Гелий: свойства, характеристики, применение. Гелий газ. Свойства, добыча, применение и цена гелия Кто обнаружил гелий

Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] Кондрашов Анатолий Павлович

Где впервые обнаружен гелий?

Где впервые обнаружен гелий?

Французский и английский астрономы Жюль Жансен и Джозеф Норман Локьер, наблюдая солнечные протуберанцы, обнаружили в 1868 году в их спектре линию, которую не смогли определить ни по одному из известных тогда элементов. В 1871 году Локьер объяснил происхождение этой спектральной линии присутствием на Солнце неизвестного элемента и назвал его «гелий» (по-гречески «солнце»). Лишь в 1895 году английский физик и химик Уильям Рамзай открыл впервые гелий на Земле. При нагревании радиоактивного минерала клевеита он увидел в спектре выделенного газа ту же спектральную линию.

Из книги Энциклопедический словарь (Г-Д) автора Брокгауз Ф. А.

Из книги Все обо всем. Том 1 автора Ликум Аркадий

Что такое гелий? Открытие гелия похоже на научный детектив! В 1886 году английский ученый сэр Норман Локиер с помощью прибора «спектроскопа» изучал Солнце. Этот прибор позволяет выявлять наличие отдельных элементов, так как каждому химическому элементу соответствует

Из книги Большая Советская Энциклопедия (ГЕ) автора БСЭ

Когда впервые появились книги? Книги в том виде, в каком мы их знаем, появились только в средние века. Папирус, свернутый в трубочки, заменял их. Листы папируса склеивались вместе и свертывались в свитки. Жители Рима называли их «волюмен»: отсюда и пошло английское слово

Из книги Большая Советская Энциклопедия (КО) автора БСЭ

Где впервые начали добывать золото? Золото - такой редкий и драгоценный металл, что вы можете подумать, что добывать его начали лишь недавно. Ничего подобного! Золото - один из древнейших металлов, известных человеку.Мы никогда не узнаем, когда человек впервые нашел его и

Из книги Мифологический словарь автора Арчер Вадим

Когда впервые был испечен хлеб? В каждой стране, в любом уголке мира есть блюдо, которое едят только там. Но есть один продукт, который едят люди независимо от того, где они живут. Это - хлеб.Так получилось потому, что человек понял ценность злаков в своем рационе в самые

Из книги Все обо всем. Том 3 автора Ликум Аркадий

Из книги Все обо всем. Том 4 автора Ликум Аркадий

Из книги Все обо всем. Том 5 автора Ликум Аркадий

Гелиос, Гелий (греч.) - бог солнца, сын титана Гипериона и титаниды Фейи, брат Селены и Эос, отец Фаэтона, колхидского царя Ээта, волшебницы Кирки и Гелиад. Позднее Г. стали отождествлять с Аполлоном, и он стал богом солнечного света, карающим слепотой преступников и

Из книги Справочник грибника автора Онищенко Владимир

Где впервые появились карточный игры? Карточные игры существуют настолько давно, что уже никто не может точно сказать, где они появились впервые. Большинство специалистов считают, что игральные карты пришли к нам из Азии. Существует предание, согласно которому индусы и

Из книги Я познаю мир. Тайны человека автора Сергеев Б. Ф.

Когда впервые появилась мебель? К мебели относятся те предметы, на которых люди сидят, спят или едят. Поэтому та волчья шкура, на которой в своей пещере спал первобытный человек, может называться его мебелью. Когда человек изготовил первый грубый ящик, в котором он хранил

Из книги Кто есть кто в мире открытий и изобретений автора Ситников Виталий Павлович

Где впервые появились апельсины? Существуют данные, что в Китае апельсин был известен по крайней мере 4000 лет назад! Есть два вида плодов апельсинового дерева - сладкий и кислый. Кислый апельсин начали выращивать в Европе первым. Он был известен маврам, которые захватили

Из книги автора

Когда впервые был изготовлен ключ? Древние египтяне были первыми, кто начал пользоваться для запирания дверей чем-то вроде ключа. Двери они запирали на деревянный засов, вставленный в паз. Подвижный деревянный штифт, известный как тумблер, укреплялся сверху паза. Когда

Из книги автора

Где впервые состоялись выборы? Слово «выборы» пришло из латинского языка, где оно тоже означает «делать выбор». На выборах люди чувствовали, что у них есть право выбирать своего руководителя. И так было на протяжении тысячелетий. Древние евреи и греки боролись за это

Из книги автора

Из книги автора

Луи Пастер: враг обнаружен! Многие из тех болезней, которые сегодня мы называем инфекционными, были известны и древним народам. Они обращали на себя внимание тем, что принимали характер массовых заболеваний – эпидемий, отличались тяжелым течением и гибелью

Из книги автора

Где впервые начали добывать золото? Следы первых выработок золота обнаружены в Египте. Египтяне начали добывать золото более 5000 лет назад. У нас также есть сведения, что около 4500 лет назад ассирийцы воевали с соседями, чтобы заполучить золото.Правители Греции и Рима тоже

Всем нам известен гелий – очень легкий газ, благодаря которому воздушные шары и дирижабли поднимаются в воздух. Гелий обладает очень важным преимуществом в отношении безопасности – он не горит и не взрывается подобно водороду. Этот газ также является неотъемлемой частью воздушных смесей для использования в дыхании глубоководными ныряльщиками - в отличие от азота он почти не растворяется в крови или липидах (жировые компоненты) даже в условиях очень высокого давления.

