Сложение магнитных полей постоянных магнитов. Магнитные цепи с постоянными магнитами. Метод усиления с использованием точки Кюри

Чтобы понять, как увеличить силу магнита, нужно разобраться в процессе намагничивания. Это произойдет, если магнит расположить во внешнем магнитном поле противоположной стороной к исходной. Увеличение же мощности электромагнита происходит тогда, когда увеличивается подача тока или умножаются витки обмотки.


Увеличить силу магнита можно с помощью стандартного набора необходимого оборудования: клея, набора магнитов (нужны именно постоянные), источника тока и изолированного провода. Они понадобятся для осуществления тех способов увеличения силы магнита, которые представлены ниже.

Усиление с помощью более мощного магнита

Этот способ заключается в использовании более мощного магнита для усиления исходного. Для осуществления надо поместить один магнит во внешнее магнитное поле другого, обладающего большей мощностью. Также с этой же целью применяют электромагниты. После удержания магнита в поле другого, произойдет усиление, но специфика заключается в непредсказуемости результатов, поскольку для каждого элемента такая процедура будет работать индивидуально.



Усиление с помощью добавления других магнитов

Известно, что каждый магнит имеет два полюса, причем каждый притягивает противоположный знак других магнитов, а соответствующий – не притягивает, лишь отталкивает. Как увеличить мощность магнита, используя клей и дополнительные магниты. Здесь предполагается добавление других магнитов с целью увеличения итоговой мощности. Ведь, чем больше магнитов, тем, соответственно, будет больше сила. Единственное, что нужно учесть, - это присоединение магнитов одноименными полюсами. В процессе они будут отталкиваться, согласно законам физики. Но задача состоит в склеивании, несмотря на сложности в физическом плане. Лучше использовать клей, который предназначен для склеивания металлов.

Метод усиления с использованием точки Кюри

В науке есть понятие точки Кюри. Усиление или ослабление магнита можно произвести, нагревая или охлаждая его относительно самой этой точки. Так, нагревание выше точки Кюри или сильное охлаждение (гораздо ниже нее) приведет к размагничиванию.

Надо заметить, что свойства магнита при нагревании и охлаждении относительно точки Кюри имеют скачкообразное свойство, то есть, добившись правильной температуры можно усилить его мощность.

Метод №1

Если возник вопрос, как сделать магнит сильнее, если его сила регулируется электрическим током, то сделать это можно с помощью увеличения тока, который подается на обмотку. Здесь идет пропорциональное увеличение мощности электромагнита и подачи тока. Главное, ⸺ постепенная подача, чтобы не допустить перегорания.

Метод №2

Для осуществления этого метода надо увеличить количество витков, но длина должна оставаться неизменной. То есть, можно сделать один-два дополнительных ряда провода, чтобы общее количество витков стало больше.

В этом разделе рассмотрены способы, как увеличить силу магнита в домашних условиях, для экспериментов можно заказать на сайте МирМагнитов .

Усиление обычного магнита

Множество вопросов возникает, когда обычные магниты перестают выполнять свои прямые функции. Это часто происходит из-за того, что бытовые магниты таковыми не являются, ведь, по сути, они намагниченные металлические части, которые теряют свойства с течением времени. Усилить мощность таких деталей или вернуть им свойства, которые были изначально, невозможно.

Надо заметить, что прикреплять к ним магниты, даже более мощные, не имеет смысла, поскольку, при их соединении обратными полюсами, внешнее поле становится гораздо слабее или вообще нейтрализуется.

Это можно проверить с помощью обычной бытовой занавески-москитки, которая должна закрываться посередине при помощи магнитов. Если на слабые исходные магниты сверху прикрепить более мощные, то в результате штора вообще потеряет свойства соединения с помощью притяжения, потому что противоположные полюса нейтрализуют внешние поля друг друга на каждой из сторон.

Эксперименты с неодимовыми магнитами

Неомагнит довольно популярен, его состав: неодим, бор, железо. Такой магнит обладает высокой мощностью и отличается стойкостью к размагничиванию.

Как усилить неодим? Неодим очень подвержен коррозии, то есть быстро ржавеет, поэтому неодимовые магниты покрывают никелем, чтобы повысить срок службы. Также они напоминают керамику, их легко разбить или расколоть.

