Cro какой оксид кислотный или основной. Хром — общая характеристика элемента, химические свойства хрома и его соединений. Как получают и где применяют

Открытие хрома относится к периоду бурного развития химико-аналитических исследований солей и минералов. В России химики проявляли особый интерес к анализу минералов, найденных в Сибири и почти неизвестных в Западной Европе. Одним из таких минералов была сибирская красная свинцовая руда (крокоит), описанная еще Ломоносовым. Минерал исследовался, но ничего, кроме окислов свинца, железа и алюминия в нем не было найдено. Однако в 1797 году Вокелен, прокипятив тонко измельченный образец минерала с поташом и осадив карбонат свинца, получил раствор, окрашенный в оранжево – красный цвет. Из этого раствора он выкристаллизовал рубиново-красную соль, из которой выделили окисел и свободный металл, отличный от всех известных металлов. Вокелен назвал его Хром (Chrome ) от греческого слова - окраска, цвет; правда здесь имелось в виду свойство не металла, а его ярко окрашенных солей .

Нахождение в природе.

Важнейшей рудой хрома, имеющей практическое значение, является хромит, приблизительный состав которого отвечает формуле FeCrO 4.

Он встречается в Малой Азии, на Урале, в Северной Америке, на юге Африки. Техническое значение имеет также вышеназванный минерал крокоит – PbCrO 4 . В природе встречаются также оксид хрома (3) и некоторые другие его соединения. В земной коре содержание хрома в пересчете на металл составляет 0,03%. Хром обнаружен на Солнце, звездах, метеоритах.

Физические свойства .

Хром – белый, твердый и хрупкий металл, исключительно химически стойкий к воздействию кислот и щелочей. На воздухе он окисляется, имеет на поверхности тонкую прозрачную пленку оксида. Хром имеет плотность 7,1 г/см 3 , его температура плавления составляет +1875 0 С.

Получение.

При сильном нагреве хромистого железняка с углем происходит восстановление хрома и железа:

FeO * Cr 2 O 3 + 4C = 2Cr + Fe + 4CO

В результате этой реакции образуется сплав хрома с железом, отличающийся высокой прочностью. Для получения чистого хрома, его восстанавливают из оксида хрома(3) алюминием:

Cr 2 O 3 + 2Al = Al 2 O 3 + 2Cr

В данном процессе обычно используют два оксида – Cr 2 O 3 и CrO 3

Химические свойства.

Благодаря тонкой защитной пленке оксида, покрывающей поверхность хрома, он весьма устойчив к воздействию агрессивных кислот и щелочей. Хром не реагирует с концентрированными азотной и серной кислотами, а также с фосфорной кислотой. Со щелочами хром вступает во взаимодействие при t = 600-700 о C. Однако хром взаимодействует с разбавленными серной и соляной кислотами, вытесняя водород:

2Cr + 3H 2 SO 4 = Cr 2 (SO 4) 3 + 3H 2
2Cr + 6HCl = 2CrCl 3 + 3H 2

При высокой температуре хром горит в кислороде, образуя оксид(III).

Раскаленный хром реагирует с парами воды:

2Cr + 3H 2 O = Cr 2 O 3 + 3H 2

Хром при высокой температуре реагирует также с галогенами, галоген - водородами, серой, азотом, фосфором, углем, кремнием, бором, например:

Cr + 2HF = CrF 2 + H 2
2Cr + N2 = 2CrN
2Cr + 3S = Cr 2 S 3
Cr + Si = CrSi

Вышеуказанные физические и химические свойства хрома нашли свое применение в различных областях науки и техники. Так, например, хром и его сплавы используются для получения высокопрочных, коррозионно-стойких покрытий в машиностроении. Сплавы в виде феррохрома используются в качестве металлорежущих инструментов. Хромированные сплавы нашли применение в медицинской технике, при изготовлении химического технологического оборудования.

Положение хрома в периодической системе химических элементов:

Хром возглавляет побочную подгруппу VI группы периодической системы элементов. Его электронная формула следующая:

24 Cr IS 2 2S 2 2P 6 3S 2 3P 6 3d 5 4S 1

В заполнении орбиталей электронами у атома хрома нарушается закономерность, согласно которой сначала должна была бы заполнятся 4S – орбиталь до состояния 4S 2 . Однако, вследствие того, что 3d – орбиталь занимает в атоме хрома более выгодное энергетическое положение, происходит ее заполнение до значения 4d 5 . Такое явление наблюдается у атомов некоторых других элементов побочных подгрупп. Хром может проявлять степени окисления от +1 до +6. Наиболее устойчивыми являются cоединения хрома со степенями окисления +2, +3, +6.

Соединения двухвалентного хрома.

Оксид хрома (II) CrO – пирофорный черный порошок (пирофорность – способность в тонкораздробленном состоянии воспламенятся на воздухе). CrO растворяется в разбавленной соляной кислоте:

CrO + 2HCl = CrCl 2 + H 2 O

На воздухе при нагревании свыше 100 0 С CrO превращается в Cr 2 O 3 .

Соли двухвалентного хрома образуются при растворении металлического хрома в кислотах. Эти реакции проходят в атмосфере малоактивного газа (например H 2), т.к. в присутствии воздуха легко происходит окисление Cr(II) до Cr(III).

Гидроксид хрома получают в виде желтого осадка при действии раствора щелочи на хлорид хрома (II):

CrCl 2 + 2NaOH = Cr(OH) 2 + 2NaCl

Cr(OH) 2 обладает основными свойствами, является восстановителем. Гидратированный ион Cr2+ окрашен в бледно – голубой цвет. Водный раствор CrCl 2 имеет синюю окраску. На воздухе в водных растворах соединения Cr(II) переходят в соединения Cr(III). Особенно это ярко выражается у гидроксида Cr(II):

4Cr(OH) 2 + 2H 2 O + O 2 = 4Cr(OH) 3

Соединения трехвалентного хрома.

Оксид хрома (III) Cr 2 O 3 – тугоплавкий порошок зеленого цвета. По твердости близок к корунду. В лаборатории его можно получить нагреванием дихромата аммония:

(NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2

Cr 2 O 3 – амфотерный оксид, при сплавлении со щелочами образует хромиты: Cr 2 O 3 + 2NaOH = 2NaCrO 2 + H 2 O

Гидроксид хрома также является амфотерным соединением:

Cr(OH) 3 + HCl = CrCl 3 + 3H 2 O
Cr(OH) 3 + NaOH = NaCrO 2 + 2H 2 O

Безводный CrCl 3 имеет вид листочков темно-фиолетового цвета, совершенно нерастворим в холодной воде, при кипячении он растворяется очень медленно. Безводный сульфат хрома (III) Cr 2 (SO 4) 3 розового цвета, также плохо растворим в воде. В присутствии восстановителей образует фиолетовый сульфат хрома Cr 2 (SO 4) 3 *18H 2 O. Известны также зеленые гидраты сульфата хрома, содержащие меньшее количество воды. Хромовые квасцы KCr(SO 4) 2 *12H 2 O выкристаллизовываются из растворов, содержащих фиолетовый сульфат хрома и сульфат калия. Раствор хромовых квасцов при нагревании становится зеленым благодаря образованию сульфатов.

