Фотолюминесценция. Закон Стокса. Люминесценция. Спектры люминесценции. Виды люминесценции. Закон Стокса для фотолюминесценции. Хемилюминесценция. Люминесцентная микроскопия Фотобиологические процессы: классификация

ЛЮМИНЕСЦЕНЦИЯ (от лат. lumen, род. падеж luminis -свет и -escent - суффикс, означающий слабое действие), свечение в-ва, возникающее после поглощения им энергии возбуждения. Представляет собой избыток над тепловым излучением , испускаемым в-вом при данной т-ре за счет его внутренней (тепловой) энергии. В отличие от др. видов свечения (напр., рассеяния света, тормозного излучения) люминесценция характеризуется временем свечения, значительно превышающим период колебаний световой волны и составляющим от 10 -12 с до неск. суток. Понятие люминесценции применимо только к такому в-ву (совокупности частиц), состояние к-рого не слишком отличается от термодинамически равновесного, иначе различие между люминесценцией и тепловым излучением теряет смысл. Механизм люминесценции заключается в образовании под действием энергии от внеш. или внутр. источника возбужденных состояний атомов , молекул , кристаллов и послед. испускании ими квантов света (фотонов). По типу возбуждения выделяют фотолюминесценцию (источник энергии возбуждения - свет), радиолюминесценцию (радиоактивное излучение), рентгенолюминесценцию (рентгеновское излучение), электролюминесценцию (электрич. поле), катодолюминесценцию (пучок электронов), триболюминесценцию (мех. воздействие), хемилюминесценцию (хим. р-ции) и др. Различают молекулярную люминесценцию, при к-рой молекулы или атомы испускают фотоны при переходе из возбужденного состояния в основное квантовое состояние , и рекомбинационную люминесценцию, когда под действием энергии возбуждения образуются носители заряда (электроны и дырки в кристаллофосфорах) или ионы и радикалы (в газах , жидкостях , стеклах), послед. рекомбинация к-рых сопровождается испусканием фотонов. Излучат. переход из возбужденного состояния в основное происходит самопроизвольно (спонтанная люминесценция) или под действием внеш. электромагн. излучения (вынужденная люминесценция). Испускание света может происходить не обязательно теми же молекулами , к-рые возбуждаются при поглощении энергии, но и другими, если происходит безызлучат. передача энергии возбуждения (сенсибилизированная люминесценция). Люминесценция характеризуют спектром испускания (фотолюминесценцию - также спектром возбуждения), квантовым выходом , поляризацией , кинетикой затухания. В данной статье рассматривается мол. фотолюминесценция, к-рую широко применяют в технике и аналит. химии (см. Люминофоры , Люминесцентный анализ), фотохимии и хим. кинетике для изучения св-в возбужденных состояний частиц и очень быстрых хим. р-ций, в фотобиологии, биохимии и медицине для изучения св-в биол . объектов и механизма биол . процессов. О др. видах люминесценции см. Кристаллофосфоры , Рентгеновская спектроскопия , Хемилюминесценция.
Механизм люминесценции. Молекулярную фотолюминесценцию подразделяют на флуоресценцию и фосфоресценцию . Флуоресценция характеризуется малой длительностью (менее 10 -6 с) и обусловлена испусканием фотонов при переходе системы из возбужденного состояния той же мультиплетности , что и основное состояние. Фосфоресценция -длит. свечение (от долей до неск. десятков с), к-рое возникает при переходе в осн. состояние из возбужденного состояния иной мультиплетности ; такой переход происходит с нарушением спинового правила отбора (см. ). Для большинства орг. молекул с четным числом электронов осн. состояние является синглетным, а низшие возбужденные состояния имеют мультиплетность 1 и 3, т. е. могут быть синглетными и триплетными. Для таких молекул флуоресценция представляет собой излучат. переход в осн. состояние S 0 из возбужденного синглетного состояния S 1 (переход 2 на рис. 1).

j L = j i k E t i .

Как правило, для возбужденных синглетных состояний j i = 1, для триплетных состояний j i [ 1. Если j i не зависит от частоты возбуждающего света, выполняется закон Вавилова, согласно к-рому квантовый выход люминесценции постоянен в данной области частот возбуждающего света. Отклонения от закона Вавилова возникают, если при возбуждении в высшие электронные состояния появляются новые пути дезактивации возбужденных молекул , конкурирующие с внутр. конверсией в ниж. возбужденное состояние . Константу k E можно вычислить из величины момента квантового перехода M 21 = < Y 2 | m | Y 1) между двумя электронно-колебательными (вибронными) состояниями, описываемыми волновыми ф-циями Y 2 и Y 1 (m - оператор дипольного момента):

(с - скорость света, п - показатель преломления в-ва, n - частота перехода). Экспериментально значения k E в случае флуоресценции определяют из интеграла длинноволновой полосы спектра поглощения:

