Процесс растворения вещества в воде. О растворении веществ в воде. Iii зависимость твердых веществ от растворения

Раздел 5. РАСТВОРЫ.ТЕОРИЯ ЭЛЕКТРОЛИТИЧЕСКОЙ ДИССОЦИАЦИИ

§ 5.2. Растворимость веществ в воде

Растворимость - это свойство вещества растворяться в воде или другом растворителе. В воде могут растворяться твердые, жидкие и газуваті вещества.

За растворимостью в воде все вещества делятся на три группы: 1) хорошо растворимые; 2) малорастворимые и 3) практически нерастворимые. Последние называются также нерастворимыми веществами. Однако следует отметить, что абсолютно нерастворимых веществ нет. Если погрузить в воду стеклянную палочку или кусочек золота или серебра, то они в ничтожно малых количествах все же таки растворяются в воде. Как известно, растворы аргентуму или ауруму в воде убивают микробы. Стекло, серебро, золото - это примеры практически не растворимых в воде веществ (твердые вещества). К ним относятся также керосин, растительное масло (жидкие вещества), благородные газы (газуваті вещества). Много веществ в воде растворяются довольно хорошо. Примером таких веществ могут быть сахар, медный купорос, гидроксид натрия (твердые вещества), спирт, ацетон (жидкие вещества), хлороводень, аммиак (газуваті вещества).

Из приведенных примеров следует, что растворимость прежде всего зависит от природы веществ, кроме того, она зависит от температуры и давления. Сам процесс растворения обусловлен взаимодействием частиц растворенного вещества и растворителя; это самопроизвольный процесс.

Процесс растворения твердых веществ в жидкостях можно представить так: под влиянием растворителя от поверхности твердого вещества постепенно отрываются отдельные ионы или молекулы и равномерно распределяются в всем объеме растворителя. Если растворитель соприкасается с большим количеством вещества, то через некоторое время раствор становится насыщенным.

Насыщенным называется такой раствор, который находится в динамическом равновесии с избытком растворенного вещества.

Чтобы приготовить насыщенный раствор, нужно в воду при данной температуре добавлять при перемешивании вещество до тех пор, пока не образуется осадок, то есть избыток вещества останется нерастворимым. В Этом случае установится динамическое равновесие между раствором и избытком вещества, растворяется: сколько частиц вещества будет переходить в раствор, столько же их будет выделяться (кристаллизоваться) из раствора. В насыщенном растворе при данной температуре содержится максимально возможное количество растворенного вещества.

В ненасыщенном растворе содержится меньше веществ, а в пресыщенному - больше, чем в насыщенном. Пересыщенные растворы достаточно неустойчивы. Легкое встряхивание сосуда или добавления к раствору кристалла соли вызывает выпадение в осадок избытка растворенного вещества. Пресыщены растворы образуют сахароза, Na 2 SO 4 ∙ 10Н 2 О, Na 2 S 2 О 3 ∙ 5Н 2 О, СН 3 СООNа, Na 2 B 4 O 7 ∙10Н 2 О и др.

Часто малорастворимые и практически нерастворимые вещества объединяют одним названием - малорастворимые. В этом случае говорят только о растворимые и малорастворимые вещества. Количественно растворимость выражается концентрацией насыщенного раствора. Чаще всего ее выражают максимальным числом граммов вещества, которое можно растворить в 100 г растворителя при данной температуры. Это количество вещества иногда называют коэффициентом растворимости или просто растворимостью вещества. Например, при 18 °С в 100 г воды растворятся 51,7 г соли нитрата свинца(II) Г b (NО 3) 2 , то есть растворимость этой соли при 18°С равна 51,7. Если при этой же температуре сверх этого количества добавить еще соли нитрата свинца(II), то она не растворится, а выпадет в виде осадка.

Говоря о растворимости вещества, следует указывать температуру растворения. Чаще всего растворимость твердых веществ с повышением темпера p ату p и с p остає. Это наглядно изображается помощью кривых растворимости (рис. 5.2). На оси абсцисс откладывают температуру, а на оси ординат - коэффициент растворимости. Однако растворимость некоторых веществ при повышении температуры возрастает незначительно (например NaCl , А l С l 3 ) или даже уменьшается [например, Са(O Н) 2 , Li 2 SO 4 , Са(СН 3 СОО) 2 ]. На коэффициент растворимости твердого тела в воде давление влияет незначительно, поскольку при растворении не происходит заметного изменения объема системы. С помощью кривых растворимости легко вычислить, сколько соли выпадет из раствора при его охлаждении. Например, если взять 100 г воды и приготовить при 45°С насыщенный раствор нитрата калия, а затем охладить его до 0°С, то, как следует из кривой растворимости (см. рис. 5.2), должно выпасть 60 г кристаллов соли. По кривым растворимости легко определяют коэффициент растворимости веществ по различных температур.

Выделение вещества из раствора при снижении температуры называется кристаллизацией. Если в растворе содержались примеси, то вследствие кристаллизации вещество всегда добывается чистой, поскольку в отношении примесей раствор остается ненасыщенным даже при понижении температуры, и примеси не выпадают в осадок. На этом основан метод очистки веществ, называется перекристаллизацией.

Во время растворения газов в воде выделяется теплота. Поэтому согласно принципу Ле Шателье при повышении

Рис. 5.2. Кривые растворимости твердых веществ

температуры растворимость газов уменьшается, а при снижении - увеличивается (рис. 5.3). Растворимость газов возрастает при повышении давления. Поскольку объем газа, растворяется в данном объеме воды, не зависит от давления, то растворимость газа обычно выражают количеством миллилитров, которое растворяется в 100 г растворителя (см. рис. 5.3).

Рис. 5.3. Кривые растворимости газов

Внимание! Администрация сайта сайт не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

Автор - Севостьянова Людмила Николаевна, учитель химии высшей квалификационной категории муниципального автономного общеобразовательного учреждения средней школы №3 р.п. Ильиногорск, Володарского муниципального района Нижегородской области

Обозначение предметного содержания проекта. Учащиеся получают представление о растворении, как о физико-химическом процессе, понятии гидратах и кристаллогидратах, растворимости, кривых растворимости, как модели зависимости растворения от температуры, насыщенных, перенасыщенных и ненасыщенных растворах. Делают выводы о значении растворов для природы и сельского хозяйства.

Методическая разработка составлена на основе, программы основного общего образования по химии, учебно-методического комплекса О.С.. Габриеляна «Химия. 8-11 классы (Рабочие программы. Химия8-11 классы: учебно-методическое пособие/сост. Г.М. Пальдяева. – 2 изд., стереотип. М.: Дрофа, 2013). Данный концентрический курс соответствует Федеральному государственному образовательному стандарту основного общего образования, одобрен РАО и РАН, имеет гриф «Рекомендовано» и включен в Федеральный перечень учебников.

Согласно действующему Базисному учебному плану, рабочая программа для 8-го класса предусматривает обучение химии в объеме 2 часа в неделю.

Раздел. Растворение. Растворы. Свойства электролитов.

Тема. Растворимость. Растворимость веществ в воде.