Но пытаться увеличивать его мощность искусственным способом нет смысла, потому что это постоянный магнит, он имеет определенный для себя уровень силы. Поэтому, если вам необходимо иметь более мощный неодим, лучше приобрести его, учитывая нужную силу нового.


Заключение: в статье рассмотрена тема, как увеличить силу магнита, в том числе, как увеличить мощность неодимового магнита. Получается, что существует несколько способов увеличить свойства магнита. Потому что бывает просто намагниченный металл, увеличить силу которого невозможно.

Наиболее простые способы: с помощью клея и других магнитиков (они должны быть приклеены идентичными полюсами), а также – более мощного, во внешнем поле которого должен находится исходный магнит.

Рассмотрены способы увеличения силы электромагнита, которые заключаются в дополнительной обмотке проводами или усилении поступления тока. Единственное, что нужно учитывать - это силу поступления тока в целях безопасности и сохранности аппарата.

Обычные и неодимовые магниты не способны поддаваться на увеличение собственной мощности.

Системы переключающихся магнитных потоков основаны на переключении магнитного потока относительно съёмных катушек.
Суть рассматривающихся в интернете СЕ устройств состоит в том, что есть магнит, за который мы платим один раз, а есть магнитное поле магнита, за который никто денег не платит.
Вопрос состоит в том, что необходимо в трансформаторах с переключающимися магнитными потоками создать такие условия при которых поле магнита становится управляемым и мы его направляем. прерываем. перенаправляем так. чтобы при этом энергия на переключения была минимальной или беззатратной

Для того, чтобы рассматривать варианты этих систем, решил заняться изучением и приведением своих мыслей относительно свежих представлений.

Для начала хотелось заглянуть какими магнитными свойствами обладает ферромагнитный материал и т.д. Магнитные материалы обладают коэрцитивной силой.

Соответственно рассматривают коэрцитивную силу , полученную по циклу , или по циклу . Обозначают соответственно и

Коэрцитивная сила всегда больше . Этот факт объясняется тем, что в правой полуплоскости графика гистерезиса значение больше, чем , на величину:

В левой полуплоскости, наоборот, меньше, чем , на величину . Соответственно, в первом случае кривые будут располагаться выше кривых , а во втором — ниже. Это делает цикл гистерезиса уже цикла .

Коэрцитивная сила

Коэрцитивная сила — (от лат. coercitio — удерживание), значение напряженности магнитного поля, необходимое для полного размагничивания ферро- или ферримагнитного вещества. Измеряется в Ампер/метр (в системе СИ). По величине коэрцитивной силы различают следующие магнитные материалы

Магнитомягкие материалы — материалы с низкой коэрцитивной силой, которые намагничиваются до насыщения и перемагничиваются в относительно слабых магнитных полях напряжённостью около 8—800 а/м. После перемагничивания внешне они не проявляют магнитных свойств, так как состоят из хаотически ориентированных намагниченных до насыщения областей. Примером могут служить различные стали. Чем больше коэрцитивной силой обладает магнит, тем он устойчивее к размагничивающим факторам. Магнитотвердые материалы — материалы с высокой коэрцитивной силой, которые намагничиваются до насыщения и перемагничиваются в сравнительно сильных магнитных полях напряжённостью в тысячи и десятки тысяч а/м. После намагничивания магнитно-твердые материалы остаются постоянными магнитами из-за высоких значений коэрцитивной силы и магнитной индукции. Примерами являются редкоземельные магниты NdFeB и SmCo, бариевые и стронциевые магнитотвердые ферриты.

С увеличением массы частицы радиус кривизны траектории увеличивается, а согласно первому закону Ньютона, увеличивается её инертность.

С увеличением магнитной индукции радиус кривизны траектории уменьшается, т.е. увеличивается центростремительное ускорение частицы. Следовательно, под действием одной и той же силы изменение скорости частицы будет меньше, а радиус кривизны траектории больше.

С увеличением заряда частицы увеличивается сила Лоренца (магнитная составляющая), следовательно, увеличивается и центростремительное ускорение.