Гелий помогает обходиться без азотного наркоза , при котором нервная система (на 60% состоящая из липидов) пропитывается азотом, в результате чего ныряльщики чувствуют себя так, как будто они выпили одну порцию мартини на глубине 30 метров. Этот газ также помогает избежать появления декомпрессионной болезни или как еще называют кессонной болезни. Это болезненное и опасное состояние, при котором в крови, нервной системе, суставах и под кожей ныряльщика образуются азотные пузырьки, когда давление падает слишком быстро по мере того, как ныряльщик поднимается на поверхность. Смесь из гелия и кислорода (называемая гелиокс) делает голос очень писклявым - это происходит благодаря тому, что через гелий звук проходит намного быстрее, чем через воздух, и именно благодаря такому свойству гелия это забава является любимой шуткой во время праздников, когда гелием надуваются шарики.

Гелий является вторым по легкости химическим элементом, который обладает многими удивительными свойствами . Свое название этот газ получил благодаря тому, что впервые он был обнаружен в световом изображении на солнце (на греческом языке гелиос) до того, как он был обнаружен на Земле. Все газы при достаточном охлаждении конденсируются в жидкое состояние, а гелий среди всех известных веществ имеет самый низкую температуру конденсации (–269°C или –452°F). В отличие от других химических элементов, гелий никогда не замерзает, независимо от того, насколько сильно он охлажден, кроме как в условиях очень высокого давления. Кроме того, жидкая форма гелия, охлажденная до температуры ниже –271°C (–456°F) образует уникальную фазу, которая называется супержидкость – эта супержидкость течет просто идеально, без какого-либо сопротивления (вязкости).

Считается, что гелий на солнце образовался путем ядерного синтеза . Это процесс, при котором ядра водорода, самого легкого элемента, соединяются для образования гелия и при этом высвобождается огромное количество энергии.

На Земле этот газ образуется в основном в результате радиоактивного альфа (a)-распада. Известный новозеландский физик Эрнест Рутерфорд (1871–1937) впервые обнаружил, что альфа-частицы в действительности представляют собой ядра атомов гелия. Именно так образуют гелий радиоактивные элементы, содержащиеся в горной породе, как например, уран или торий, а из них он попадает в воздух.

Ученые могут определить, насколько быстро образуется гелий, как быстро он выходит из горной породы и какое его количество попадает в воздух, а также как много гелия может теряется из воздуха в космос. Они также могут измерить количество гелия в горной породе и в воздухе. На основании этого ученые могут подсчитать максимальный возраст пород и воздуха. Полученные результаты озадачивают тех, кто верит в миллиарды лет. Конечно, все подобные подсчеты основываются на предложениях относительно прошлого, как например предположения относительно начальных условий и постоянных коэффициентов разных процессов. Они никогда не смогут доказать возраст чего-либо. Для этого нужен очевидец, который видел все своими глазами (смотрите Иов 38:4 ).

Гелий в атмосфере

Воздух в основном состоит из азота (78.1%) и кислорода (20.1%). Количество гелия в нем очень мало (0.0005%). Но все равно это очень много гелия, а именно 3.71 миллиардов тонн. Однако, поскольку каждую секунду из коры земли в атмосферу попадает 67 грамм гелия, то для накопления существующего сегодня в атмосфере гелия потребовалось бы около двух миллионов лет , даже если в самом начале его совсем не было.

Эволюционисты верят в то, что наша земля в 2500 раза старше, то есть ей 4.5 миллиарда лет . Конечно же, земля могла быть сотворена с большей частью наблюдаемого гелия, так что два миллиона лет – это максимальный возраст . (Этот возраст мог бы быть намного меньше, как например, 6000 лет.)

Кроме того, следует отметить, что в прошлом образование гелия происходило бы быстрее, чем в настоящем, так как распадались радиоактивные источники. Это еще больше уменьшало бы возрастные рамки Земли.

Единственный способ устранить эту проблему - это предположить, что гелий просто вытекает в космос. Но чтобы это происходило, атомы гелия должны перемещаться достаточно быстро для того, чтобы избегать притяжения Земли (то есть, со скоростью выше скорости убегания ). Столкновения между атомами замедляют их движение, но над уровнем критической высоты (экзобаза ), составляющей примерно 500 километров над землей, столкновения происходят очень редко. Атомы, которые пересекают эту высоту имеют шанс на то, чтобы убежать, если они перемещаются достаточно быстро - по меньшей мере, 10.75 километров в секунду. Обратите внимание, что хотя гелий в шарике будет плыть, в открытом состоянии он просто равномерно смешается со всеми другими газами, что свойственно для всех нормальных газов.