Обоснование целесообразности данного предметного содержания для организации проектной/исследовательской деятельности обучающихся. Через организацию исследовательской деятельности сформировать представление о растворении, как о физико-химическом процессе. На основе знаний и умений, добытых в ходе активного поиска и самостоятельного решения проблемы, учащиеся учатся устанавливать межпредметные и причинно-следственные связи

Также данный проект, направленный на сформирование представления о физико-химическом процессе растворения, изучении растворимости различных веществ от различных условий обеспечивает развитие устойчивого интереса к химии.

Название проекта: «Растворы. Растворимость веществ в воде».

Описание проблемной ситуации, определение проблемы и цели проектного модуля. Учитель организует действия учащихся по выявлению и формулировке проблемы, предлагая учащимся провести мини-исследование «Приготовление водных растворов перманганата калия и серной кислоты». Учащиеся во время проведения опытов отмечают, что в процессе растворения веществ наблюдаются как признаки физического, так и признаки химического явления.

Учащиеся совместно с учителем формулируют противоречие.

Противоречие: В процессе растворения можно наблюдать с одной стороны признаки физических явлений, с другой - химических явлений.

Проблема: Процесс «растворение» - это процесс химический или физический? Можно ли влиять на этот процесс?

Описание проектного продукта/результата с критериями оценки.

Цель проектного модуля: доказать сущность процесса растворения и объяснить зависимость растворимости от различных факторов через создание ментальной карты «Растворимость веществ в воде».

Проектный продукт: ментальная карта «Растворимость веществ в воде».

Ментальная карта представляет собой систематизированный и представленный в наглядной форме материал. В центре записывается тема проекта «Растворимость веществ». Учащимся предлагается на основе проведенных мини-исследований сформулировать выводы и творчески оформить их в несколько блоков:

Каждый отдельный проектный продукт пары оценивается по следующим критериям.

  • Эстетичность оформления
  • Структурность оформления
  • Логичность оформления
  • Наглядность
  • 1 балл – представлен частично

Оценка «5» - 15-14 баллов

Оценка «4» - 13-11 баллов

Оценка «3»- 10-7 баллов

Оценка «2» -менее 7 баллов

Определение общего объема урочных часов, необходимых для реализации проекта, и его распределение по этапам проектной деятельности обучающихся с указанием действий педагога и обучающихся.

Проектный модуль включает 3 урока (3 часа проектного модуля реализуются за счет 1 часа, который отводится на изучение темы «Растворы. Растворимость веществ» и 2 часа за счет резервного времени):

Фазы ПД

Этапы ПД

Поурочное планирование

Проектирование

Актуализация

1 урок

Домашнее задание

Проблематизация

Целеполагание

Планирование

Концептуализация

Моделирование

Реализация

Разработка критериальной базы

2 урок

Домашнее задание

Реализация проектного продукта

Представление проектного продукта

Оценка

Рефлексия

Представление

3 урок

Домашнее задание

Защита проекта

Рефлексия

Диагностика уровня сформированности проектных действий

Поэтапное описание проектного модуля, действий обучающихся, действий педагога.

Этапы проектной деятельности

Деятельность учителя

Деятельность учащихся

Средства

Результат

1-й урок (подготовительный и проектировочный этапы): актуализация – проблематизация – целеполагания - планирование действий-концептуализация.

Актуализация имеющейся системы : предметных знаний и способов деятельности, метапредметных способов деятельности, ценностей и смыслов, связанных с содержанием модуля и самим процессом познания.

Организует повторение правил техники безопасности и поведения в кабинете химии.

Организует фронтальное выполнение заданий, направленных на усвоение темы

«Физические и химические явления»

Задает вопрос учащимся: «Как отличить химические явления от физических?», «Каковы признаки химических реакций?»

Отвечают на вопросы.

Просмотр в режиме «без звука» флеш - ролика «Признаки химических реакций». Указывают признаки химических реакций, комментируют свой ответ.

Рассуждают и делают вывод том, что химические явление характеризуются образованием новых веществ, с новыми признаками. Признаками химических реакций могут быть: появление запаха (выделение газа), образование осадка, изменение цвета.

Мультимедийный комплекс и интерактивной доской.

Материал Единой коллекции ЦОР

Выявлена граница «знания-незнания»

Проблематизация – определение проблемы проекта и причин, приводящий к появлению проблемы.

Организует действия учащихся по выявлению и формулировке противоречия и проблемы.

Проведение мини-исследования: «Приготовление водных растворов перманганата калия и серной кислоты»

Учащиеся, соблюдая правила техники безопасности выполняют мини-исследование №1: , описывают свои наблюдения, заполняют таблицу.

Растворение

Физическое явление

Химическое явление

1. Демонстрация растворения KМnО 4 в воде.

За счёт кого процесса происходит растворение? (диффузии).

Вещество из области более высокой его концентрации переходит в область более низкой концентрации. Процесс завершается выравниванием концентрации.

К каким явлениям относится диффузия? (физическим).

Какие выводы можно сделать по данному эксперименту?

2) Мы уже вспоминали о признаках химических реакций. Подумайте, можем ли мы пронаблюдать хотя бы один из этих признаков при растворении? (выдвижение версий).

Демонстрация растворения Н 2 SО 4 (конц.) (Наблюдается выделение и поглощение теплоты). Как называются подобные реакции (экзотермические и эндотермические).

3) Демонстрация растворения безводного СuSО 4 в воде. (Происходит изменение цвета).

Какие выводы можно сделать по данным экспериментам?

  1. Растворение результат диффузии.
  2. Растворы - это однородные смеси.

Значит, растворение – это физическое явление.

  1. Растворение- это химическое взаимодействие растворённого вещества с водой, называемое гидратацией.
  2. Растворы - химические соединения.

Значит, растворение - это химическое явление.

Противоречие: При растворении присутствуют признаки и физического и химического явления.

Проблема: К каким же явлениям относится процесс растворения, физическим или химическим, как можно описать процесс растворения веществ?

Алгоритм выполнения мини-исследования №1

Приложение №1

Оборудование и реактивы:: KМnО 4 , Н 2 SО 4 (конц.), безводный СuSО 4 , вода, пробирки, штатив.

Сформулирована проблема

Целеполагание – определение цели и задач проекта.

На основе сформулированной проблемы создает условия для формулировки цели и определения будущего проектного продукта

Формулируют цель проекта с помощью учителя: описать модель процесса растворения, определить факторы, влияющие на процесс растворения, провести классификацию растворов, указать значение и применение растворов. С помощью учителя определяют блоки ментальной карты:

1 блок: «Модель процесса растворения»

2 блок: «Зависимость процесса растворения от различных факторов»

3 блок: «Классификация растворов»

4 блок: «Значение и применение растворов»

Сформулирована цель общего проектного продукта.

Планирование действий

Создает условия для формирования проектных групп и распределение обязанностей внутри групп по выполнению проектных заданий

  1. Формирование проектных групп и распределение обязанностей.
  2. Сбор и преобразование информации.
  3. Выполнение практических заданий, формулирование выводов.
  4. Создание проектного продукта.
  5. Презентация полученного продукта и оценка его в соответствии с критериями.
  6. Контроль знаний.