Реакции с хромом и его соединениями

Почти все соединения хрома и их растворы интенсивно окрашены. Имея бесцветный раствор или белый осадок, мы можем с большой долей вероятности сделать вывод об отсутствии хрома.

  1. Сильно нагреем в пламени горелки на фарфоровой чашке такое количество бихромата калия, которое поместится на кончике ножа. Соль не выделит кристаллизационной воды, а расплавится при температуре около 400 0 С с образование темной жидкости. Погреем ее еще несколько минут на сильном пламени. После охлаждения на черепке образуется зеленый осадок. Часть его растворим в воде (она приобретает желтый цвет), а другую часть оставим на черепке. Соль при нагревании разложилась, в результате образовался растворимый желтый хромат калия K 2 CrO 4 и зеленый Cr 2 O 3 .
  2. Растворим 3г порошкообразного бихромата калия в 50мл воды. К одной части добавим немного карбоната калия. Он растворится с выделением CO 2 , а окраска раствора станет светло – желтой. Из бихромата калия образуется хромат. Если теперь по порциям добавить 50% раствор серной кислоты, то снова появится красно – желтая окраска бихромата.
  3. Нальем в пробирку 5мл. раствора бихромата калия, прокипятим с 3мл концентрированной соляной кислоты под тягой. Из раствора выделяется желто-зеленый ядовитый газообразный хлор, потому, что хромат окислит HCl до Cl 2 и H 2 O. Сам хромат превратится в зеленый хлорид трехвалентного хрома. Его можно выделить выпариванием раствора, а потом, сплавив с содой и селитрой, перевести в хромат.
  4. При добавлении раствора нитрата свинца выпадает желтый хромат свинца; при взаимодействии с раствором нитрата серебра образуется красно – коричневый осадок хромата серебра.
  5. Добавим пероксид водорода к раствору бихромата калия и подкислим раствор серной кислотой. Раствор приобретает глубокий синий цвет благодаря образованию пероксида хрома. Пероксид при взбалтывании с некоторым количеством эфира перейдет в органический растворитель и окрасит его в голубой цвет. Данная реакция специфична для хрома и очень чувствительна. С ее помощью можно обнаружить хром в металлах и сплавах. Прежде всего необходимо растворить металл. При длительном кипячении с 30% - ной серной кислотой (можно добавить и соляную кислоту) хром и многие стали частично растворяются. Полученный раствор содержит сульфат хрома (III). Чтобы можно было провести реакцию обнаружения, сначала нейтрализуем его едким натром. В осадок выпадает серо-зеленый гидроксид хрома (III), который растворится в избытке NaOH и образует зеленый хромит натрия. Профильтруем раствор и добавим 30% -ый пероксид водорода. При нагревании раствор окрасится в желтый цвет, так как хромит окислится до хромата. Подкисление приведет к появлению голубой окраски раствора. Окрашенное соединение можно экстрагировать, встряхивая с эфиром.

Аналитические реакции на ионы хрома.

  1. К 3-4 каплям раствора хлорида хрома CrCl 3 прибавьте 2М раствор NaOH до растворения первоначально выпавшего осадка. Обратите внимание на цвет образовавшегося хромита натрия. Нагрейте полученный раствор на водяно бане. Что при этом происходит?
  2. К 2-3 каплям р-ра CrCl 3 прибавьте равный объем 8М раствора NaOH и 3-4 капли 3% р-ра H 2 O 2 . Нагрейте реакционную смесь на водяной бане. Что при этом происходит? Какой осадок образуется, если полученный окрашеный раствор нейтрализовать, добавить к нему CH 3 COOH, а затем Pb(NO 3) 2 ?
  3. Налейте в пробирку по 4-5 капель растворов сульфата хрома Cr 2 (SO 4) 3 , IMH 2 SO 4 и KMnO 4 . Нагрейте реакционную смест в течение нескольких минут на водяной бане. Обратите внимание на изменение окраски раствора. Чем оно вызвано?
  4. К 3-4 каплям подкисленного азотной кислотой раствора K 2 Cr 2 O 7 прибавьте 2-3 капли раствора H 2 O 2 и перемешайте. Появляющиеся синее окрашивание раствора обусловлено возникновением надхромовой кислоты H 2 CrO 6:

Cr 2 O 7 2- + 4H 2 O 2 + 2H + = 2H 2 CrO 6 + 3H 2 O

Обратите внимание на на быстрое разложение H 2 CrO 6:

2H 2 CrO 6 + 8H+ = 2Cr 3+ + 3O 2 + 6H 2 O
синий цвет зеленый цвет

Надхромовая кислота значительно более устойчива в органических растворителях.

  1. К 3-4 каплям подкисленного азотной кислотой раствора K 2 Cr 2 O 7 прибавьте 5 капель изоамилового спирта, 2-3 капли раствора H 2 O 2 и взболтайте реакционную смесь. Всплывающий на верх слой органического растворителя окрашен в ярко-синий цвет. Окраска исчезает очень медленно. Сравните устойчивость H 2 CrO 6 в органической и водных фазах.
  2. При взаимодействии CrO 4 2- и ионами Ba 2+ выпадает желтый осадок хромата бария BaCrO 4 .
  3. Нитрат серебра образует с ионами CrO 4 2- осадок хромата серебра кирпично-красного цвета.
  4. Возьмите три пробирки. В одну из них поместите 5- 6 капель раствора K 2 Cr 2 O 7 , во вторую – такой же объем раствора K 2 CrO 4 , а в третью – по три капли обоих растворов. Затем добавте в каждую пробирку по три капли раствора иодида калия. Объясните полученный результат. Подкислите раствор во второй пробирке. Что при этом происходит? Почему?

Занимательные опыты с соединениями хрома

  1. Смесь CuSO 4 и K 2 Cr 2 O 7 при добавлении щелочи становится зеленой, а в присутствии кислоты становится желтой. Нагревая 2мг глицерина с небольшим количеством (NH 4) 2 Cr 2 O 7 с последующим добавлением спирта, после фильтрования получается ярко-зеленый раствор, который при добавлении кислоты становится желтым, а в нейтральной или щелочной среде становится зеленым.
  2. Поместить в центр консервной банки с термитом «рубиновую смесь» - тщательно растертый и помещенный в алюминиевую фольгу Al 2 O 3 (4,75г) с добавкой Cr 2 O 3 (0,25г). Чтобы банка подольше не остывала, необходимо закопать под верхний обрез в песок, а после поджигания термита и начала реакции, накрыть ее железным листом и засыпать песком. Банку выкопать через сутки. В итоге образуется красно – рубиновый порошок.
  3. 10г бихромата калия растирают с 5г нитрата натрия или калия и 10г сахара. Смесь увлажняют и смешивают с коллодием. Если порошок спрессовать в стеклянной трубке, а затем вытолкнуть палочку и поджечь ее с торца, то начнет выползать «змея», сначала черная, а после охлаждения - зеленая. Палочка диаметром 4 мм горит со скоростью около 2мм в секунду и удлиняется в 10 раз.
  4. Если смешать растворы сульфата меди и дихромата калия и добавить немного раствора аммиака, то выпадет аморфный коричневый осадок состава 4СuCrO 4 * 3NH 3 * 5H 2 O, который растворяется в соляной кислоте с образованием желтого раствора, а в избытке аммиака получается зеленый раствор. Если далее к этому раствору добавить спирт, то выпадет зеленый осадок, который после фильтрации становится синим, а после высушивания – сине-фиолетовым с красными блестками, хорошо видимыми при сильном освещении.
  5. Оставшийся после опытов «вулкан» или «фараоновы змеи» оксид хрома можно регенерировать. Для этого надо сплавить 8г Cr 2 O 3 и 2г Na 2 CO 3 и 2,5г KNO 3 и обработать остывший сплав кипятком. Получается растворимый хромат, который можно превратить и в другие соединения Cr(II) и Cr(VI), в том числе и исходный дихромат аммония.