Среднюю скорость атомов можно подсчитать, если знать температуру, поскольку она имеет прямое отношение к средней энергии атомов или молекул. Известный физик (и креационист) Джеймс Клерк Максвелл подсчитал, сколько атомов газа (или молекул) имели бы заданную скорость при любой температуре и массе. Таким образом мы можем вычислить, сколько атомов пересекло бы довольно быстро экзобазу для того, чтобы выбежать в космос.

Экзобаза очень горячая. Но даже если допустить температуру 1500 K (1227°C или 2241°F), которая выше средней температуры, наиболее распространенная скорость атомов гелия составляет всего лишь 2.5 километров в секунду (5625 м/ч), или меньше чем четвертая часть скорости вытекания. Лишь немногие атомы передвигаются быстрее, чем со средней скоростью, и все равно количество гелия, который вытекает в космическое пространство равно примерно 1/40 количества гелия , которое входит в атмосферу. Другие механизмы вытекания также не способны объяснить небольшое количество гелия в воздухе, которое равно примерно 1/2000 того количества, которое должно было бы содержаться в воздухе после предполагаемых миллиардов лет.

Это нерешенная проблема для атмосферного физика, верующего в долгие эпохи истории земли, К.Г. Уокера, который сказал следующее: «…что касается уровня гелия в атмосфере, то здесь мы сталкиваемся с проблемой» . Другой специалист, Д.У. Чемберлейн, также сказал, что эта проблема относительно накопления гелия «… не уйдет сама по себе, и так и останется нерешенной» .

Эволюционное общество отчаянно пытается найти другие объяснения этому недостаточному количеству гелия, но ни одно из них не является подходящим. Простое решение проблемы можно найти, если принять то, что земле совсем не настолько много лет, как считают эволюционисты! Креационист, ученый Лэрри Вардиман , изучавшый атмосферу, более глубоко изучал этот вопрос и написал более детальное исследование этого вопроса.

Гелий в горных породах

Как мы уже сказали, большинство гелия на земле образовывается в результате радиоактивного распада в горных пород. Маленькие атомы гелиевого газа без проблем вытекают из пород в атмосферу.

Мы также говорили выше о том, что скорость попадания гелия в атмосферу установлена. Но мы также можем измерить скорость, при которой гелий вытекает из пород. Этот процесс происходит быстрее в более горячих породах, и чем глубже опускаться в недра земли, тем горячее становятся породы.

Физик-креационист Роберт Джентри занимался исследованием глубоко залегающего гранита, как возможного пути безопасного хранения опасных радиоактивных отходов атомных электростанций. Безопасное хранение требует того, чтобы элементы не проходили через породу слишком быстро.

Гранит содержит минеральные кристаллы, называемые цирконами (силикат циркония, ZrSiO 4), которые часто содержат радиоактивные элементы. Значит, они должны образовывать гелий, который должен вытекать в атмосферу.

Но Джентри обнаружил, что даже залегающие глубоко горячие цирконы (197°C или 387°F) содержали слишком много гелия - то есть, если бы у них были миллиарды лет для вытекания.

Однако, если в действительности прошло всего лишь несколько тысяч лет, за которые этот гелий попадал в атмосферу, то нет ничего удивительного в том, что там осталось так много гелия.

[Новости за октябрь, 2002: смотрите данные об ускоренном ядерном распаде в статье Ядерный распад: свидетельство молодости мира , написанную креационистом, ядерным физиком Доктором Расселом Хамфрис .]

Заключение

Количество гелия в воздухе и в горных породах совершенно не согласуется с идеей о том, что нашей земле миллиарды лет, как утверждают эволюционисты и прогрессивные креационисты. Такое количество гелия скорее является научным доказательством небольшого возраста, о чем ясно и понятно говорится в книге Бытие .

18 августа 1868 года французский ученый Пьер Жансен, находясь во время полного солнечного затмения в индийском городе Гунтур, впервые исследовал хромосферу Солнца — его внешнюю оболочку. Жансену удалось настроить спектроскоп таким образом, чтобы спектр короны Солнца можно было наблюдать не только при затмении, но и в обычные дни. Уже на следующий день, изучая протуберанцы (массы относительно холодного вещества, которые поднимаются и удерживаются над поверхностью Солнца магнитным полем), в результатах спектроскопии Жансен обнаружил не только синюю, зелено-голубую и красную линии водорода, но и очень яркую желтую, которую астроном и его коллеги первоначально приняли за линию натрия.

Спустя два месяца, 20 октября, английский астроном Норман Локьер, не зная о разработках французского коллеги, также провел исследования солнечного спектра.

Обнаружив неизвестную желтую линию с длиной волны 588 нм, он обозначил ее D3.

Письма Жансена и Локьера об открытии новой линии солнечного спектра поступили во Французскую в один день — 24 октября 1868 года, однако письмо Локьера, написанное им четырьмя днями ранее, пришло на несколько часов раньше. На следующий день оба письма были зачитаны на заседании Академии. В честь нового метода исследования протуберанцев Французская академия решила отчеканить медаль. На одной стороне медали были выбиты портреты Жансена и Локьера над скрещенными ветвями лавра, а на другой — изображение мифологического бога света Аполлона, правящего в колеснице четверкой коней, скачущей во весь опор.