Класс делится на 5 групп по 4-5 человек. Каждая группа выбирает руководителя.

Совместно с учителем проговаривают совместный план действий.

  1. Распределение обязанностей внутри группы
  2. Изучение текста параграфа, преобразование текстовой информации в логическую схему процесса растворения.
  3. Выполнение мини-исследований, формулирование выводов. Получение промежуточного продукта-отчетов мини-исследований
  4. Самостоятельное изучение вопросов классификации растворов и значение и применение растворов. Преобразование информации – составление схемы, кластера, таблицы, выбор самого оптимального
  5. Создание проектного продукта – ментальной карты
  6. Презентация в соответствии с критериями.
  7. Предметный контроль (выполнение теста), работа в рабочей тетради.

Сформированы группы учащихся для выполнения проекта.

Разработан план дальнейшей работы

Организует действия учащихся для работы в группах. Оказывает помощь в распределении обязанностей внутри группы

Предлагает работу в группах по единым заданиям: прочитать текст учебника с.186-188, оформить схему-модель процесса растворения.

Направляет группы на выполнение практического мини-исследования №2 «Наблюдение влияния природы растворенного вещества на процесс растворения»

Направляет группы на выполнение практического мини-исследования №3 «Наблюдение влияния природы растворителя на процесс растворения веществ»

Направляет группы на выполнение практического мини-исследования №4 «Наблюдение влияния температуры на растворимость веществ.».

Составляют схему-модель «Растворение как физико-химический процесс». Каждый учащийся внутри группы самостоятельно читает текст.

1 ученик: рассматривает историю изучения данного вопроса.

2 ученик: выделяет сторонников физической теории растворов

3 ученик: выделяет сторонников химической теории растворов

4 ученик: описывают современные представления, составляют схему-модель РАСТВОР= Н2О + Р.В. + ГИДРАТЫ (продукты взаимодействия Н2О

растворёнными веществами).

5 ученик планирует и оформляет блок 1 ментальной карты.

Учащиеся, соблюдая правила техники безопасности, выполняют мини-исследование №2 «Наблюдение влияния природы растворенного вещества на процесс растворения» по предложенному алгоритму, формулируют вывод.

Формулируют выводы: Природа растворяемого вещества влияет на процесс растворения. Растворимость вещества зависит от природы самого вещества.

Учащиеся, соблюдая правила техники безопасности, выполняют мини-исследование №3 «Наблюдение влияния природы растворителя на процесс растворения веществ» по предложенному алгоритму, формулируют вывод.

Формулируют выводы: Природа растворителя влияет на процесс растворителя. Растворимость вещества зависит от природы самого вещества.

Учащиеся, соблюдая правила техники безопасности, выполняют мини-исследование №4 «Наблюдение влияния температуры на растворимость веществ.».по предложенному алгоритму, формулируют вывод.

Формулируют выводы: С увеличением температуры растворимость вещества увеличивается. Возможно построение модели растворимости в зависимости от температуры.

Проектные задания

«Мозговой штурм»

Алгоритм мини-исследования №2

Приложение 2

Оборудование и реактивы: пронумерованные пробирки с веществами: №1 Хлорид кальция №2 гидроксид кальция №3 карбонат кальция, вода.

Алгоритм мини-исследования №3

Приложение 3

Оборудование и реактивы:

Две пронуме-рованные пробирки №1 и №2 с несколькими кристаллами йода, спирт, вода.

Алгоритм мини-исследования №4

Приложение 4

Созданы промежуточные продукты: схема – модель процесса растворения.

Сформулированы факторы, влияющие на растворимость веществ:

  • природа растворенного вещества
  • природа растворителя
  • температура

Концептуализация и моделирование – создание образа объекта

проектирования.

Организует действия учащихся по созданию образа проектного продукта.

Консультирует учащихся по созданию проектного продукта.

Учащиеся в группах обсуждают, каким будет итоговой модуль, аргументируют свою точку зрения, выслушивают учеников своей группы, участвуют в обсуждении макета. .

Мозговой штурм

Создан образ (модель) проектного продукта – ментальной карты «Растворимость веществ»

Организует работу по распределению блоков внутри группы, организует работу по заполнению табеля учета работы над проектом

Выбирают блок для заполнения, договариваются друг с другом, предлагают взаимопомощь в распределении и оформлении блоков. Оценивают свою собственную работу и работу одноклассников

Табель учета работы над проектом

Распределены все блоки внутри каждой группы, оценена работа за урок.

Д/з: изучить параграф 34, выполнить задания в рабочей тетради. Подобрать иллюстрации для блоков к ментальной карте, иллюстрирующих классификацию и применение растворов.

2-й урок (этап реализации): решение конкретно-практических задач.

Создание проектного продукта.

Разработка критериальной базы

Организует работу по созданию критериев проекта

Предлагают варианты критериев оценки проектного продукта:

  1. Достоверность найденной информации.
  2. Эстетичность оформления
  3. Структурность оформления материала.
  4. Логичность оформления информации.
  5. Наглядность представленной информации.

За каждый критерий от 0 до 3 баллов:

  • 3 балла - критерий полностью представлен
  • 2 балла – не достаточно представлен
  • 1 балл – представлен частично
  • 0 баллов – критерий отсутствует

Оценка «5» - 15-14 баллов

Оценка «4» - 13-11 баллов

Оценка «3»- 10-7 баллов

Оценка «2» -менее 7 баллов

Прием «Дерево мнений»

Разработаны критерии оценки проекта

Решение конкретно-практических задач и создание образовательных продуктов (создание проектного продукта)

Создает условия для реализации проектного продукта.

Организуется выполнение проектного задания, рассматривается требования к составлению ментальной карты, требования к структурированию найденной информации

Каждая группа получает проектное задание и алгоритм его выполнения, Осуществляет консультационную помощь в создании проектного продукта.

Учащиеся в соответствии с распределенными обязанностями определяют образ конкретно-практической задачи.

Это будет ментальная карта, на которой будет структурирована информация по теме «Растворимость веществ. Растворы». В центре будет обозначена тема. Вокруг расположены 4 блока. Информация должна быть представлена в виде схем, рисунков, ассоциаций. Учащиеся распределяют обязанности в группе:

1 ученик: ответственный за блок №1, командир группы

2 ученик: ответственный за блок №2, отслеживание время;

3 ученик: ответственный за блок №3,

4 ученик: ответственный за блок №4

5 ученик: общее оформление работы, ответственный за оценивание выполненной работы.

Выполнение заданий совместно, но под контролем ответственного:

  1. Выделите основное, то что хотите включить в блок.
  2. Предложите разные варианты оформления, выберите самый подходящий.
  3. Визуально оформите информацию в виде логической схемы, дополните рисунками.
  4. Представьте полученный результат работы группы всему классу.При необходимо учащиеся набирают соответствующие понятия на компьютере, распечатывают и размещают на листочках.

Бумага, фломастеры, ножницы, принтер

Выполнены проектные задания.

Создан проектный полупродукт.

Д/з: повторить параграф 34. Доработать созданный проектный полупродукт, подготовить выступление от группы.

3-й урок «Презентация полученного проектного продукта.