Примеры окислительно – восстановительных переходов с участием хрома и его соединений

1. Cr 2 O 7 2- -- Cr 2 O 3 -- CrO 2 - -- CrO 4 2- -- Cr 2 O 7 2-

a) (NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 Oб) Cr 2 O 3 + 2NaOH = 2NaCrO 2 + H 2 O
в) 2NaCrO 2 + 3Br 2 + 8NaOH = 6NaBr +2Na 2 CrO 4 + 4H 2 O
г) 2Na 2 CrO 4 + 2HCl = Na 2 Cr 2 O 7 + 2NaCl + H 2 O

2. Cr(OH) 2 -- Cr(OH) 3 -- CrCl 3 -- Cr 2 O 7 2- -- CrO 4 2-

а) 2Cr(OH) 2 + 1/2O 2 + H 2 O = 2Cr(OH) 3
б) Cr(OH) 3 + 3HCl = CrCl 3 + 3H 2 O
в) 2CrCl 3 + 2KMnO 4 + 3H 2 O = K 2 Cr 2 O 7 + 2Mn(OH) 2 + 6HCl
г) K 2 Cr 2 O 7 + 2KOH = 2K 2 CrO 4 + H 2 O

3. CrO -- Cr(OH) 2 -- Cr(OH) 3 -- Cr(NO 3) 3 -- Cr 2 O 3 -- CrO - 2
Cr 2+

а) CrO + 2HCl = CrCl 2 + H 2 O
б) CrO + H 2 O = Cr(OH) 2
в) Cr(OH) 2 + 1/2O 2 + H 2 O = 2Cr(OH) 3
г) Cr(OH) 3 + 3HNO 3 = Cr(NO 3) 3 + 3H 2 O
д) 4Сr(NO 3) 3 = 2Cr 2 O 3 + 12NO 2 + O 2
е) Cr 2 O 3 + 2 NaOH = 2NaCrO 2 + H 2 O

Элемент хром в роли художника

Химики довольно часто обращались к проблеме создания искусственных пигментов для живописи. В XVIII-XIXвв была разработана технология получения многих живописных материалов. Луи Никола Воклен в 1797г., обнаруживший в сибирской красной руде ранее неизвестный элемент хром, приготовил новую, замечательно устойчивую краску – хромовую зелень. Хромофором ее является водный оксид хрома (III). Под названием « изумрудная зеленая» ее начали выпускать в 1837 году. Позже Л.Вокелен предложил несколько новых красок: баритовую, цинковую и хромовые желтые. Со временем они были вытеснены более стойкими желтыми, оранжевыми пигментами на основе кадмия.

Зеленая хромовая – самая прочная и светостойкая краска, не поддающаяся воздействию атмосферных газов. Растертая на масле хромовая зелень обладает большой кроющей силой и способна к быстрому высыханию, поэтому с XIX в. ее широко применяют в живописи. Огромное значение она имеет в росписи фарфора. Дело в том, что фарфоровые изделия могут декорироваться как подглазурной, так и надглазурной росписью. В первом случае краски наносят на поверхность лишь слегка обожженного изделия, которое затем покрывают слоем глазури. Далее следует основной, высокотемпературный обжиг: для спекания фарфоровой массы и оплавления глазури изделия нагревают до 1350 – 1450 0 С. Столь высокую температуру без химических изменений выдерживают очень немногие краски, а в старину таких вообще было только две – кобальтовая и хромовая. Черный оксид кобальта, нанесенный на поверхность фарфорового изделия, при обжиге сплавляется с глазурью, химически взаимодействуя с ней. В результате образуются ярко-синие силикаты кобальта. Такую декарированную кобальтом синюю фарфоровую посуду все хорошо знают. Оксид хрома (III) не взаимодействует химически с компонентами глазури и просто залегает между фарфоровыми черепками и прозрачной глазурью «глухим» слоем.

Помимо хромовой зелени художники применяют краски, полученные из волконскоита. Этот минерал из группы монтмориллонитов (глинистый минерал подкласса сложных силикатов Na(Mo,Al), Si 4 O 10 (OH) 2 был обнаружен в 1830г. русским минералогом Кеммерером и назван в честь М.Н Волконской – дочери героя битвы при Бородино генерала Н.Н. Раевского, жены декабриста С.Г.Волконского. Волконскоит представляет собой глину, содержащую до 24% оксида хрома, а так же оксиды аллюминея и железа (III). Непостоянство состава минерала, встечающегося на Урале, в Пермской и Кировской областях, обусловливает его разнообразную окраску – от цвета зимней потемневшей пихты до ярко-зеленого цвета болотной лягушки.

Пабло Пикассо обращался к геологам нашей страны с просьбой изучить запасы волконскоита, дающего краску неповторимо свежего тона. В настоящее время разработан способ получения искусственного волконскоита. Интересно отметить, что по данным современных исследований, русские иконописцы использовали краски из этого материала еще в средние века, задолго до его «официального» открытия. Известной популярностью пользовалась у художников и зелень Гинье (создана в 1837г.), хромоформ которой является гидрат окиси хрома Cr 2 O 3 * (2-3) H 2 O, где часть воды химически связана, а часть адсорбирована. Этот пигмент придает краске изумрудный оттенок.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

«Национальный исследовательский Томский политехнический Университет»

Институт природных ресурсов Геоэкология и геохимия

Хром

По дисциплине:

Химия

Выполнил:

студент группы 2Г41 Ткачева Анастасия Владимировна 29.10.2014

Проверил:

преподаватель Стась Николай Федорович

Положение в периодической системе

Хром - элемент побочной подгруппы 6-ой группы 4-го периода периодической системы химических элементов Д. И. Менделеева с атомным номером 24. Обозначается символом Cr (лат. Chromium ). Простое вещество хром - твёрдый металлголубовато-белого цвета. Хром иногда относят к чёрным металлам.