При изменении скорости движения частицы изменяется радиус кривизны её траектории, меняется центростремительное ускорение, что следует из законов механики.

Если частица влетает в однородное магнитное поле индукцией В под углом, отличным от 90°, то горизонтальная составляющая скорости не меняется, а вертикальная составляющая под действием силы Лоренца приобретает центростремительное ускорение, и частица будет описывать окружность в плоскости, перпендикулярной вектору магнитной индукции и скорости. Благодаря одновременному перемещению вдоль направления вектора индукции частица описывает винтовую линию, причём будет возвращаться к исходной горизонтали через равные промежутки времени, т.е. пересекать её на равных расстояниях.

Тормозящее взаимодействие магнитных полей евзываются токами Фуко

Как только цепь в катушке индуктивности замкнута, вокруг проводника начинают действовать два встречно направленных потока.По закону Ленца, положительные заряды электрогаза (эфира) начинают своё винтовое движение приводя в действие атомы, по которому установлена электрическая связь. Отсюда моно объяснить наличие магнитного действия и противодействия.

Этим я объясняю торможение возбуждающего магнитного поля и противодействие ему при замкнутой цепи, тормозящим эффектом в электрогенераторе (механическое торможение или противодействие ротору электрогенератора механически прикладываемой силе и противодействие (торможение) тока Фуко падающему неодимовому магниту, падающему в медной трубке.

Немного о магнитных двигателях

Здесь так же применён принцип переключающихся магнитных потоков.
Но проще перейти к рисункам.

Как работать должна эта система.

Средняя катушка съёмная и работает на относительно широкой длине импульса, который создаётся прохождением магнитных потоков от магнитов изображенных на схеме.
Длинна импульса определяется индуктивностью катушки и сопротивлением нагрузки.
Как только время истекает и сердечник становится намагниченным, необходимо прерывать, размагничивать или перемагничивать сам сердечник. чтобы продолжать работу с нагрузкой.


а) Общие сведения. Для создания постоянного маг­нитного поля в целом ряде электрических аппаратов ис­пользуются постоянные магниты, которые изготавлива­ются из магнитно-твер­дых материалов, имею­щих широкую петлю ги­стерезиса (рис.5.6).

Работа постоянного магнита происходит на участке отH= 0 до H = - Н с. Эта часть петли называется кривой размагничивания.

Рассмотрим основные соотношения в постоян­ном магните, имеющем форму тороида с одним малым зазором б (рис.5.6). Благодаря форме тороида и небольшому зазору потоками рассеяния в таком магните можно пренебречь. Если зазор мал, то магнитное поле в нем можно счи­тать однородным.


Рис.5.6. Кривая размагничивания постоянного магнита

Если пренебречь выпучиванием, то индукции в зазоре В & и внутри магнита В одинаковы.

На основании закона полного тока при интегрирова­нии по замкнутому контуру 1231 рис. получим:


Рис.5.7. Постоян­ный магнит, имеющий форму тороида

Таким образом, напряженность поля в зазоре направ­лена встречно напряженности в теле магнита. Для элек­тромагнита постоянного тока, имеющего аналогичную форму магнитной цепи, без учета насыщения можно написать: .

Сравнивая мож­но видеть, что в случае с постоян­ным магнитом н. с, создающей поток в рабочем зазоре, является про­изведение напряженности в теле магнита на его длину с обратным знаком -Hl.

Воспользовавшись тем, что

, (5.29)

, (5.30)

где S -площадь полюса; - проводимость воздушного зазора.

Уравнение есть уравнение прямой, проходя­щей через начало координат во втором квадранте под углом а к оси Н . С учетом масштаба индукции т в и на­пряженности т н угол а определяется равенством

Так как индукция и напряженность магнитного поля в теле постоянного магнита связаны кривой размагничи­вания, то пересечение указанной прямой с кривой раз­магничивания (точка А на рис.5.6) и определяет со­стояние сердечника при заданном зазоре.

При замкнутой цепи и

С ростом б проводимость рабочего зазора и tga уменьшаются, индукция в рабочем зазоре падает, а на­пряженность поля внутри магнита увеличивается.