Оценка качества продукта и рефлексия действий в проекте его создателей.

Презентация полученного проектного продукта.

Создает условия для презентации проектного продукта

Презентуют созданные проектные продукты - ментальную карту, собранную из 4-х блоков.

Демонстрация карты «Раствори-мость. Растворенные вещества».

Оценка качества проектного продукта и рефлексия действий в проекте его создателей.

Организует обобщение знаний и выполненных действий. Предлагает соотнести задачи и результаты создания проекта, оценить правильность выбора метода проекта.

Обобщает полученные знания, выполненные действия.

Использует критерии для оценки результатов.

Оценивает полученные знания и освоенные действия в соответствии с критериями.

Осуществляет контроль знаний по теме «Растворение. Растворимость веществ».

Группы выходят защищать свой продукт.

Оценивают свою работу в группе по реализации проектной деятельности, работу одноклассников; а также оценивают проекты.

Оспаривают или соглашаются с оценкой своих работ. Анализируют допущенные недочеты.

Вносят предложения в алгоритм выполнения однотипных заданий.

Оценивают проектную деятельность в соответствии с критериями оценочного листа.

Оценочный лист проектной деятельности.

Приложение №5

Оценочный лист проектного продукта

Приложение №6

Задание «Вставь пропущенное слово» по вариантам.

Выставлены оценки. Указаны ошибки.

Проведена рефлексия.

Контроль знаний.

Д/з: выполнить задания учебника с.192. Подготовить сообщения про растворы, используемые в медицине – 1 ряд, в с/х – 2 ряд, в быту – 3 ряд.

Описание промежуточных проектных продуктов и описание используемых урочных домашних заданий (дидактическое обеспечение проектного модуля).

На первом уроке учитель проверяет уровень усвоения ранее изученной темы, предлагает устно выполнить задание на актуализацию знаний - Просмотр в режиме «без звука» флеш - ролика «Признаки химических реакций», Материал Единой коллекции ЦОР

По итогам работы на первом уроке учащиеся получают промежуточные продукты: отчеты по мини-исследованиям№1«Наблюдение процессов растворения перманганата калия, концентрированной серной кислоты и безводного сульфата меди»», №2 Наблюдение влияния природы растворенного вещества на процесс растворения», №3 «Наблюдение влияния природы растворителя на процесс растворения», №4 «Наблюдение влияния температуры на процесс растворения»

На дом учащиеся получают следующее задание: изучить параграф 34, выполнить задание в рабочей тетради часть I тема 34 с помощью интернет - источника подобрать иллюстрации по темам «Значение и применение растворов», «Классификация растворов».

На втором уроке учащиеся разрабатывают проектный продукт в соответствии с проектными заданиями. К концу урока каждая группа оформляет ментальную карту. После второго урока учащиеся получают домашнее задание: доработать проектный полупродукт и подготовить по нему мини-выступление, включая подготовку к проекту и его реализацию.

После третьего урока учащиеся получают домашнее задание: подготовить сообщение про применение растворов в быту, с/х или медицине.

В повседневной жизни люди редко сталкиваются с Большинство предметов представляют собой смеси веществ.

Раствор - это в которой компоненты равномерно смешались. Есть несколько их видов по размеру частиц: грубодисперсные системы, молекулярные растворы и коллоидные системы, которые часто называют золи. В этой статье речь идет о молекулярных (или Растворимость веществ в воде - одно из главных условий, влияющих на образование соединений.

Растворимость веществ: что это и зачем нужно

Чтобы разобраться в этой теме, нужно знать, и растворимость веществ. Простым языком, это способность вещества соединяться с другим и образовывать однородную смесь. Если подходить с научной точки зрения, можно рассмотреть более сложное определение. Растворимость веществ - это их способность образовывать с одним или более веществами гомогенные (или гетерогенные) составы с дисперсным распределением компонентов. Существует несколько классов веществ и соединений:

  • растворимые;
  • малорастворимые;
  • нерастворимые.

О чем говорит мера растворимости вещества

Содержание вещества в насыщенной смеси - это мера его растворимости. Как сказано выше, у всех веществ она разная. Растворимые - это те, которые могут развести более 10 г себя на 100 г воды. Вторая категория - менее 1 г при тех же условиях. Практически нерастворимые - это те, в смесь которых переходит менее 0,01 г компонента. В этом случае вещество не может передавать воде свои молекулы.

Что такое коэффициент растворимости

Коэффициент растворимости (k) - это показатель, максимальной массы вещества (г), которая может развестись в 100 г воды или другого вещества.

Растворители

В данном процессе участвуют растворитель и растворенное вещество. Первый отличается тем, что изначально он пребывает в таком же агрегатном состоянии, что и конечная смесь. Как правило, он взят в большем количестве.

Однако многие знают, что в химии вода занимает особое место. Для нее существуют отдельные правила. Раствор, в котором присутствует H 2 O называется водным. Когда говорится о них, жидкость является экстрагентом и тогда, когда она в меньшем количестве. В пример можно привести 80%-ный раствор азотной кислоты в воде. Пропорции здесь не равны Хоть доля воды меньше, чем кислоты, вещество называть 20%-ным раствором воды в азотной кислоте некорректно.

Существуют смеси, в которых отсутствует H 2 O. Они будут носить имя неводная. Подобные растворы электролита представляют собой ионные проводники. Они содержащие один или смеси экстрагентов. В их состав входят ионы и молекулы. Они используются в таких отраслях, как медицина, производство бытовой химии, косметики и в другие направления. Они могут сочетать в себе несколько нужных веществ с различной растворимостью. Компоненты многих средств, которые применяются наружно, являются гидрофобными. Иными словами, они плохо взаимодействуют с водой. В таких могут быть летучими, нелетучими и комбинированными. Органические вещества в первом случае хорошо растворяют жиры. К летучим относятся спирты, углеводороды, альдегиды и другие. Они часто входят в состав бытовой химии. Нелетучие чаще всего применяются для изготовления мазей. Это жирные масла, жидкий парафин, глицерин и прочие. Комбинированные - это смесь летучих и нелетучих, например, этанол с глицерином, глицерин с димексидом. Также они могут содержать воду.

Виды растворов по степени насыщенности

Насыщенный раствор - это смесь химических веществ, содержащая максимальную концентрацию одного вещества в растворителе при определенной температуре. Дальше оно разводиться не будет. В препарате твёрдого вещества заметно выпадение осадка, который находится в динамическом равновесии с ним. Под этим понятием подразумевается состояние, сохраняющееся во времени вследствие его протекания одновременно в двух противоположных направлениях (прямая и обратная реакции) с одинаковой скоростью.

Если вещество при постоянной температуре все еще может разлагаться, то этот раствор - ненасыщенный. Они устойчивы. Но если в них продолжать добавлять вещество, то оно будет разводиться в воде (или другой жидкости), пока не достигнет максимальной концентрации.

Еще один вид - перенасыщенный. В нем содержится больше растворенного вещества, чем может быть при постоянной температуре. Из-за того, что они находятся в неустойчивом равновесии, при физическом воздействии на них происходит кристаллизация.

Как отличить насыщенный раствор от ненасыщенного?