Строение атома

17 Cl)2)8)7 - схема строения атома

1s2s2p3s3p- электронная формула

Атом располагается в III периоде, и имеет три энергетических уровня

Атом располагается в VII в группе, в главной подгруппе – на внешнем энергетическом уровне 7 электронов

Свойства элемента

Физические свойства

Хром - белый блестящий металл с кубической объемно-центрированной решеткой, а = 0,28845 нм, отличающийся твердостью и хрупкостью, с плотностью 7,2 г/см 3 , один из самых твердых чистых металлов (уступает только бериллию, вольфраму и урану), с температурой плавления 1903 град. И с температурой кипения около 2570 град. С. На воздухе поверхность хрома покрывается оксидной пленкой, которая предохраняет его от дальнейшего окисления. Добавка углерода к хрому еще больше увеличивает его твердость.

Химические свойства

Хром при обычных условиях – инертный металл, при нагревании становится довольно активным.

    Взаимодействие с неметаллами

При нагревании выше 600°С хром сгорает в кислороде:

4Cr + 3O 2 = 2Cr 2 O 3 .

С фтором реагирует при 350°С, с хлором – при 300°С, с бромом – при температуре красного каления, образуя галогениды хрома (III):

2Cr + 3Cl 2 = 2CrCl 3 .

С азотом реагирует при температуре выше 1000°С с образованием нитридов:

2Cr + N 2 = 2CrN

или 4Cr + N 2 = 2Cr 2 N.

2Cr + 3S = Cr 2 S 3 .

Реагирует с бором, углеродом и кремнием с образованием боридов, карбидов и силицидов:

Cr + 2B = CrB 2 (возможно образование Cr 2 B, CrB, Cr 3 B 4 , CrB 4),

2Cr + 3C = Cr 2 C 3 (возможно образование Cr 23 C 6 , Cr 7 B 3),

Cr + 2Si = CrSi 2 (возможно образование Cr 3 Si, Cr 5 Si 3 , CrSi).

С водородом непосредственно не взаимодействует.

    Взаимодействие с водой

В тонкоизмельченном раскаленном состоянии хром реагирует с водой, образуя оксид хрома (III) и водород:

2Cr + 3H 2 O = Cr 2 O 3 + 3H 2

    Взаимодействие с кислотами

В электрохимическом ряду напряжений металлов хром находится до водорода, он вытесняет водород из растворов неокисляющих кислот:

Cr + 2HCl = CrCl 2 + H 2 ;

Cr + H 2 SO 4 = CrSO 4 + H 2 .

В присутствии кислорода воздуха образуются соли хрома (III):

4Cr + 12HCl + 3O 2 = 4CrCl 3 + 6H 2 O.

Концентрированная азотная и серная кислоты пассивируют хром. Хром может растворяться в них лишь при сильном нагревании, образуются соли хрома (III) и продукты восстановления кислоты:

2Cr + 6H 2 SO 4 = Cr 2 (SO 4) 3 + 3SO 2 + 6H 2 O;

Cr + 6HNO 3 = Cr(NO 3) 3 + 3NO 2 + 3H 2 O.

    Взаимодействие с щелочными реагентами

В водных растворах щелочей хром не растворяется, медленно реагирует с расплавами щелочей с образованием хромитов и выделением водорода:

2Cr + 6KOH = 2KCrO 2 + 2K 2 O + 3H 2 .

Реагирует с щелочными расплавами окислителей, например хлоратом калия, при этом хром переходит в хромат калия:

Cr + KClO 3 + 2KOH = K 2 CrO 4 + KCl + H 2 O.

    Восстановление металлов из оксидов и солей

Хром – активный металл, способен вытеснять металлы из растворов их солей: 2Cr + 3CuCl 2 = 2CrCl 3 + 3Cu.

Свойства простого вещества

Устойчив на воздухе за счёт пассивирования. По этой же причине не реагирует с серной и азотной кислотами. При 2000 °C сгорает с образованием зелёного оксида хрома(III) Cr 2 O 3 , обладающего амфотерными свойствами.

Синтезированы соединения хрома с бором (бориды Cr 2 B, CrB, Cr 3 B 4 , CrB 2 , CrB 4 и Cr 5 B 3), с углеродом (карбиды Cr 23 C 6 , Cr 7 C 3 и Cr 3 C 2), c кремнием (силициды Cr 3 Si, Cr 5 Si 3 и CrSi) и азотом (нитриды CrN и Cr 2 N).

Соединения Cr(+2)

Степени окисления +2 соответствует основный оксид CrO (чёрный). Соли Cr 2+ (растворы голубого цвета) получаются при восстановлении солей Cr 3+ или дихроматов цинком в кислой среде («водородом в момент выделения»):

Все эти соли Cr 2+ - сильные восстановители вплоть до того, что при стоянии вытесняют водород из воды. Кислородом воздуха, особенно в кислой среде, Cr 2+ окисляется, в результате чего голубой раствор быстро зеленеет.

Коричневый или желтый гидроксид Cr(OH) 2 осаждается при добавлении щелочей к растворам солей хрома(II).

Синтезированы дигалогениды хрома CrF 2 , CrCl 2 , CrBr 2 и CrI 2

Соединения Cr(+3)

Степени окисления +3 соответствует амфотерный оксид Cr 2 O 3 и гидроксид Cr(OH) 3 (оба - зелёного цвета). Это - наиболее устойчивая степень окисления хрома. Соединения хрома в этой степени окисления имеют цвет от грязно-лилового (ион 3+) до зелёного (в координационной сфере присутствуют анионы).

Cr 3+ склонен к образованию двойных сульфатов вида M I Cr(SO 4) 2 ·12H 2 O (квасцов)

Гидроксид хрома (III) получают, действуя аммиаком на растворы солей хрома (III):

Cr+3NH+3H2O→Cr(OH)↓+3NH

Можно использовать растворы щелочей, но в их избытке образуется растворимый гидроксокомплекс:

Cr+3OH→Cr(OH)↓

Cr(OH)+3OH→

Сплавляя Cr 2 O 3 со щелочами получают хромиты:

Cr2O3+2NaOH→2NaCrO2+H2O

Непрокаленный оксид хрома(III) растворяется в щелочных растворах и в кислотах:

Cr2O3+6HCl→2CrCl3+3H2O

При окислении соединений хрома(III) в щелочной среде образуются соединения хрома(VI):

2Na+3HO→2NaCrO+2NaOH+8HO

То же самое происходит при сплавлении оксида хрома (III) со щелочью и окислителями, или со щелочью на воздухе (расплав при этом приобретает жёлтую окраску):

2Cr2O3+8NaOH+3O2→4Na2CrO4+4H2O

Соединения хрома (+4) [

При осторожном разложении оксида хрома(VI) CrO 3 в гидротермальных условиях получают оксид хрома(IV) CrO 2 , который является ферромагнетикоми обладает металлической проводимостью.

Среди тетрагалогенидов хрома устойчив CrF 4 , тетрахлорид хрома CrCl 4 существует только в парах.

Соединения хрома (+6)

Степени окисления +6 соответствует кислотный оксид хрома (VI) CrO 3 и целый ряд кислот, между которыми существует равновесие. Простейшие из них - хромовая H 2 CrO 4 и двухромовая H 2 Cr 2 O 7 . Они образуют два ряда солей: желтые хроматы и оранжевые дихроматы соответственно.