Локьер пытался воссоздать новые спектральные линии в лабораторных условиях, но все его попытки заканчивались неудачей. Тогда он понял, что обнаружил новый химический элемент. Локьер назвал его гелием, от греческого helios — «Солнце».

Отношение ученых к открытию гелия было противоречивым. Одни предполагали, что при интерпретации спектров протуберанцев была допущена ошибка, однако эта точка зрения получала все меньше сторонников, поскольку все большему количеству астрономов удавалось наблюдать линии Локьера. Другие утверждали, что на Солнце есть элементы, которых нет на Земле, что противоречило идее о том, что все известные нам в настоящее время законы природы действовали и будут действовать всегда и во всех точках Вселенной. Третьи (их было меньшинство) считали, что когда-нибудь гелий будет найден и на Земле.

Однако именно они и оказались правы. В 1895 году шотландский химик Уильям Рамзай, исследуя образец газа, полученного при разложении минерала клевеита, обнаружил в его спектре неизвестные линии и послал образцы нескольким коллегам для анализа. Получив образец, Локьер сразу же узнал линии, которые более четверти века назад он наблюдал в солнечном свете. Загадка гелия была решена: газ, несомненно, находится на Солнце, но он существует также и здесь, на Земле.

Гелий — второй по распространенности элемент во Вселенной, на его долю приходится 23% всей космической массы.

Тем не менее, на Земле он встречается редко. Этот элемент — один из продуктов ядерного распада, поэтому его источник — руды радиоактивных элементов.

К началу ХХ века была окончательно доказано присутствие гелия в атмосфере Земли. В 1906 году физикам удалось получить жидкий гелий, а в 1926 — добиться его кристаллизации. В 1938 году советский физик открыл явление сверхтекучести жидкого гелия-II, которое заключается в резком снижении коэффициента вязкости, вследствие чего гелий течет практически без трения.

В промышленности гелий получают из гелийсодержащих природных газов. От других газов гелий отделяют методом глубокого охлаждения, используя то, что он сжижается труднее всех остальных газов.

Впервые гелий применили в Германии. В 1915 году немцы стали наполнять им свои дирижабли, бомбившие Лондон. Вскоре легкий, но негорючий газ стал незаменимым наполнителем воздухоплавательных аппаратов. Начавшийся в середине 1930-х годов упадок дирижаблестроения повлек некоторый спад в производстве гелия, но лишь на короткое время. Этот газ все больше привлекал к себе внимание химиков, металлургов и машиностроителей.

Сегодня гелий используется в пищевой промышленности как пропеллент и упаковочный газ, в качестве хладагента для получения сверхнизких температур, для наполнения воздушных шариков и оболочек метеорологических зондов, для наполнения колб филаментных светодиодных ламп, что позволяет эффективно отводить тепло от светодиодных нитей, для поиска утечек в трубопроводах и котлах, в качестве носителя в газовой хроматографии и во многих других сферах.

В научных исследованиях и в технике широко применяется жидкий гелий. Сверхнизкие температуры благоприятствуют углубленному познанию вещества и его строения - при более высоких температурах тонкие детали энергетических спектров маскируются тепловым движением атомов.

Гелиокислородные смеси стали надежным средством профилактики кессонной болезни и дали большой выигрыш по времени при подъеме водолазов.

Растворимость газов в жидкостях, при прочих равных данных, прямо пропорциональна давлению. У водолазов, работающих под большим давлением, в крови растворено азота гораздо больше в сравнении с нормальными условиями, существующими на поверхности воды. При подъеме с глубины, когда давление приближается к нормальному, растворимость азота понижается, и его избыток начинает выделяться. Если подъем совершается быстро, выделение избытка растворенных газов происходит столь бурно, что кровь и богатые водой ткани организма, насыщенные газом, буквально вспениваются от массы пузырьков азота.

Образование пузырьков азота в кровеносных сосудах нарушает работу сердца, появление их в мозгу нарушает его функции, все это ведет к тяжелым расстройствам жизнедеятельности организма и в итоге — к смерти. Для того, чтобы предупредить развитие описанных явлений, подъем водолазов происходит очень медленно.

При этом избыток растворенных газов выделяется постепенно, и никаких болезненных расстройств не происходит. С применением искусственного воздуха, в котором азот заменяется менее растворимым гелием, возможность вредных расстройств устраняется почти полностью. Это позволяет увеличивать глубину опускания водолазов (до 100 и более метров) и время пребывания под водой.

«Гелиевый» воздух имеет плотность в три раза меньше плотности обычного воздуха. Поэтому дышать таким воздухом легче, чем обычным (уменьшается работа дыхательных мышц). Это обстоятельство имеет важное значение при заболевании органов дыхания. Поэтому «гелиевый» воздух применяется также в медицине при лечении астмы, удушья и других болезней.

Кроме того, гелий — удобный индикатор для геологов.