Это сделать достаточно просто. Если вещество - твердое, то в насыщенном растворе можно увидеть осадок. При этом экстрагент может загустевать, как, например, в насыщенном составе вода, в которую добавили сахар.
Но если изменить условия, повысить температуру, то он перестанет считаться насыщенным, так как при более высокой температуре максимальная концентрация этого вещества будет другой.

Теории взаимодействия компонентов растворов

Существует три теории относительно взаимодействия элементов в смеси: физическая, химическая и современная. Авторы первой - Сванте Август Аррениус и Вильгельм Фридрих Оствальд. Они предположили, что вследствие диффузии частицы растворителя и растворённого вещества равномерно распределились по всему объему смеси, но взаимодействия между ними нет. Химическая теория, которую выдвинул Дмитрий Иванович Менделеев, ей противоположна. Согласно ей, в результате химического взаимодействия между ними формируются неустойчивые соединения постоянного или переменного состава, которые называются сольваты.

В настоящее время используется объединенная теория Владимира Александровича Кистяковского и Ивана Алексеевича Каблукова. Она совмещает физическую и химическую. Современная теория гласит, что в растворе существуют как не взаимодействующие частицы веществ, так и продукты их взаимодействия - сольваты, существование которых доказывал Менделеев. В случае, когда экстрагент - вода, их называют гидратами. Явление, при котором образуются сольваты (гидраты) носит имя сольватация (гидратация). Она воздействует на все физико-химические процессы и меняет свойства молекул в смеси. Сольватация происходит благодаря тому, что сольватная оболочка, состоящая из тесно связанных с ней молекул экстрагента, окружает молекулу растворенного вещества.

Факторы, влияющие на растворимость веществ

Химический состав веществ. Правило "подобное притягивает подобное" распространяется и на реагенты. Схожие по физическим и химическим свойствам вещества могут взаимно растворяться быстрее. Например, неполярные соединения хорошо взаимодействуют с неполярными. Вещества с полярными молекулами или ионным строением разводятся в полярных, например, в воде. В ней разлагаются соли, щёлочи и другие компоненты, а неполярные - наоборот. Можно привести простой пример. Для приготовления насыщенного раствора сахара в воде потребуется большее количество вещества, чем в случае с солью. Как это понимать? Проще говоря, вы можете развести гораздо больше сахара в воде, чем соли.

Температура. Чтобы увеличить растворимость твердых веществ в жидкостях, нужно увеличить температуру экстрагента (работает в большинстве случаев). Можно продемонстрировать такой пример. Если положить щепотку хлорида натрия (соль) в холодную воду, то данный процесс займет много времени. Если проделать то же самое с горячей средой, то растворение будет проходить гораздо быстрее. Это объясняется тем, что вследствие повышения температуры возрастает кинетическая энергия, значительное количество которой часто тратится на разрушение связей между молекулами и ионами твёрдого вещества. Однако, когда повышается температура в случае с солями лития, магния, алюминия и щелочами, их растворимость понижается.

Давление. Этот фактор влияет только на газы. Их растворимость увеличивается при повышении давления. Ведь объём газов сокращается.

Изменение скорости растворения

Не стоит путать этот показатель с растворимостью. Ведь на изменение этих двух показателей влияют разные факторы.

Степень раздробленности растворяемого вещества. Этот фактор влияет на растворимость твердых веществ в жидкостях. В цельном (кусковом) состоянии состав разводится дольше, чем тот, который разбит на мелкие куски. Приведем пример. Цельный кусок соли будет растворяться в воде намного дольше, чем соль в виде песка.

Скорость помешивания. Как известно, этот процесс можно катализировать с помощью помешивания. Его скорость также важна, потому что чем она больше, тем быстрее растворится вещество в жидкости.

Для чего нужно знать растворимость твердых веществ в воде?

Прежде всего, подобные схемы нужны, чтобы правильно решать химические уравнения. В таблице растворимости есть заряды всех веществ. Их необходимо знать для правильной записи реагентов и составления уравнения химической реакции. Растворимость в воде показывает, может ли соль или основание диссоциировать. Водные соединения, которые проводят ток, имеют в своем составе сильные электролиты. Есть и другой тип. Те, которые плохо проводят ток, считаются слабыми электролитами. В первом случае компоненты представляют собой вещества, полностью ионизованные в воде. Тогда как слабые электролиты проявляют этот показатель лишь в небольшой степени.

Уравнения химической реакции

Есть несколько видов уравнений: молекулярный, полный ионный и краткий ионный. По сути последний вариант - сокращённая форма молекулярного. Это окончательный ответ. В полном уравнении записаны реагенты и продукты реакции. Теперь наступает очередь таблицы растворимости веществ. Для начала надо проверить, является ли реакция осуществимой, то есть выполняется ли одно из условий проведения реакции. Их всего 3: образование воды, выделение газа, выпадение осадка. Если два первых условия не соблюдаются, нужно проверить последнее. Для этого нужно посмотреть в таблицу растворимости и выяснить, есть ли в продуктах реакции нерастворимая соль или основание. Если оно есть, то это и будет осадок. Далее таблица потребуется для записи ионного уравнения. Так как все растворимые соли и основания - сильные электролиты, то они будут распадаться на катионы и анионы. Далее сокращаются несвязанные ионы, и уравнение записывается в кратком виде. Пример:

  1. K 2 SO 4 +BaCl 2 =BaSO 4 ↓+2HCl,
  2. 2K+2SO 4 +Ba+2Cl=BaSO 4 ↓+2K+2Cl,
  3. Ba+SO4=BaSO 4 ↓.

Таким образом, таблица растворимости веществ - одно из ключевых условий решения ионных уравнений.

Подробная таблица помогает узнать, сколько компонента нужно взять для приготовления насыщенной смеси.

Таблица растворимости

Так выглядит привычная неполная таблица. Важно, что здесь указывается температура воды, так как она является одним из факторов, о которых мы уже говорили выше.

Как пользоваться таблицей растворимости веществ?

Таблица растворимости веществ в воде - один из главных помощников химика. Она показывает, как различные вещества и соединения взаимодействуют с водой. Растворимость твердых веществ в жидкости - это показатель, без которого многие химические манипуляции невозможны.

Таблица очень проста в использовании. В первой строке написаны катионы (положительно заряженные частицы), во второй - анионы (отрицательно заряженные частицы). Большую часть таблицы занимает сетка с определенными символами в каждой ячейке. Это буквы "Р", "М", "Н" и знаки "-" и "?".

  • "Р" - соединение растворяется;
  • "М" - мало растворяется;
  • "Н" - не растворяется;
  • "-" - соединения не существует;
  • "?" - сведения о существовании соединения отсутствуют.

В этой таблице есть одна пустая ячейка - это вода.

Простой пример

Теперь о том, как работать с таким материалом. Допустим, нужно узнать растворима ли в воде соль - MgSo 4 (сульфат магния). Для этого необходимо найти столбик Mg 2+ и спускаться по нему до строки SO 4 2- . На их пересечении стоит буква Р, значит соединение растворимо.