Оксид хрома (VI) CrO 3 образуется при взаимодействии концентрированной серной кислоты с растворами дихроматов. Типичный кислотный оксид, при взаимодействии с водой он образует сильные неустойчивые хромовые кислоты: хромовую H 2 CrO 4 , дихромовую H 2 Cr 2 O 7 и другие изополикислоты с общей формулой H 2 Cr n O 3n+1 . Увеличение степени полимеризации происходит с уменьшением рН, то есть увеличением кислотности:

2CrO+2H→Cr2O+H2O

Но если к оранжевому раствору K 2 Cr 2 O 7 прилить раствор щёлочи, как окраска вновь переходит в жёлтую так как снова образуется хромат K 2 CrO 4:

Cr2O+2OH→2CrO+HO

До высокой степени полимеризации, как это происходит у вольфрама и молибдена, не доходит, так как полихромовая кислота распадается на оксид хрома(VI) и воду:

H2CrnO3n+1→H2O+nCrO3

Растворимость хроматов примерно соответствует растворимости сульфатов. В частности, желтый хромат бария BaCrO 4 выпадает при добавлении солей бария, как к растворам хроматов, так и к растворам дихроматов:

Ba+CrO→BaCrO↓

2Ba+CrO+H2O→2BaCrO↓+2H

Образование кроваво-красного малорастворимого хромата серебра используют для обнаружения серебра в сплавах при помощи пробирной кислоты.

Известны пентафторид хрома CrF 5 и малоустойчивый гексафторид хрома CrF 6 . Также получены летучие оксигалогениды хрома CrO 2 F 2 и CrO 2 Cl 2 (хромилхлорид).

Соединения хрома(VI) - сильные окислители, например:

K2Cr2O7+14HCl→2CrCl3+2KCl+3Cl2+7H2O

Добавление к дихроматам перекиси водорода, серной кислоты и органического растворителя (эфира) приводит к образованию синего пероксида хрома CrO 5 L (L - молекула растворителя), который экстрагируется в органический слой; данная реакция используется как аналитическая.

Хром образует три оксида: CrO, Cr 2 O 3 , CrO 3 .

Оксид хрома (II) CrO - пирофорный черный порошок. Обла­дает основными свойствами.

В окислительно-восстановительных реакциях ведет себя как восстановитель:

CrO получают разложением в вакууме карбонила хрома Cr(СО) 6 при 300°С.

Оксид хрома (III) Cr 2 O 3 - тугоплавкий порошок зеленого цвета. По твердости близок к корунду, поэтому его вводят в состав полирующих средств. Образуется при взаимодействии Cr и O 2 при высокой температуре. В лаборатории оксид хрома (III) можно получить нагреванием дихромата аммония:

(N -3 H 4) 2 Cr +6 2 O 7 =Cr +3 2 O 3 +N 0 2 ­+4Н 2 О

Оксид хрома (III) обладает амфотерными свойствами. При взаимодействии с кислотами образуются соли хрома (III): Cr 2 O 3 +3H 2 SO 4 =Cr 2 (SO 4) 3 +3Н 2 О

При взаимодействии с щелочами в расплаве образуются со­единения хрома (III) - хромиты (в отсутствие кислорода): Cr 2 O 3 +2NaOH=2NaCrO 2 +Н 2 О

В воде оксид хрома (III) нерастворим.

В окислительно-восстановительных реакциях оксид хрома (III) ведет себя как восстановитель:

Оксид хрома (VI) CrO 3 - хромовый ангидрид, представляет собой темно-красные игольчатые кристаллы. При нагревании около 200°С разлагается:

4CrO 3 =2Cr 2 O 3 +3O 2 ­

Легко растворяется в воде, имея кислотный характер, образу­ет хромовые кислоты. С избытком воды образуется хромовая кис­лота H 2 CrO 4:

CrO 3 +Н 2 O=Н 2 CrO 4

При большой концентрации CrO 3 образуется дихромовая кис­лота Н 2 Cr 2 О 7:

2CrO 3 +Н 2 О=Н 2 Cr 2 О 7

которая при разбавлении переходит в хромовую кислоту:

Н 2 Cr 2 О 7 +Н 2 О=2Н 2 CrO 4

Хромовые кислоты существуют только в водном растворе, ни одна из этих кислот в свободном состоянии не выделена. Однако соли их весьма устойчивы.

Оксид хрома (VI) является сильным окислителем:

3S+4CrO 3 =3SO 2 ­+2Cr 2 O 3

Окисляет иод, серу, фосфор, уголь, превращаясь в Cr 2 O 3 . Получают CrO 3 действием избытка концентрированной сер­ной кислоты на насыщенный водный раствор дихромата натрия: Na 2 Cr 2 O 7 +2H 2 SO 4 =2CrO 3 +2NaHSO 4 +H 2 O Следует отметить сильную токсичность оксида хрома (VI).


3.2.1; 3.3.1; 3.7.1; 3.8.1

3.2.1, 3.3.1; 3.4; 3.5

5. Ограничение срока действия снято по протоколу N 3-93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 5-6-93)

6. ПЕРЕИЗДАНИЕ (ноябрь 1998 г.) с Изменениями N 1, 2, утвержденными в марте 1984 г., декабре 1988 г. (ИУС 7-84, 3-89)


Настоящий стандарт распространяется на оксид хрома (VI) (хромовый ангидрид), который представляет собой темно-коричнево-красные игольчатые или призматические кристаллы; растворим в воде, гигроскопичен.

Формула: СrO.

Молекулярная масса (по международным атомным массам 1971 г.) - 99,99.



1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.1. Оксид хрома (VI) должен быть изготовлен в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.

(Измененная редакция, Изм. N 2).

1.2. По химическим показателям оксид хрома (VI) должен соответствовать нормам, указанным в табл.1.

Таблица 1

Наименование показателя

Чистый для анализа
(ч.д.а.)
ОКП 26 1121 1062 08

Чистый (ч.)
ОКП 26 1121 1061 09

1. Массовая доля оксида хрома (VI) (СrО), %, не менее

2. Массовая доля нерастворимых в воде веществ, %, не более

3. Массовая доля нитратов (NO), %, не более

Не нормируется

4. Массовая доля сульфатов (SO), %, не более

5. Массовая доля хлоридов (Сl), %, не более

6. Массовая доля суммы алюминия, бария, железа и кальция (Аl+Ва+Fe+Са), %, не более

7. Массовая доля суммы калия и натрия (K ± Na), %, не более




2. ПРАВИЛА ПРИЕМКИ

2.1. Правила приемки - по ГОСТ 3885 .

2.2. Определение массовой доли нитратов и суммы алюминия, бария, железа и кальция изготовитель проводит в каждой 10-й партии.

(Введен дополнительно, Изм. N 2).

3. МЕТОДЫ АНАЛИЗА

3.1а. Общие указания по проведению анализа - по ГОСТ 27025 .

