймар, Германия) - немецкий физик, лауреат Нобелевской премии по физике. Половина премии за 2000 г., совместно с Жоресом Алфёровым, «за разработку полупроводниковых гетероструктур, используемых в высокочастотной и опто-электронике». Вторая половина премии была присуждена Джеку Килби «за вклад в изобретение интегральных схем».

2000 Джек Килби (англ. Jack St. Clair Kilby, 8 ноября 1923, Джефферсон-Сити - 20 июня 2005, Даллас) - американский учёный. Лауреат Нобелевской премии по физике в 2000 году за своё изобретение интегральной схемы в 1958 году в период работы в Texas Instruments (TI). Также он - изобретатель карманного калькулятора и термопринтера (1967).