Заключение

Итак, мы изучили вопрос растворимости веществ в воде и не только. Без сомнений, эти знания пригодятся при дальнейшем изучении химии. Ведь растворимость веществ играет там важную роль. Она пригодится при решении и химических уравнений, и разнообразных задач.

Растворимость (Р, χ или k s ) – это характеристика насыщенного раствора, которая показывает, какая масса растворенного вещества может максимально раствориться в 100 г растворителя. Размерность растворимости — г/ 100 г воды . Поскольку мы определяем массу соли, которая приходится на 100 г воды, в формулу растворимости добавляем множитель 100:

здесь m р.в . – масса растворенного вещества, г

m р-ля – масса растворителя, г

Иногда используют обозначение коэффициент растворимости k S .

Задачи на растворимость, как правило, вызывают сложности, так как эта физическая величина для школьников не очень привычна.

Растворимость веществ в различных растворителях меняется в широких пределах.

В таблтце приведена растворимость некоторых веществ в воде при 20 o С:

Вещество

Вещество

Растворимость, г на 100 г H 2 O

NH 4 NO 3

H 3 BO 3

NaCl

CaCO 3

0,0006

NaHCO 3

0,0000002

От чего же зависит растворимость веществ? От ряда факторов: от природы растворенного вещества и растворителя, от температуры и давления. В справочных таблицах предлагается вещества делят на хорошо растворимые, малорастворимые и нерастворимые. Такое деление очень условное, поскольку абсолютно нерастворимых веществ нет. Даже серебро и золото растворимы в воде, однако их растворимость настолько мала, что можно пернебречь ей.

Зависимость растворимости от природы растворенного вещества и растворителя*

Растворимость твердых веществ в жидкостях зависит от структуры твердого вещества (от типа кристаллической решетки твердого вещества). Например , вещества с металлическими кристаллическими решетками (железо, медь и др.) очень мало растворимы в воде. Вещества с ионной кристаллической решеткой, как правило, хорошо растворимы в воде.

Есть замечательное правило: “подобное хорошо растворяется в подобном ”. Вещества с ионным или полярным типом связи хорошо растворяются в полярных растворителях. Например , соли хорошо растворимы в воде. В то же время неполярные вещества, как правило, хорошо растворяются в неполярных растворителях.

Большинство солей щелочных металлов и аммония хорошо растворимы в воде. Хорошо растворимы почти все нитраты, нитриты и многие галогениды (кроме галогенидов серебра, ртути, свинца и таллия) и сульфаты (кроме сульфатов щелочноземельных металлов, серебра и свинца). Для переходных металлов характерна небольшая растворимость их сульфидов, фосфатов, карбонатов и некоторых других солей.

Растворимость газов в жидкостях также зависит от их природы. Например, в 100 объемах воды при 20 o С растворяется 2 объема водорода, 3 объема кислорода. В тех же условиях в 1 объеме Н 2 О растворяется 700 объемов аммиака.

Влияние температуры на растворимость газов, твердых веществ и жидкостей*

Растворение газов в воде вследствие гидратации молекул растворяемого газа сопровождается выделением теплоты. Поэтому при повышении температуры растворимость газов понижается.

Температура различным образом влияет на растворимость твердых веществ в воде. В большинстве случаев растворимость твердых веществ возрастает с повышением температуры . Например , растворимость нитрата натрия NaNO 3 и нитрата калия КNO 3 при нагревании увеличивается (процесс растворения протекает с поглощением теплоты). Растворимость NaCl при увеличении температуры возрастает незначительно, что связано с почти нулевым тепловым эффектом растворения поваренной соли.

Влияние давления на растворимость газов, твердых веществ и жидкостей*

На растворимость твердых и жидких веществ в жидкостях давление практически не оказывает влияния, так как изменение объема при растворении невелико. При растворении газообразных веществ в жидкости происходит уменьшение объема системы, поэтому повышение давления приводит к увеличению растворимости газов. В общем виде зависимость растворимости газов от давления подчиняется закону У. Генри (Англия, 1803 г.): растворимость газа при постоянной температуре прямо пропорциональна его давлению над жидкостью .

Закон Генри справедлив лишь при небольших давлениях для газов, растворимость которых сравнительно невелика и при условии отсутствия химического взаимодействия между молекулами растворяемого газа и растворителем.

Влияние посторонних веществ на растворимость*

В присутствии в воде других веществ (солей, кислот и щелочей) растворимость газов уменьшается. Растворимость газообразного хлора в насыщенном водном растворе поваренной соли в 10 раз меньше. Чем в чистой воде.

Эффект понижения растворимости в присутствии солей называется высаливанием . Понижение растворимости обусловлено гидратацией солей, что вызывает уменьшение числа свободных молекул воды. Молекулы воды, связанные с ионами электролита, уже не являются растворителем для других веществ.

Примеры задач на растворимость

Задача 1. Массовая доля вещества в насыщенном растворе равна 24% при некоторой температуре. Определите коэффициент растворимости этого вещества при данной температуре.

Решение:

Для определения растворимости вещества примем массу раствора равной 100 г. Тогда масса соли равна:

m р.в. = m р-ра ⋅ω р.в. = 100⋅0,24 = 24 г

Масса воды равна:

m воды = m р-ра – m р.в. = 100 — 24 = 76 г

Определяем растворимость:

χ = m р.в. /m р-ля ⋅100 = 24/76⋅100 = 31,6 г вещества на 100 г воды.

Ответ: χ = 31,6 г

Еще несколько аналогичных задач:

2. Массовая доля соли в насыщенном растворе при некоторой температуре равна 28,5%. Определите коэффициент растворимости вещества при этой температуре.

3. Определите коэффициент растворимости нитрата калия при некоторой температуре, если массовая доля соли при этой температуре равна 0,48.

4. Какая масса воды и соли потребуется для приготовления 500г насыщенного при некоторой температуре раствора нитрата калия, если его коэффициент растворимости при этой температуре равен 63,9г соли в 100г воды?

Ответ: 194,95 г

5. Коэффициент растворимости хлорида натрия при некоторой температуре составляет 36г соли в 100г воды. Определите молярную концентрацию насыщенного раствора этой соли, если плотность раствора 1,2 г/мл.

Ответ: 5,49М

6. Какая масса соли и 5% раствора её потребуется для приготовления 450г насыщенного при некоторой температуре раствора сульфата калия, если его коэффициент растворимости при этой температуре равен 439г/1000г воды?

7. Какая масса нитрата бария выделится из раствора, насыщенного при100ºС и охлаждённого до 0ºС, если во взятом растворе было 150мл воды? Коэффициент растворимости нитрата бария при температурах 0ºС и 100ºС равен соответственно 50г и 342г в 100г воды.

8. Коэффициент растворимости хлорида калия при 90ºС равен 500г/л воды. Сколько граммов этого вещества можно растворить в 500г воды при 90ºС и какова его массовая доля в насыщенном растворе при этой температуре?

9. В 500г воды растворено при нагревании 300г хлорида аммония. Какая масса хлорида аммония выделится из раствора при его охлаждении до 50ºС, если коэффициент растворимости соли при этой температуре равен 50г/л воды?

* Материалы портала onx.distant.ru

Познакомимся сначала с процессом растворения в воде твердых веществ, для чего обратимся опять к нашему стакану воды и посмотрим, что будет происходить, если мы всыплем в него ложку поваренной соли.