При взвешивании применяют лабораторные весы по ГОСТ 24104 * 2-го класса точности с наибольшим пределом взвешивания 200 г и 3-го класса точности с наибольшим пределом взвешивания 500 г или 1 кг или 4-го класса точности с наибольшим пределом взвешивания 200 г.
_______________
* Действует ГОСТ 24104-2001 . - Примечание "КОДЕКС".

Допускается применение импортной посуды по классу точности и реактивов по качеству не ниже отечественных.

3.1. Пробы отбирают по ГОСТ 3885 .

Масса средней пробы должна быть не менее 150 г.

3.2. Определение массовой доли оксида хрома (VI)

3.1а-3.2. (Измененная редакция, Изм. N 2).

3.2.1. Реактивы, растворы и посуда

Вода дистиллированная по ГОСТ 6709 .

Калий йодистый по ГОСТ 4232 , раствор с массовой долей 30%, свежеприготовленный.

Кислота соляная по ГОСТ 3118 .

Крахмал растворимый по ГОСТ 10163 , раствор с массовой долей 0,5%.

ГОСТ 27068 , раствор концентрации (NaSO·5НО)=0,1 моль/дм (0,1 н.); готовят по ГОСТ 25794.2 .

Бюретка вместимостью 50 см с ценой деления 0,1 см.

Колба Кн-1-500-29/32 ТХС по ГОСТ 25336 .

Колба 2-500-2 по ГОСТ 1770 .

Пипетки вместимостью 2, 10 и 25 см.

Секундомер.

Цилиндр 1(3)-100 по ГОСТ 1770 .

(Измененная редакция, Изм. N 1,

3.2.2. Проведение анализа

Около 2,5000 г препарата помещают в мерную колбу, растворяют в небольшом количестве воды, доводят объем раствора водой до метки и тщательно перемешивают.

25 см полученного раствора переносят в коническую колбу, прибавляют 100 см воды, 5 см соляной кислоты, 10 см раствора йодистого калия, перемешивают и оставляют в темноте на 10 мин. Затем смывают пробку водой, прибавляют 100 см воды и титруют выделившийся йод раствором 5-водного серноватистокислого натрия, прибавляя в конце титрования 1 см раствора крахмала, до зеленой окраски.

(Измененная редакция, Изм. N 2).

3.2.3. Обработка результатов

Массовую долю оксида хрома () в процентах вычисляют по формуле

где - объем раствора 5-водного серноватистокислого натрия концентрации точно (NaSO·5НО)=0,1 моль/дм (0,1 н.), израсходованный на титрование, см;

Масса навески, г;

0,003333 - масса оксида хрома (VI), соответствующая 1 см раствора 5-водного серноватистокислого натрия концентрации точно (NaSO·5НО)=0,1 моль/дм (0,1 н.), г.

Одновременно проводят контрольный опыт с теми же количествами растворов йодистого калия и соляной кислоты и при необходимости в результат определения вносят соответствующую поправку.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, абсолютное расхождение между которыми не превышает допускаемого расхождения, равного 0,3%.

Допускаемая абсолютная суммарная погрешность результата анализа ±0,5% при доверительной вероятности =0,95.

(Измененная редакция, Из

м. N 1, 2).

3.3. Определение массовой доли нерастворимых в воде веществ

3.3.1. Реактивы и посуда

Вода дистиллированная по ГОСТ 6709 .

Тигель фильтрующий по ГОСТ 25336 типа ТФ ПОР 10 или ТФ ПОР 16.

Стакан В-1-250 ТХС по ГОСТ 25336 .

Цилиндр 1(3)-250 по ГОСТ 1770 .

3.3.2. Проведение анализа

30,00 г препарата помещают в стакан и растворяют в 100 см воды. Стакан накрывают часовым стеклом и выдерживают в течение 1 ч на водяной бане. Затем раствор фильтруют через фильтрующий тигель, предварительно высушенный до постоянной массы и взвешенный. Результат взвешивания тигля в граммах записывают с точностью до четвертого десятичного знака. Остаток на фильтре промывают 150 см горячей воды и сушат в сушильном шкафу при 105-110 °С до постоянной массы.

Препарат считают соответствующим требованиям настоящего стандарта, если масса остатка после высушивания не будет превышать:

для препарата чистый для анализа - 1 мг,

для препарата чистый - 3 мг.

Допускаемая относительная суммарная погрешность результата анализа для препарата ч.д.а. ±35%, для препарата ч. ±20% при доверительной вероятности =0,95.

3.3.1, 3.3.2. (Измененная редакция, Изм. N 2).

3.4. Определение массовой доли нитратов

Определение проводят по ГОСТ 10671.2 . При этом 1,50 г препарата помещают в колбу Кн-2-100-34(50) ТХС (ГОСТ 25336), прибавляют 100 см воды, перемешивают до растворения, прибавляют 1,5 см концентрированной серной кислоты, осторожно по каплям при перемешивании 2 см этилового спирта ректификованного технического высшего сорта (ГОСТ 18300) и нагревают на кипящей водяной бане в течение 15 мин.

К горячему раствору прибавляют 20 см воды, а затем при перемешивании около 14 см раствора аммиака с массовой долей 10% (ГОСТ 3760) до полного осаждения хрома.

Содержимое колбы медленно нагревают до кипения и кипятят в течение 10 мин, во избежание выбрасывания в колбу помещают кусочки неглазурованного фарфора и стеклянную палочку. Затем жидкость фильтруют через обеззоленный фильтр "синяя лента", применяя лабораторную воронку диаметром 75 мм (ГОСТ 25336) (фильтр предварительно промывают 4-5 раз горячей водой), фильтрат собирают в коническую колбу вместимостью 100 см с меткой на 60 см. Осадок на фильтре промывают три раза горячей водой, собирая промывные воды в ту же колбу. Полученный раствор нагревают до кипения, кипятят в течение 15 мин, охлаждают, доводят объем раствора водой до метки и перемешивают.

Раствор сохраняют для определения хлоридов по п.3.6.

5 см полученного раствора (соответствуют 0,125 г препарата) помещают в коническую колбу вместимостью 50 см, прибавляют 5 см воды и далее определение проводят методом с применением индигокармина.

Препарат считают соответствующим требованиям настоящего стандарта, если наблюдаемая через 5 мин окраска анализируемого раствора не будет слабее окраски раствора, приготовленного одновременно и содержащего в таком же объеме:

для препарата чистый для анализа 0,005 мг NO,

1 см раствора хлористого натрия, 1 см раствора индигокармина и 12 см концентрированной серной

кислоты.

3.5. Определение массовой доли сульфатов

Определение проводят по ГОСТ 10671.5 .

При этом 0,50 г препарата помещают в стакан вместимостью 50 см и растворяют в 5 см воды. Раствор переносят в делительную воронку вместимостью 50 см (ГОСТ 25336), прибавляют 5 см концентрированной соляной кислоты, 10 см трибутилфосфата и взбалтывают.

После расслоения смеси водный слой переносят в другую такую же делительную воронку и при необходимости повторяют обработку водного слоя 5 см трибутилфосфата. Водный слой отделяют в делительную воронку и промывают его 5 см эфира для наркоза. После расслоения водный раствор переносят в выпарительную чашку (ГОСТ 9147), помещают на электрическую водяную баню и выпаривают раствор досуха.