Одной из важных характеристик постоянного магни­та является энергия магнитного поля в рабочем зазоре W t . Учитывая, что поле в за­зоре однородно,

Подставляя значение Н ь получим:

, (5.35)

где V M - объем тела магнита.

Таким образом, энергия в рабочем зазоре равна энер­гии внутри магнита.

Зависимость произведения В(-Н) в функции индук­ции показана на рис.5.6 . Очевидно, что для точки С, в которой В(-Н) достигает максимального значения, энергия в воздушном зазоре также достигает наиболь­шей величины, и с точки зрения использования постоян­ного магнита эта точка является оптимальной. Можно показать, что точка С, соответствующая макси­муму произведения , есть точка пересечения с кривой размагничивания луча О К, проведенного через точку с координатами и .

Рассмотрим более подробно влияние зазора б на ве­личину индукции В (рис.5.6). Если намагничивание магнита производилось при зазоре б , то после снятия внешнего поля в теле магнита установится индукция, соответствующая точке А. Положение этой точки опреде­ляется зазором б.

Уменьшим зазор до значения , тогда

. (5.36)

При уменьшении зазора индукция в теле магнита воз­растает, однако процесс изменения индукции идет не по кривой размагничивания, а по ветви частной петли гистерезиса AMD. Индукция В 1 определяется точкой пересечения этой ветви с лучом, проведенным под углом к оси - Н (точка D).

Если мы снова увеличим за­зор до значения б , то индукция будет падать до значения В, при­чем зависимость В (Н) будет определяться ветвью DNA частной петли гистерезиса. Обычно частная петля гистерезиса AMDNA достаточно узка и ее заменяют прямой AD, которую на­зывают прямой возврата. Наклон к горизонтальной оси (+ Н) этой прямой называется коэффициентом возврата:

. (5.37)

Характеристика размагничивания материала обычно не приводится полностью, а задаются только величины индукции насыщения B s , остаточной индукции В г, коэр­цитивной силы Н с. Для расчета магнита необходимо знать всю кривую размагничивания, которая для боль­шинства магнитно-твердых материалов хорошо аппроксимируется формулой

Кривая размагничивания, выражаемая (5.30), мо­жет быть легко построена графически, если известны B s , В r .

б) Определение потока в рабочем зазоре для задан­ной магнитной цепи . В реальной системе с постоянным магнитом поток в рабочем зазоре отличается от потока в нейтральном сечении (середине магнита) из-за наличия потоков рассеяния и выпучивания (рис.).

Поток в нейтральном сечении равен:

, (5.39)

где поток в нейтральном сечении;

Поток выпучивания у полюсов;

Поток рассеяния;

Рабочий поток.

Коэффициент рассеяния о определяется равенством

Если принять, что потоки создаются одной и той же разностью магнитных потенциалов, то

. (5.41)

Индукцию в нейтральном сечении найдем, определив :

,

и воспользовавшись кривой размагничивания рис.5.6. Индукция в рабочем зазоре равна:

поскольку поток в рабочем зазоре в раз меньше, чем поток в нейтральном сечении.

Очень часто намагничивание системы происходит в несобранном состоянии, когда проводимость рабочего зазора уменьшена из-за отсутствия деталей из ферро­магнитного материала. В этом случае расчет ведется с ис­пользованием прямой возврата. Если потоки рассеяния значительны, то расчет реко­мендуется вести по участкам, так же как и в случае элек­тромагнита.

Потоки рассеяния в постоянных магнитах играют зна­чительно большую роль, чем в электромагнитах. Дело в том, что магнитная проницаемость магнитно-твердых материалов значительно ниже, чем у магнитно-мягких, из которых изготавливаются системы для электромагни­тов. Потоки рассеяния вызывают значительное падение магнитного потенциала вдоль постоянного магнита и уменьшают н. с, а следовательно, и поток в рабочем зазоре.

Коэффициент рассеяния выполненных систем ко­леблется в довольно широких пределах. Расчет ко­эффициента рассеяния и потоков рассеяния связан с большими трудностями. Поэтому при разработке новой конструкции величину коэффициента рассеяния реко­мендуется определить на специальной модели, в которой постоянный магнит заменен электромагнитом. Намагничивающая обмотка выбирается такой, чтобы по­лучить в рабочем зазоре необходимый поток.