Находящиеся в непрерывном движении молекулы воды при столкновении с кристалликами соли будут как бы срывать с их поверхности отдельные молекулы соли, которые, попав в воду, начнут беспорядочное движение, подобно молекулам воды.

При этом, однако, они будут стремиться распределиться равномерно во всем объеме воды. Это свойство веществ называется диффузией, и, поскольку оно тесно связано с процессом растворения, необходимо остановиться на нем несколько подробнее.

Диффузией называют свойство вещества распространяться в какой-либо среде, т. е. стремление его проникнуть оттуда, где оно есть, туда, где его нет, причем этот процесс происходит исключительно за счет теплового беспорядочного движения молекул среды.

Представим себе, что непосредственно около дна стакана образовался некий слой воды, содержащий молекулы хлористого натрия.

Обозначим их условно точками, как это изображено на рис. 9, при этом этих молекул будет, естественно, особенно много непосредственно около поверхности кристаллов соли, далее, по мере удаления вверх, их число должно быть меньше.

Как же себя будут вести эти молекулы соли? Ведь, как мы уже знаем, их движение, обусловленное беспорядочным движением молекул воды, будет таким же беспорядочным и, следовательно, они будут продвигаться в воде в самых различных направлениях - иногда вниз, иногда вверх, а иногда в сторону или наискось.

Однако, как это ни может показаться на первый взгляд странным, несмотря на совершенно беспорядочное движение молекул соли, будет происходить постепенное закономерное движение их вверх из мест с более высокой их концентрацией в места с более низкой концентрацией, пока, наконец, молекулы соли не распространятся равномерно во всем объеме находящейся в стакане воды.

Для объяснения причины этого как будто неожиданного процесса, носящего название диффузии, рассмотрим, что будет происходить с молекулами соли на границе условно взятого в стакане сечения а-а (рис. 9).

Процесс диффузии не связан с какой-либо силой, которая якобы заставляет молекулы соли передвигаться вверх, т. е. в область с меньшей их концентрацией в воде.

Каждая молекула соли ведет себя независимо от других молекул соли, с которыми она встречается очень редко.

Каждая молекула соли, где бы она ни находилась -ниже сечения а-а или выше его, испытывает непрерывные толчки со стороны молекул воды, в результате которых она может продвигаться вниз от этого сечения или вверх от него.

Но тут вступает в силу теория вероятностей и ее основной закон больших чисел, широко применяемый в настоящее время естественными науками (и в первую очередь физикой и химией) при изучении свойств тел, состоящих из огромного числа отдельных частиц (молекул, атомов, ионов и др.).

Точность статистического закона больших чисел повышается по мере увеличения количества участвующих в данном явлении частиц и, наоборот, снижается с их уменьшением, вплоть до того, что при некотором их числе этот закон становится неприменимым и мы переходим в область чистой случайности.

Для пояснения этого положения можно прибегнуть к простому общедоступному опыту. Возьмем два одинаковых по размеру, но разных по окраске шарика: белый и черный.

Положим их в какую-нибудь урну или просто в шапку и будем последовательно вынимать один из этих шариков, каждый раз возвращая обратно вынутый шарик.

Поскольку шарики одинакового размера, по-видимому, имеется одинаковая возможность для каждого из них быть вынутым из урны. Но эта одинаковая возможность будет выявляться все в большей степени по мере увеличения числа опытов.

Если мы проведем два-три или даже пять опытов, то возможно, что 2-3 или даже 5 раз будет вынут только белый или только черный шарик.

Но для ста опытов такая вероятность становится невозможной, количество вынутых белых и черных шариков будет приближаться к пятидесяти.

При этом закон вероятности утверждает, что неточность, с какой мы можем определить среднее число случаев, в которых наступает данное явление, равно корню квадратному из количества этих случаев.

Вернемся теперь к нашему стакану с водой и растворенными в ней молекулами соли. Согласно теории вероятности возможности продвижения молекул соли вниз или вверх от сечения а-а будут одинаковы в силу того, что каждую молекулу соли окружает огромное количество молекул воды, от которых она испытывает колоссальное число толчков как вверх, так и вниз.

Но если все молекулы соли, находящиеся в стакане воды около сечения а-а, будут с одинаковой вероятностью перемещаться как вверх, так и вниз от этого сечения, то именно поэтому молекулы соли чаще будут пересекать сечение а-а снизу вверх, чем сверху вниз, поскольку ниже этого сечения концентрация молекул соли больше, чем над ним.

Такое преимущественное перемещение вверх молекул соли будет происходить до тех пор, пока не наступит равномерное распределение их во всем объеме воды.

Одновременно с процессом растворения соли происходит обратный процесс ее кристаллизации, так как в результате беспорядочного движения молекул соли некоторые из них, находящиеся вблизи поверхности кристаллов соли, при столкновении с нею могут задержаться на ней, восстанавливая, таким образом, частично разрушенный в результате процесса растворения кристалл.

Очевидно, что такая возможность обратного процесса будет возрастать по мере возрастания концентрации раствора.

Но по мере того как мы будем всыпать в наш стакан еще порции поваренной соли, наступит момент, когда растворение ее как бы прекратится, т. е. когда скорость обоих процессов (растворения и кристаллизации) выравняется, при этом в единицу времени будет столько же молекул переходить в раствор, сколько их выделится на кристаллах соли. Растворы, имеющие такую предельную концентрацию растворенного вещества, называют насыщенными растворами.

При достижении такого состояния в нашем стакане наступит так называемое динамическое равновесие между твердой солью и ее насыщенным раствором в воде, в результате которого нам будет казаться, что процесс растворения прекратился.

Чтобы убедиться в том, что в насыщенных водных растворах не прекращаются процессы растворения твердого вещества в воде и обратного его выделения из воды, достаточно провести следующий опыт.

После получения в нашем стакане насыщенного раствора хлористого натрия добавим в него некоторое количество кристаллов этой соли, содержащих радиоактивный натрий.

Тогда уже через несколько минут мы обнаружим с помощью специального счетчика (Гейгера-Мюллера), что в растворе появились радиоактивные атомы натрия, причем количество их будет постепенно нарастать, достигнув через несколько десятков минут наибольшего значения.

Этот опыт убедительно показывает, что в насыщенном растворе все время идет обновление кристаллов, т. е. переход молекул хлористого натрия с поверхности кристалла в насыщенный раствор и переход на их место молекул соли из раствора.

Процесс диффузии в растворах протекает относительно медленно, вследствие чего слой воды, непосредственно прилегающий к кристаллам соли, быстро становится насыщенным, после чего дальнейшее растворение происходит только по мере того, как из этого слоя диффундируют вверх растворенные молекулы соли.

Таким образом, процесс растворения соли быстро спадает и протекает так же медленно, как и диффузия растворенных молекул соли.

Поэтому для ускорения растворения прибегают к искусственному ускорению диффузии путем перемешивания раствора.