Остаток растворяют в 10 см воды, переносят количественно в коническую колбу вместимостью 50 см (с меткой на 25 см), объем раствора доводят водой до метки, перемешивают и далее определение проводят визуально-нефелометрическим методом.

Препарат считают соответствующим требованиям настоящего стандарта, если наблюдаемая опалесценция анализируемого раствора не будет интенсивнее опалесценции раствора, приготовленного одновременно с анализируемым и содержащего в таком же объеме:

для препарата чистый для анализа - 0,02 мг SO,

для препарата чистый - 0,05 мг SO,

1 см раствора соляной кислоты с массовой долей 10%, 3 см раствора крахмала и 3 см раствора хлористо

го бария.

3.6. Определение массовой доли хлоридов

Определение проводят по ГОСТ 10671.7 . При этом 40 см раствора, полученного по п.3.4. (соответствуют 1 г препарата), помещают в коническую колбу вместимостью 100 см и, если раствор мутный, прибавляют 0,15 см концентрированной серной кислоты (ГОСТ 4204) в анализируемый раствор и раствор сравнения и далее определение проводят фототурбидиметрическим (в объеме 50 см, измеряя оптическую плотность растворов в кюветах с толщиной поглощающего свет слоя 100 мм) или визуально-нефелометрическим методом.

Препарат считают соответствующим требованиям настоящего стандарта, если масса хлоридов не будет превышать:

для препарата чистый для анализа - 0,01 мг,

для препарата чистый - 0,02 мг.

Одновременно в тех же условиях проводят контрольный опыт определения массовой доли хлоридов в применяемых для анализа количествах спирта и раствора аммиака и при их обнаружении в результаты анализа вносят поправку.

При разногласиях в оценке массовой доли хлоридов определение проводят фототурбидиметрическим методом.

3.4-3.6. (Измененная редакция, Изм. N 1, 2).

3.7. Определение массовой доли алюминия, бария, железа и кальция

3.7.1. Аппаратура, реактивы и растворы

Спектрограф ИСП-30 с трехлинзовой системой освещения щели и трехступенчатым ослабителем.

Генератор дуги переменного тока типа ДГ-1 или ДГ-2.

Выпрямитель кремневый типа ВАЗ-275/100.

Микрофотометр типа МФ-2 или МФ-4.

Печь муфельная.

Секундомер.

Спектропроектор типа ПС-18.

Ступки из органического стекла и агатовые.

Тигель фарфоровый по ГОСТ 9147 .

Весы торсионные ВТ-500 с ценой деления 1 мг или другие с аналогичной точностью.

Угли графитированные для спектрального анализа марки ос.ч. 7-3 (электроды угольные) диаметром 6 мм; верхний электрод заточен на конус, нижний - с цилиндрическим каналом диаметром 3 мм и глубиной 4 мм.

Графит порошковый, ос.ч., по ГОСТ 23463 .

Фотопластинки спектральные типа СП-I светочувствительностью 3-5 ед. для алюминия, бария и кальция и спектральные типа СП-III, светочувствительностью 5-10 ед. для железа.

Аммоний двухромовокислый по ГОСТ 3763 .

Хрома (III) оксид, полученный из оксида хрома (VI) по настоящему стандарту или двухромовокислого аммония, с минимальным содержанием определяемых примесей, определение которых проводят методом добавок в условиях данной методики; при наличии примесей их учитывают при построении градуировочного графика.

Алюминий оксид для спектрального анализа, х.ч.

Барий оксид марки ос.ч. 10-1.

Железо (III) оксид, марки ос.ч. 2-4.

Кальций оксид, марки ос.ч. 6-2.

Аммоний хлористый по ГОСТ 3773 .

Вода дистиллированная по ГОСТ 6709 .

Гидрохинон (парадиоксибензол) по ГОСТ 19627 .

Калий бромистый по ГОСТ 4160 .

Метол (4-метиламинофенол сульфат) по ГОСТ 25664 .

Натрий сульфит 7-водный.

Натрий серноватистокислый (натрия тиосульфат) 5-водный по ГОСТ 27068 .

Натрий углекислый по ГОСТ 83 .

Натрий углекислый 10-водный по ГОСТ 84 .

Проявитель метолгидрохиноновый; готовят следующим образом: раствор А-2 г метола, 10 г гидрохинона и 104 г 7-водного сульфита натрия растворяют в воде, доводят объем раствора водой до 1 дм, перемешивают и, если раствор мутный, его фильтруют; раствор Б-16 г углекислого натрия (или 40 г 10-водного углекислого натрия) и 2 г бромистого калия растворяют в воде, доводят объем раствора водой до 1 дм, перемешивают и, если раствор мутный, его фильтруют, затем растворы А и Б смешивают в равных объемах.

Фиксаж быстродействующий; готовят следующим образом: 500 г 5-водного серноватистокислого натрия и 100 г хлористого аммония растворяют в воде, доводят объем раствора до 2 дм, перемешивают и, если раствор мутный, его фильтруют.

Спирт этиловый ректификованный технический по ГОСТ 18300 высшего сорта.

(Измененная редакция, Изм. N 1, 2).

3.7.2. Подготовка к анализу

3.7.2.1. Приготовление анализируемой пробы

0,200 г препарата помещают в фарфоровый тигель, высушивают на электроплитке и прокаливают в муфельной печи при 900 °С в течение 1 ч.

Полученный оксид хрома (III) растирают в агатовой ступке с порошковым графитом в соотношении 1:2.

3.7.2.2. Приготовление образцов для построения градуировочного графика

Образцы готовят на основе оксида хрома (III), полученного из оксида хрома (VI) с минимальным содержанием определяемых примесей. Для получения основы навеску оксида хрома (VI) помещают в фарфоровый тигель, высушивают на электроплитке и прокаливают в муфельной печи при 900 °С в течение 1 ч (допускается готовить образцы на основе оксида хрома (III), полученного из двухромовокислого аммония).

Головной образец с массовой долей каждой примеси 0,32% готовят растиранием 0,0458 г оксида железа (III), 0,0605 г оксида алюминия, 0,0448 г оксида кальция, 0,0357 г оксида бария и 9,8132 г оксида хрома (III) в ступке из органического стекла или агатовой с 5 см этилового спирта в течение 1 ч, затем подсушивают под инфракрасной лампой или в сушильном шкафу и растирают смесь в течение 30 мин.

Смешиванием соответствующих количеств головного образца или предыдущих с основой получают образцы с меньшей массовой долей примесей, указанных в табл.2.

Таблица 2

Номер образца

Массовая доля каждой примеси (Al, Ba, Fe, Са)
в образцах в пересчете на металл, %


Каждый образец смешивают с порошковым графитом в соотношении 1:2.

3.7.2.1, 3.7.2.2. (Измененная редакция, Изм. N 2).

3.7.3. Проведение анализа

Анализ проводят в дуге постоянного тока при условиях, указанных ниже.