Рис.5.8. Магнитной цепи с постоянным магнитом и потоками рассеяния и выпучивания

в) Определение размеров магнита по требуемой ин­дукции в рабочем зазоре. Эта задача является еще более трудной, чем определение потока при известных разме­рах. При выборе размеров магнитной цепи обычно стремятся к тому, чтобы индукция В 0 и напряженность Н 0 в нейтральном сечении соответствовали максимальному значению произведения Н 0 В 0 . При этом объем магнита будет минимальным. Даются следую­щие рекомендации по выбору материалов. Если требу­ется при больших зазорах получить большое значение индукции, то наиболее подходящим материалом является магнико. Если при большом зазоре необходимо создать небольшие индукции, то можно рекомендовать альниси. При малых рабочих зазорах и большом значении индук­ции целесообразно применение альни.

Сечение магнита выбирается из следующих сообра­жений. Индукция в нейтральном сечении выбирается равной В 0 . Тогда поток в нейтральном сечении

,

откуда сечение магнита

.
Величины индукции в рабочем зазоре В р и площадь полюса являются заданными величинами. Наиболее трудным является определение значения коэффициента рассеяния. Величина его зависит от конструкции и индукции в сердечнике. Если сечение магнита получилось большим, то применяют не­сколько магнитов, включенных параллельно. Длина маг­нита определяется из условия создания необходимой н.с. в рабочем зазоре при напряженности в теле магнита Н 0:

где б р - величина рабочего зазора.

После выбора основных размеров и конструирования магнита проводится поверочный расчет по методике, опи­санной ранее.

г) Стабилизация характеристик магнита. В процессе работы магнита наблюдается уменьшение потока в ра­бочем зазоре системы - старение магнита. Различают структурное, механическое и магнитное старение.

Структурное старение наступает вследствие того, что после закалки материала в нем возникают внутренние напряжения, материал приобретает неоднородную струк­туру. В процессе работы материал становится более од­нородным, внутренние напряжения исчезают. При этом остаточная индукция В т и коэрцитивная сила Н с умень­шаются. Для борьбы со структурным старением мате­риал подвергается термообработке в виде отпуска. При этом внутренние напряжения в материале исчезают. Его характеристики становятся более стабильными. Алюминиево-никелевые сплавы (альни и др.) не требуют струк­турной стабилизации.

Механическое старение наступает при ударах и ви­брациях магнита. Для того чтобы сделать магнит нечув­ствительным к механическим воздействиям, его подвер­гают искусственному старению. Образцы магнита перед установкой в аппарат подвергаются таким ударам и ви­брации, которые имеют место в эксплуатации.

Магнитное старение - изменение свойств материала под действием внешних магнитных полей. Положитель­ное внешнее поле увеличивает индукцию по прямой воз врата, а отрицательное снижает ее по кривой размагни­чивания. Для того чтобы сделать магнит более стабиль­ным, его подвергают действию размагничивающего поля, после чего магнит работает на прямой возврата. Из-за меньшей крутизны прямой возврата влияние внешних полей уменьшается. При расчете магнитных систем с по­стоянными магнитами необходимо учитывать, что в про­цессе стабилизации магнитный поток уменьшается на 10-15%.

Трансгенерация энергии электромагнитного поля

Сущность исследований:

Основным направлением исследований является изучение теоретической и технической возможности создания устройств генерирующих электроэнергию за счет открытого автором физического процесса трансгенерации энергии электромагнитного поля. Суть эффекта заключается в том, что при сложении электромагнитных полей (постоянных и переменных) складываются не энергии, а амплитуды поля. Энергия поля пропорциональна квадрату амплитуды суммарного электромагнитного поля. В результате, при простом сложении полей энергия суммарного поля может во много раз превышать энергия всех исходных полей по отдельности. Такое свойство электромагнитного поля называется неаддитивностью энергии поля. Например, при сложении в стопку трех плоских дисковых постоянных магнитов энергия суммарного магнитного поля возрастает в девять раз! Аналогичный процесс происходит при сложении электромагнитных волн в фидерных линиях и резонансных системах. Энергия суммарной стоячей электромагнитной волны может во много раз превосходить энергию волн и электромагнитного поля до сложения. В итоге суммарная энергия системы возрастает. Процесс описывается простой формулой энергии поля:

При сложении трех постоянных дисковых магнитов объем поля уменьшается в три раза, а объемная плотность энергии магнитного поля возрастает в девять раз. В итоге, энергия суммарного поля трех магнитов вместе оказывается в три раза больше энергии трех разъединенных магнитов.