При помощи гелиевой съемки можно определять на поверхности Земли расположение глубинных разломов. Гелий как продукт распада радиоактивных элементов, насыщающих верхний слой земной коры, просачивается по трещинам, поднимается в атмосферу. Около таких трещин и особенно в местах их пересечения концентрация гелия более высокая. Эта закономерность используется для исследования глубинного строения Земли и поиска руд цветных и редких металлов.

Гелий, как правило, образующийся при радиоактивном распаде урана-238 и урана-235, был найден в атмосфере Солнца на 13 лет раньше, чем на Земле. Этот газ обладает самыми низкими значениями критических величин, наинизшей температура кипения, наименьшей теплотой испарения и плавления. Что касается температуры плавления гелия, то при нормальном давлении ее нет вообще. Второго такого вещества в природе не найти...

Гелий – элемент необычный, и история его несколько загадочна и непонятна. Он был найден в атмосфере Солнца на 13 лет раньше, чем на Земле. Точнее говоря, в спектре солнечной короны была открыта ярко-желтая линия D, а что за ней скрывалось, стало достоверно известно лишь после того, как гелий извлекли из земных минералов, содержащих радиоактивные элементы.

Как образуется гелий

В основном земной гелий образуется при радиоактивном распаде урана-238, урана-235, тория и нестабильных продуктов их распада . Гелий в земной коре накапливается медленно. Одна тонна гранита, содержащая 2 г урана и 10 г тория, за миллион лет продуцирует всего 0,09 мг гелия – половину кубического сантиметра. В очень немногих богатых ураном и торием минералах содержание гелия довольно велико - несколько кубических сантиметров гелия на грамм.

Большинство минералов с течением времени подвергается процессам выветривания, перекристаллизации и т. д., и гелий из них уходит. Высвободившиеся из кристаллических структур гелиевые пузырьки частично растворяются в подземных водах. Другая часть гелия через поры и трещины минералов выходит в атмосферу. Остальные молекулы газа попадают в подземные ловушки, в которых скапливаются в течение десятков, сотен миллионов лет. В качестве ловушек здесь выступают пласты рыхлых пород, пустоты которых заполняют газом. Ложем для таких газовых коллекторов обычно служат вода или нефть, а сверху их перекрывают газонепроницаемые толщи плотных пород.

Синтез гелия - начало жизни

Недра и атмосфера нашей планеты бедны гелием. Но это не значит, что его мало повсюду во Вселенной. По современным подсчетам, 76% космической массы приходится на водород и 23% на гелий; на все прочие элементы остается только один процент. Таким образом, мировую материю можно назвать водородно-гелиевой. Эти два элемента главенствуют в звездах, планетарных туманностях и межзвездном газе. Реакция синтеза гелия – основа энергетической деятельности звезд, их свечения. Следовательно, синтез гелия можно считать праотцом всех реакций в природе, первопричиной жизни, света, тепла и метеорологических явлений на Земле.

Природные газы являются практически единственным источником сырья для промышленного получения гелия. Гелий в природных газах присутствует как незначительная примесь. Содержание его не превышает тысячных, сотых, редко - десятых долей процента. Большая (1,5–10%) гелиеносность метано-азотных месторождений - явление крайне редкое. Для отделения от прочих газов используют исключительную летучесть гелия, связанную с его низкой температурой ожижения. После того, как все прочие компоненты природного газа сконденсируются при глубоком охлаждении, газообразный гелий откачивают. Затем его очищают от примесей. Чистота заводского гелия достигает 99,995%. Жидкий гелий получают путем сжижения газообразного гелия.

Свойства гелия

Газообразный гелий – инертный газ без цвета, запаха и вкуса. Жидкий гелий – бесцветная жидкость без запаха с температурой кипения при нормальном атмосферном давлении 101,3 кПа (760 мм.рт.ст.) 4,215 К (минус 268,9°С) и плотностью 124,9 кг/м 3 .

Гелий не токсичен, не горюч, не взрывоопасен, однако при высоких концентрациях в воздухе вызывает состояние кислородной недостаточности и удушье. Жидкий гелий – низкокипящая жидкость, которая может вызвать обморожение кожи и поражение слизистой оболочки глаз.

Атом гелия (он же молекула) – прочнейшая из молекулярных конструкций. Орбиты двух его электронов совершенно одинаковы и проходят предельно близко от ядра. Чтобы оголить ядро гелия, нужно затратить рекордно большую энергию (78,61 эВ). Отсюда следует феноменальная химическая пассивность гелия.

Молекулы гелия неполярны. Силы межмолекулярного взаимодействия между ними крайне невелики - меньше, чем в любом другом веществе. По этой причине гелий обладает самыми низкими значениями критических величин, наинизшей температура кипения, наименьшей теплотой испарения и плавления. Что касается температуры плавления гелия, то при нормальном давлении ее вообще нет. Жидкий гелий при сколь угодно близкой к абсолютному нулю температуре не затвердевает, если, помимо температуры, на него не действует давление в 25 или больше атмосфер. Второго такого вещества в природе нет. Это наилучший среди газов проводник электричества и второй, после водорода, проводник тепла. Его теплоемкость очень велика, а вязкость, наоборот, мала.