Растворение газов в воде происходит в основном аналогично растворению твердого тела, с тем лишь отличием, что проникновение в воду молекул твердого тела происходит путем отрыва их молекулами воды от кристаллов соли, находящихся в воде, а попадание в воду молекул газообразного вещества осуществляется в результате их беспорядочного движения над поверхностью воды, в результате чего некоторые из них попадают непосредственно на поверхность воды и, подвергаясь действию притягательных сил молекул воды, втягиваются внутрь.

Это втягивание молекул газа внутрь воды и является одним из существенных моментов процесса растворения газов в воде.

Дальнейшая судьба попавших в глубь воды молекул газа аналогична поведению растворенный молекул соли, которые, испытывая различные столкновения с окружающими их молекулами воды, совершают также беспорядочные движения.

Некоторые молекулы газа в результате этого движения между молекулами воды могут вновь очутиться на ее поверхности.

При благоприятном толчке этой молекулы по направлению к поверхности воды она может даже улететь из воды, или, очутившись на поверхности воды, эта молекула газа может освободиться в результате удачного толчка, который она получит от какой-либо подлетевшей другой молекулы газа, в противном случае эта молекула газа вновь будет втянута в глубь воды.

Таким образом, если мы имеем воду и находящийся над ней какой-либо газ, например кислород, то будут происходить одновременно два противоположных процесса: проникновение молекул кислорода в воду, т. е. его растворение в воде, и обратный процесс - вылетание молекул кислорода из воды.

По мере того как количество растворенных в воде молекул кислорода будет возрастать, будет соответственно увеличиваться возможность для некоторых из них вырваться из воды.

Наконец наступит момент, когда количество попадающих в воду молекул кислорода станет равным числу уходящих из воды молекул кислорода.

Следовательно, наступит аналогично системе кристаллы соли - насыщенный раствор так называемое динамическое равновесие, при котором процесс растворения кислорода в воде хотя и будет продолжаться, но количество молекул газа в воде будет неизменным.

Однако имеется и существенное отличие между системой кристаллы соли - насыщенный раствор ее в воде и системой газ - раствор газа в воде.

Дело в том, что максимальное количество молекул газа в нашем случае - кислорода, которое может быть растворено в воде, будет тем больше, чем больше этих молекул будет находиться над поверхностью воды и, следовательно, чем больше будет создаваться благоприятных столкновений молекул газа с водой и проникновение их в глубь ее.

В самом деле, вернемся к нашей системе кислород - раствор кислорода в воде, когда в ней наступило динамическое равновесие.

Что произойдет, если мы каким-либо путем увеличим количество находящегося над раствором кислорода, т. е. если мы увеличим количество молекул кислорода в единице объема пространства, находящегося над раствором?

Тогда количество молекул кислорода, попадающих в раствор, увеличится, в то время как количество молекул, вылетающих из него, остается пока еще тем же.

Следовательно, динамическое равновесие нарушится и начнется дальнейшее растворение молекул кислорода, пока в результате увеличения их в воде не наступит новое динамическое равновесие, которое будет отличаться от первого тем, что количество растворенных в воде молекул кислорода увеличится.

Итак, мы установили связь между количеством кислорода в единице объема над раствором и растворимостью кислорода в воде.

Но согласно молекулярно-кинетической теории давление газа, производимое им на стенки сосуда, в котором он находится, прямо пропорционально числу молекул в единице объема, т. е. чем больше молекул газа в единице объема, тем чаще эти молекулы будут ударяться о стенки сосуда, и, следовательно, тем большее давление они будут испытывать.

Отсюда можно сказать, что растворимость газа прямо пропорциональна его давлению. Эта связь между давлением газа и его растворимостью называется законом Генри-Дальтона.

Практически в большинстве случаев мы будем иметь дело не с одним каким-либо газом, а со смесью нескольких газов, и прежде всего с воздухом, представляющим собой смесь азота, кислорода, углекислого газа и др.

Как в этих условиях будет происходить растворение их в воде?

Совершенно очевидно, что вероятность проникновения молекул кислорода в воду будет, как и прежде, тем больше, чем больше этих молекул будет в единице объема пространства над водой, независимо от количества молекул других газов, т. е. опять будет действовать тот же закон Генри-Дальтона.

Но давление смеси газов слагается из давлений отдельных газов, определяемых соответственно числом молекул каждого газа.

При этом доля общего давления такой смеси газов, приходящаяся на отдельный газ, называется его парциальным давлением.

Следовательно, обобщая закон Генри - Дальтона и для смеси газов, можно сказать, что растворимость газов пропорциональна их парциальному давлению.

Познакомимся коротко с вопросом о влиянии на растворимость температуры. Для водных растворов твердых веществ в подавляющем большинстве случаев при повышении температуры растворимость более или менее увеличивается (вещества с положительным коэффициентом растворимости).

Однако некоторые вещества имеют отрицательный коэффициент растворимости, т. е. их растворимость в воде с повышением температуры понижается.

К таким веществам, в частности, относятся: гидрат окиси кальция Са(ОН) 2 и сернокислый кальций CaSО 4 *.

* Начиная с температуры 40° С и выше.

При повышении температуры в системе газ и его раствор в воде будет происходить, как мы уже знаем, увеличение интенсивности движения молекул, т. е. повышение числа быстрых молекул, что в свою очередь будет иметь два следствия.

С одной стороны это будет способствовать увеличению числа молекул газа, проникающих в воду, в то же время будет расти число молекул, могущих вырваться из воды.

В конечном итоге это приведет к понижению растворимости газа. Над водой всегда находится смесь газов, в том числе и некоторое количество паров воды.

При нагревании воды количество паров воды над ней начинает возрастать, за счет чего уменьшается количество остальных газов, а следовательно, уменьшается и их парциальное давление, вследствие чего растворимость остальных газов в воде заметно уменьшается, и тем больше, чем ближе температура воды к точке ее кипения.

При кипении над водой будет, по существу, находиться только один газ - пары воды, и, следовательно, парциальное давление других газов будет близким к нулю. Поэтому при кипении воды все растворенные в ней газы практически полностью удаляются.

Количество растворенного вещества, находящегося в единице объема или веса растворителя, называют концентрацией растворов.

Концентрацию водных растворов выражают обычно количеством граммов растворенного вещества в 1 л воды и обозначают сокращенно г/л, или в 1 м 3 воды - г/м 3 , а для малорастворимых веществ - в миллиграммах растворенного вещества, т. е. мг/л.

Выражают также концентрацию растворов в процентах, чаще в весовых процентах, т. е, указывают, сколько весовых частей безводного вещества растворяется в 100 весовых частях растворителя или сколько весовых частей безводного вещества растворено в 100 весовых частях раствора.

В химии воды имеет распространение удобная мера концентрации веществ, выражаемая количеством граммов или миллиграммов вещества в 1 л раствора, численно равная его эквивалентному весу и сокращенно обозначаемая соответственно г-экв/л или мг-экв/л.

Эта мера концентрации удобна тем, что химические элементы соединяются между собой в эквивалентных количествах.

Растворимостью данного вещества в воде называют предельное количество этого вещества, которое может быть растворено в воде при данных условиях, т. е. когда этот раствор становится насыщенным.

Поэтому растворимость всякого вещества определяется величиной концентрации его насыщенного раствора.