При сложении в одном объеме электромагнитных волн (в фидерных линиях, резонаторах, катушках, также происходит увеличение энергии электромагнитного поля по сравнению с исходной).

Теория электромагнитного поля демонстрирует возможность генерации энергии за счет переноса (транс-) и сложения электромагнитных волн, полей. Разработанная автором теория трансгенерации энергии электромагнитных полей не противоречит классической электродинамике. Представление о физическом континууме, как о сверхплотной диэлектрической среде с огромной скрытой энергией массы приводит к тому, что физическое пространство обладает энергией и трансгенерация не нарушает полный закон сохранения энергии (с учетом энергии среды). Неаддитивность энергии электромагнитного поля демонстрирует, что для электромагнитного поля простое выполнение закона сохранения энергии не происходит. Например, в теории вектора Умова-Пойтинга сложение векторов Пойтинга приводит к тому, что складывается электрическое и магнитное поля одновременно. Поэтому, например, при сложении трех векторов Пойтинга, общий вектор Пойтинга возрастает в девять раз, а не в три, как кажется на первый взгляд.

Результаты исследований:

Возможность получения энергии за счет сложения электромагнитных волн исследований исследовались экспериментально в различных типах фидерных линий - волноводах, двухпроводных, полосковых, коаксиальных. Диапазон частот составляет от 300 МГц до 12,5 ГГц. Мощность измерялась как прямо - ваттметрами, так и косвенно - детекторными диодами и вольтметрами. В результате, при выполнении определенных настроек в фидерных линиях получены положительные результаты. При сложении амплитуд полей (в нагрузках) выделяемая мощность в нагрузке превосходит мощность подаваемую с разных каналов (использовались делители мощности). Самым простым опытом, иллюстрирующим принцип сложения амплитуд, является эксперимент, в котором три узконаправленные антенны синфазно работают на одну приемную, к которой подключен ваттметр. Результат этого опыта: мощность фиксируемая на приемной антенне в девять раз больше чем дает каждая передающая антенна в отдельности. На приемной антенне складываются амплитуды (три) от трех передающих антенн, а мощность приема пропорциональна квадрату амплитуды. То есть при сложении трех синфазных амплитуд мощность приема возрастает в девять раз!

Следует заметить, что интерференции в воздухе (вакууме) является многофазной, по ряду признаков отличается от интерференции в фидерных линиях, объемных резонаторах, стоячих волнах в катушках и пр. В так называемой, классической картине интерференции наблюдается как сложение, так и вычитание амплитуд электромагнитного поля. Поэтому, в целом, при многофазной интерференции нарушение закона сохранения энергии носит локальный характер. В резонаторе или при наличии стоячих волн в фидерных линиях, наложение электромагнитных волн не сопровождается перераспределением электромагнитного поля в пространстве. При этом в четверть и полуволновых резонаторах происходит только сложение амплитуд полей. Энергия сложенных в одном объеме волн происходит энергию прошедшую от генератора в резонатор.

Экспериментальные исследования полностью подтверждают теорию трансгенерации. Из практики СВЧ известно, что даже при обычном электрическом пробое в фидерных линиях мощность превосходит мощность подаваемую от генератора. Например волновод, рассчитанный на мощность СВЧ 100 МВт, пробивается сложением двух СВЧ мощности по 25 МВт каждая, - при сложении двух встречных волн СВЧ в волноводе. Это может произойти при отражении мощности СВЧ от конца линии.

Разработаны ряд оригинальных принципиальных схем для генерации энергии с использованием различных типов интерференции. Основной диапазон частот - это метровый и дециметровый (СВЧ), вплоть до сантиметрового. На основе трансгенерации можно создать компактные автономные источники электроэнергии.