Гелий, дирижабли, водолазы и ядерная энергетика…

Впервые гелий применили в Германии. В 1915 году они немцы стали наполнять им свои дирижабли, бомбившие Лондон. Вскоре легкий, но негорючий гелий стал незаменимым наполнителем воздухоплавательных аппаратов. Начавшийся в середине 30-х годов упадок дирижаблестроения повлек некоторый спад в производстве гелия, но лишь на короткое время. Этот газ все больше привлекал к себе внимание химиков, металлургов и машиностроителей.

Еще одна сфера применения гелия обусловлена тем, что многие технологические процессы и операции нельзя вести в воздушной среде. Чтобы избежать взаимодействия получаемого вещества (или исходного сырья) с газами воздуха, создают специальные защитные среды, и нет для этих целей более подходящего газа, чем гелий.

В гелиевой защитной среде проходят отдельные стадии получения ядерного горючего. В контейнерах, заполненных гелием, хранят и транспортируют тепловыделяющие элементы ядерных реакторов. С помощью особых течеискателей, действие которых основано на исключительной диффузионной способности гелия, выявляют малейшие возможности утечки в атомных реакторах и других системах, находящихся под давлением или вакуумом.

В научных исследованиях и в технике широко применяется жидкий гелий . Сверхнизкие температуры благоприятствуют углубленному познанию вещества и его строения – при более высоких температурах тонкие детали энергетических спектров маскируются тепловым движением атомов.

Уже существуют сверхпроводящие соленоиды из особых сплавов, создающие при температуре жидкого гелия сильные магнитные поля (до 300 тысяч эрстед) при ничтожных затратах энергии. При температуре жидкого гелия многие металлы и сплавы становятся сверхпроводниками . Сверхпроводниковые реле-криотроны все шире применяются в конструкциях электронно-вычислительных машин. Они просты, надежны, очень компактны. Сверхпроводники, а с ними и жидкий гелий становятся необходимыми для электроники. Они входят в конструкции детекторов инфракрасного излучения, молекулярных усилителей (мазеров), оптических квантовых генераторов (лазеров), приборов для измерения сверхвысоких частот.

Гелиокислородные смеси стали надежным средством профилактики кессонной болезни и дали большой выигрыш по времени при подъеме водолазов. Как известно, растворимость газов в жидкостях, при прочих равных данных, прямо пропорциональна давлению. У водолазов, работающих под большим давлением, в крови растворено азота гораздо больше в сравнении с нормальными условиями, существующими на поверхности воды. При подъеме с глубины, когда давление приближается к нормальному, растворимость азота понижается, и его избыток начинает выделяться. Если подъем совершается быстро, выделение избытка растворенных газов происходит столь бурно, что кровь и богатые водой ткани организма, насыщенные газом, вспениваются от массы пузырьков азота - подобно шампанскому при открывании бутылки.

Образование пузырьков азота в кровеносных сосудах нарушает работу сердца, появление их в мозгу нарушает его функции, а все это вместе ведет к тяжелым расстройствам жизнедеятельности организма и в итоге - к смерти. Для того, чтобы предупредить развитие описанных явлений, известных под именем «кессонной болезни», подъем водолазов, т. е. переход от повышенного давления к нормальному, производится весьма медленно.

При этом избыток растворенных газов выделяется постепенно и никаких болезненных расстройств не происходит. С применением искусственного воздуха, в котором азот заменяется менее растворимым гелием, возможность вредных расстройств устраняется почти полностью. Это позволяет увеличивать глубину опускания водолазов (до 100 и более метров) и удлинять время пребывания под водой.

«Гелиевый» воздух имеет плотность в три раза меньше плотности обычного воздуха. Поэтому дышать таким воздухом легче, чем обычным (уменьшается работа дыхательных мышц). Это обстоятельство имеет важное значение при заболевании органов дыхания. Поэтому «гелиевый» воздух применяется также в медицине при лечении астмы, удуший и других болезней.

Еще не вечный, но уже безвредный

В Лос-Аламосской национальной лаборатории имени Э. Ферми (штат Нью-Мексико) разработан новый двигатель , который может серьезно изменить представления об автомобиле как одном из главных источников загрязнения. При сопоставимом с двигателем внутреннего сгорания коэффициенте полезного действия (30–40%) он лишен основных его недостатков: движущихся частей, нуждающихся в смазке для уменьшения трения и износа, и вредных для окружающей среды выбросов продуктов неполного сгорания топлива.

По сути, речь идет об усовершенствовании хорошо известного двигателя внешнего сгорания, предложенного шотландским священником Р. Стирлингом еще в 1816 г. Этот двигатель не получил широкого распространения на автотранспорте из-за более сложной по сравнению с двигателем внутреннего сгорания конструкции, большей материалоемкости и стоимости. Но термоакустический преобразователь энергии, предложенный американскими учеными, в котором рабочим телом служит сжатый гелий, выгодно отличается от своего предшественника отсутствием громоздких теплообменников, препятствовавших его использованию в легковых автомобилях, и в недалеком будущем способен стать экологически приемлемой альтернативой не только двигателя внутреннего сгорания, но и преобразователя солнечной энергии, холодильника, кондиционера. Масштабы его применения пока даже трудно представить.