Сила тока, А

Ширина щели, мм

Высота диафрагмы на средней линзе конденсорной системы, мм

Экспозиция, с

Перед съемкой спектрограмм электроды обжигают в дуге постоянного тока при силе тока 10-12 А в течение 30 с.

После обжига электродов в канал нижнего электрода (анод) вносят анализируемую пробу или образец для построения градуировочного графика. Масса навески пробы определяется объемом канала. Зажигают дугу и снимают спектрограмму. Спектры анализируемой пробы и образцов снимают на одной фотопластинке не менее трех раз, ставя каждый раз новую пару электродов. Щель открывают до зажигания дуги.

Фотопластинку со снятыми спектрами проявляют, фиксируют, промывают в проточной воде и высушивают на воздухе.

3.7.4. Обработка результатов

Фотометрирование аналитических спектральных линий определяемых примесей и линий сравнения проводят, пользуясь логарифмической шкалой.

Аналитическая линия
примеси, нм

Линия сравнения

Ва-233,527

Сr-391,182 нм

Для каждой аналитической пары вычисляют разность почернений ()

где - почернение линии примеси;

- почернение линии сравнения или фона.

По трем значениям разности почернений определяют среднее арифметическое значение () для каждого определяемого элемента в анализируемой пробе и образца для построения градуировочного графика.

По значениям образцов для построения градуировочных графиков для каждого определяемого элемента строят градуировочный график, откладывая на оси абсцисс логарифмы концентрации, а на оси ординат - средние арифметические значения разности почернений.

Массовую долю каждой примеси определяют по графику и результат умножают на 0,76.

За результат анализа принимают среднее арифметическое результатов трех параллельных определений, относительное расхождение между наиболее отличающимися значениями которых не превышает допускаемого расхождения, равного 50%.

Допускаемая относительная суммарная погрешность результата анализа ±20% при доверительной вероятности =0,95.

(Измененная редакция, Изм. N 2).

3.8. Определение массовой доли суммы натрия и калия

3.8.1. Приборы, реактивы, растворы и посуда

Фотометр пламенный или спектрофотометр на основе спектрографа ИСП-51 с приставкой ФЭП-1, с соответствующим фотоумножителем, или спектрофотометр "Сатурн". Допускается использование других приборов, обеспечивающих аналогичную чувствительность и точность.

Пропан-бутан.

Воздух сжатый для питания контрольно-измерительных приборов.

Горелка.

Распылитель.

Вода дистиллированная по ГОСТ 6709 , вторично перегнанная в кварцевом дистилляторе, или вода диминерализованная.

Растворы, содержащие Na и K; готовят по ГОСТ 4212 , соответствующим разбавлением и смешением получают раствор с концентрацией Na и K по 0,1 мг/см - раствор А.

Хром (VI) оксид по настоящему стандарту, ч.д.а., с установленным методом добавок содержанием Na и K (раствор с массовой долей 10%) - раствор Б.

3.8.2. Подготовка к анализу

3.8.2.1. Приготовление анализируемых растворов

1,00 г препарата растворяют в воде, количественно переносят в мерную колбу, доводят объем раствора до метки и тщательно перемешивают.

3.8.2.2. Приготовление растворов сравнения

В шесть мерных колб вводят по 10 см раствора Б и объемы раствора А, указанные в табл.3.

Таблица 3

Номер раствора сравнения

Объем раствора А, см

Масса каждого элемента (K, Na), введенного в 100 см раствора сравнения, мг

Массовая доля каждой примеси (K, Na) в пересчете на препарат, %


Растворы перемешивают, доводят объем растворов до метки и снова перемешивают.

3.8.2.1, 3.8.2.2. (Измененная редакция, Изм. N 2).

3.8.3. Проведение анализа

Для анализа берут не менее двух навесок препарата.

Сравнивают интенсивность излучения резонансных линий натрия 589,0-589,6 нм и калия 766,5 нм в спектре пламени газ-воздух при введении в него анализируемых растворов и растворов сравнения.

После подготовки прибора к анализу проводят фотометрирование анализируемых растворов и растворов сравнения в порядке возрастания массовой доли примесей. Затем проводят фотометрирование в обратной последовательности, начиная с максимального содержания примесей, и вычисляют среднее арифметическое значение показаний для каждого раствора, учитывая в качестве поправки отсчет, полученный при фотометрировании первого раствора сравнения. После каждого замера распыляют воду.

3.8.4. Обработка результатов

По полученным данным для растворов сравнения строят градуировочный график, откладывая значения интенсивности излучения на оси ординат, массовую долю примеси натрия и калия в пересчете на препарат на оси абсцисс.

Массовую долю натрия и калия находят по графику.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, относительное расхождение между которыми не превышает допускаемого расхождения, равного 30%.

Допускаемая относительная суммарная погрешность результата анализа ±15% при доверительной вероятности =0,95.

(Измененная редакция, Изм. N 2).

4. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

4.1. Препарат упаковывают и маркируют в соответствии с ГОСТ 3885 .

Вид и тип тары: 2-4, 2-5, 2-6, 11-6.

Группа фасовки: V, VI, VII.

Продукт, применяемый в качестве технологического сырья, расфасовывают в мешки-вкладыши из тонкой полимерной пленки, вкладываемые в металлические барабаны типа БТПБ-25, БТПБ-50 (ГОСТ 5044) массой нетто до 70 кг.

На тару наносится знак опасности по ГОСТ 19433 (класс 5, подкласс 5.1, классификационный шифр 5152).

(Измененная редакция, Изм. N 2).

4.2. Препарат перевозят всеми видами транспорта в соответствии с правилами перевозки грузов, действующими на данном виде транспорта.

4.3. Препарат хранят в упаковке изготовителя в крытых складских помещениях.

5. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

5.1. Изготовитель гарантирует соответствие оксида хрома (VI) требованиям настоящего стандарта при соблюдении условий транспортирования и хранения.

5.2. Гарантийный срок хранения - 3 года со дня изготовления.

Разд. 5. (Измененная редакция, Изм. N 2).

6. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

6.1. Оксид хрома (VI) ядовит. Предельно допустимая концентрация в воздухе рабочей зоны производственных помещений 0,01 мг/м (1-й класс опасности). При увеличении концентрации может вызвать острые и хронические отравления с поражением жизненно важных органов и систем.

(Измененная редакция, Изм. N 2).

6.2. При работе с препаратом необходимо пользоваться противопылевыми респираторами, резиновыми перчатками и защитными очками, а также соблюдать правила личной гигиены; не допускать попадания препарата внутрь организма.

6.3. Должна быть обеспечена максимальная герметизация технологического оборудования.

6.4. Помещения, в которых проводятся работы с препаратом, должны быть оборудованы общей приточно-вытяжной вентиляцией, а места наибольшего пыления - укрытиями с местной вытяжной вентиляцией. Анализ препарата следует проводить в вытяжном шкафу лаборатории.

(Измененная редакция, Изм. N 2).

6.5. При проведении анализа препарата с использованием горючих газов следует соблюдать правила противопожарной безопасности.



Текст документа сверен по:
официальное издание
М.: ИПК Издательство стандартов, 1999