Гелий

ГЕ́ЛИЙ -я; м. [от греч. hēlios - солнце]. Химический элемент (He), не имеющий запаха химически инертный газ, самый лёгкий после водорода.

Ге́лиевый, -ая, -ое. Г-ое ядро.

Ге́лий

(лат. Helium), химический элемент VIII группы периодической системы, относится к благородным газам; без цвета и запаха, плотность 0,178 г/л. Сжижается труднее всех известных газов (при -268,93ºC); единственное вещество, которое не отвердевает при нормальном давлении, как бы глубоко его ни охлаждали. Жидкий гелий - квантовая жидкость, обладающая сверхтекучестью ниже 2,17ºК (-270,98ºC). В небольшом количестве гелий содержится в воздухе и земной коре, где он постоянно образуется при распаде урана и других α-радиоактивных элементов (α-частицы - это ядра атомов гелия). Значительно более распространён гелий во Вселенной, например на Солнце, где он впервые был открыт (отсюда название: от греч. hēlios - Солнце). Получают гелий из природных газов. Применяют в криогенной технике, для создания инертных сред, в аэронавтике (для заполнения стратостатов, воздушных шаров и др.).

ГЕЛИЙ

ГЕ́ЛИЙ (лат. Helium), He (читается «гелий»), химический элемент с атомным номером 2, атомная масса 4,002602. Относится к группе инертных, или благородных, газов (группа VIIIA периодической системы), находится в 1-м периоде.
Природный гелий состоит из двух стабильных нуклидов: 3 Не (0,00013% по объему) и 4 Не. Почти полное преобладание гелия-4 связано с образованием ядер этого нуклида при -радиоактивном распаде урана, тория, радия и других атомов, происходившем в течение длительной истории Земли.
Радиус нейтрального атома гелия 0,122 нм. Электронная конфигурация нейтрального невозбужденного атома 1s 2 . Энергии последовательной ионизации нейтрального атома равны, соответственно, 24,587 и 54,416 эВ (у атома гелия самая высокая среди нейтральных атомов всех элементов энергия отрыва первого электрона).
Простое вещество гелий - легкий одноатомный газ без цвета, вкуса, запаха.
История открытия
Открытие гелия началось с 1868, когда при наблюдении солнечного затмения астрономы француз П. Ж. Жансен (см. ЖАНСЕН Пьер Жюль Сезар) и англичанин Д. Н. Локьер (см. ЛОКЬЕР Джозеф Норман) независимо друг от друга обнаружили в спектре солнечной короны (см. СОЛНЕЧНАЯ КОРОНА) желтую линию (она получила название D 3 -линии), которую нельзя было приписать ни одному из известных в то время элементов. В 1871 Локьер объяснил ее происхождение присутствием на Солнце нового элемента. В 1895 англичанин У. Рамзай (см. РАМЗАЙ Уильям) выделил из природной радиоактивной руды клевеита газ, в спектре которого присутствовала та же D 3 -линия. Новому элементу Локьер дал имя, отражающее историю его открытия (греч. Helios-солнце). Поскольку Локьер полагал, что обнаруженный элемент - металл, он использовал в латинском названии элемента окончание «lim» (соответствует русскому окончанию «ий»), которое обычно употребляется в названии металлов. Таким образом, гелий задолго до своего открытия на Земле получил имя, которое окончанием отличает его от названий остальных инертных газов.
Нахождение в природе
В атмосферном воздухе содержание гелия очень мало и составляет около 5,27·10 -4 % по объему. В земной коре его 0,8·10 -6 %, в морской воде - 4·10 -10 %. Источником гелия служат нефти и гелионосные природные газы, в которых содержание гелия достигает 2-3%, а в редких случаях и 8-10% по объему. Зато в космосе гелий - второй по распространенности элемент (после водорода): на его долю приходится 23% космической массы.
Получение
Технология получения гелия очень сложна: его выделяют из природных гелионосных газов, пользуясь методом глубокого охлаждения. Месторождения таких газов имеются в России, США, Канаде и ЮАР. Гелий содержится также в некоторых минералах (монаците, торианите и других), при этом из 1 кг минерала при нагревании можно выделить до 10 л гелия.
Физические свойства
Гелий - легкий негорючий газ, плотность газообразного гелия при нормальных условиях 0,178 кг/м 3 (меньше только у газа водорода). Температура кипения гелия (при нормальном давлении) около 4,2К (или –268,93 °C, это - самая низкая температура кипения).
При нормальном давлении жидкий гелий не удается превратить в твердое вещество даже при температурах, близких к абсолютному нулю (0К). При давлении около 3,76 МПа температура плавления гелия 2,0К. Наименьшее давление, при котором наблюдается переход жидкого гелия в твердое состояние - 2,5МПа (25 ат), температура плавления гелия при этом около 1,1 К (–272,1 °C).
В 100 мл воды при 20 °C растворяется 0,86 мл гелия, в органических растворителях его растворимость еще меньше. Легкие молекулы гелия хорошо проходят (диффундируют) через различные материалы (пластмассы, стекло, некоторые металлы).
Для жидкого гелия-4, охлажденного ниже –270,97 °C, наблюдается ряд необычных эффектов, что дает основание рассматривать эту жидкость как особую, так называемую квантовую, жидкость. Эту жидкость обычно обозначают как гелий-II в отличие от жидкого гелия-I - жидкости, существующей при чуть более высоких температурах. График изменения теплоемкости жидкого гелия с изменением температуры напоминает греческую букву лямбда (l). Температура перехода гелия-I в гелий-II 2,186 К. Эту температуру часто называют l-точкой.
Жидкий гелий-II способен быстро проникать через мельчайшие отверстия и капилляры, не обнаруживая при этом вязкости (так называемая сверхтекучесть (см. СВЕРХТЕКУЧЕСТЬ) жидкого гелия-II). Кроме того, пленки гелия-II быстро перемещаются по поверхности твердых тел, в результате чего жидкость быстро покидает тот сосуд, в который она была помещена. Это свойство гелия-II называют сверхползучестью. Сверхтекучесть гелия-II открыта в 1938 советским физиком П. Л. Капицей (см. КАПИЦА Петр Леонидович) (Нобелевская премия по физике, 1978). Объяснение уникальным свойствам гелия-II дано другим советским физиком Л. Д. Ландау (см. ЛАНДАУ Лев Давидович) в 1941-1944 (Нобелевская премия по физике, 1962).
Никаких химических соединений гелий не образует. Правда, в разреженном ионизированном гелии удается обнаружить достаточно устойчивые двухатомные ионы Не 2 + .
Применение
Гелий используют для создания инертной и защитной атмосферы при сварке, резке и плавке металлов, при перекачивании ракетного топлива, для заполнения дирижаблей и аэростатов, как компонент среды гелиевых лазеров. Жидкий гелий, самая холодная жидкость на Земле, - уникальный хладагент в экспериментальной физике, позволяющий использовать сверхнизкие температуры в научных исследованиях (например, при изучении электрической сверхпроводимости (см. СВЕРХПРОВОДИМОСТЬ) ). Благодаря тому, что гелий очень плохо растворим в крови, его используют как составную часть искусственного воздуха, подаваемого для дыхания водолазам. Замена азота на гелий предотвращает кессонную болезнь (см. КЕССОННАЯ БОЛЕЗНЬ) (при вдыхании обычного воздуха азот под повышенным давлением растворяется в крови, а затем выделяется из нее в виде пузырьков, закупоривающих мелкие сосуды).

Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "Гелий" в других словарях:

    - (лат. Helium) Не, химический элемент VIII группы периодической системы, атомный номер 2, атомная масса 4,002602, относится к благородным газам; без цвета и запаха, плотность 0,178 г/л. Сжижается труднее всех известных газов (при 268,93 .С);… … Большой Энциклопедический словарь

    - (греч., от helyos солнце). Элементарное тело, открытое в солнечном спектре и имеющееся на земле в некоторых редких минералах; в ничтожном количестве входит в состав воздуха. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н … Словарь иностранных слов русского языка

    - (символ Не), газообразный неметаллический элемент, БЛАГОРОДНЫЙ ГАЗ, открытый в 1868 г. Впервые получили из минерала клевита (разновидности уранита) в 1895 г. В настоящее время основным источником его является природный газ. Содержится также в… … Научно-технический энциклопедический словарь

    Я, муж. , стар. Елий, я.Отч.: Гелиевич, Гелиевна.Производные: Геля (Гела); Еля.Происхождение: (От греч. hēlios солнце.)Именины: 27 июля Словарь личных имён. Гелий См. Эллий. День Ангела. Справоч … Словарь личных имен

    ГЕЛИЙ - хим. элемент, символ Не (лат. Helium), ат. н. 2, ат. м. 4,002, относится к инертным (благородным) газам; без цвета и запаха, плотность 0,178 кг/м3. В обычных условиях Г. одноатомный газ, атом которого состоит из ядра и двух электронов; образуется … Большая политехническая энциклопедия

    - (Helium), He, химический элемент VIII группы периодической системы, атомный номер 2, атомная масса 4,002602; относится к благородным газам; самое низкокипящее вещество (tкип 268,93шC), единственное не отвердевающее при нормальном давлении;… … Современная энциклопедия

    Хим. элемент восьмой гр. периодической системы, порядковый номер 2; инертный газ с ат. в. 4,003. Состоит из двух стабильных изотопов Не4 и Не3. Содер. их непостоянно и зависит от источника образования, но тяжелый изотоп всегда преобладает. В… … Геологическая энциклопедия

    Гелий - (Helium), He, химический элемент VIII группы периодической системы, атомный номер 2, атомная масса 4,002602; относится к благородным газам; самое низкокипящее вещество (tкип 268,93°C), единственное не отвердевающее при нормальном давлении;… … Иллюстрированный энциклопедический словарь