где N A - постоянная Авогадро , - волновое число (см - 1). e () - молярный десятичный коэф. поглощения (в дм 3 . моль - 1 . см - 1), <> - среднее значение в спектре флуоресценции :
где F() - зависимость числа испускаемых фотонов от волнового числа. Для многоатомных молекул с типичной полушириной полосы поглощения порядка неск. тыс. см - 1 справедливо приближенное выражение:

k Е ~ 10 4 e макс

(e макс - молярный десятичный коэф. поглощения в максимуме полосы).
Кинетика люминесценции. В простых системах мол. люминесценция после возбуждения коротким (по сравнению с t i) импульсом света затухает обычно по экспоненц. закону: I(t) = I 0 ехр(-t/ t i), где I 0 -начальная интенсивность излучения, t - текущее время. Величина, обратная t i , равна сумме констант скорости k j всех излучат. и безызлучат. (включая хим. р-ции) процессов гибели данного возбужденного состояния : 1/ t i = S j k j . Для мн. жестких молекул (ароматич. углеводороды , гетeроциклич. соед. и нек-рые их производные) t i определяется гл. обр. константой скорости k ISC интеркомбинац. конверсии из состояния S 1 в одно из триплетных состояний с меньшей энергией. Величина k ISC , в свою очередь, зависит от симметрии электронных волновых ф-ций обоих состояний. Так, для перехода между состояниями одинаковой природы [напр., 1 (p, p *) и 3 (p, p *)] k ISC имеет величину порядка 10 7 -10 8 с - 1 , а для состояний разл. природы [напр., 1 (p, p *) и 3 (n, p *)или 1 (n, p *) и 3 (p, p *)] она составляет 10 10 -10 11 с - 1 . В результате молекулы , у к-рых, напр., состояние S 1 имеет 1 (n, p *) природу, а состояние T 1 3 (p , p *) характеризуется меньшей энергией, практически не флуоресцируют, но обладают большим квантовым выходом образования возбужденных триплетных состояний и фосфоресцируют в твердой фазе. У нежестких молекул часто наблюдаются процессы внутр. конверсии , приводящие к релаксации энергии электронного возбуждения и отсутствию как флуоресценции , так и фосфоресценции . В твердых р-рах время жизни молекулы в триплетом состоянии определяется гл. обр. константами скорости излучат. интеркомбинац. перехода T 1 : S 0 и безызлучат. электронно-колебат. переноса энергии на сравнительно высокочастотные колебания связей С-Н, О-Н и т. п. в этой же молекуле или в молекуле р-рителя. Поэтому квантовый выход фосфоресценции j I лишь в неск. раз меньше квантового выхода j I образования триплетных состояний: j P [ j I = k ISC t S , где t S - время жизни состояния S 1 . В дейтерированных р-рителях перенос энергии сильно замедляется и j I приближается к обратной величине константы скорости излучат. интеркомбинац. перехода 1/k P (и может достигать 10 2 с), а квантовый выход фосфоресценции возрастает. В жидких р-рах наблюдается эффективное тушение триплетных возбужденных состояний примесями (в т. ч. растворенным

Фотопроцессы в биологических системах сопровождаются возникновением электронно-возбужденных состояний, характеризующихся определенной энергией, временем жизни, структурными свойствами.

Полная энергия состояния молекулы Е складывается из энергии электронного возбуждения Ее, колебательной энергии Еv и вращательной энергии Er. Таким образом, при поглощении кванта света молекулой полное изменение энергии можно представить в следующем виде: ашню = дельта Ее + дельта Еv + дельта Er . Энергия вращательных квантов меньше, чем колебательных, а их энергия, в свою очередь, меньше энергии электронных (Er 10 в10 Гц, Еv 10 в 13 Гц, Ее 10 в 18 Гц).

Возможные электронные переходы и энергетические состояния молекулы обычно представляются в виде схемы уровней энергии (Яблонского), где каждый электронный уровень расщепляется на ряд колебательных подуровней, а каждый колебательный - на ряд вращательных подуровней (рис. 1)

При поглощении кванта света молекулой осуществляется переход с самого нижнего колебательного подуровня основного состояния (комнатная температура) на возбужденные уровни S1* и S2*, характеризующиеся колебательными и вращательными подуровнями. В молекулах большинства соединений при возбуждении электронных состояний, расположенных выше S1*, происходит быстрая внутренняя конверсия (с временами порядка 10 в -13 с) за счет перехода с нижнего колебательного подуровня верхнего состояния S2* на верхний колебательный подуровень нижнего состояния S1* с последующей релаксацией (порядок 10 в -12) на самый нижний колебательный подуровень возбужденного состояния S1*. Это означает, что в какое бы возбужденное состояние ни попала молекула (например, в состояние S2*), в течение 10 в -13 - 10 в -12 с она перейдет на нижний колебательный подуровень первого электронного состояния S1*. Именно с этого уровня при переходе на любой колебательно-вращательный подуровень основного состояния S0 и происходит излучение - флуоресценция.

Отсюда следует, что спектр флуоресценции I=f(лямбда), т.е. зависимость интенсивности флуоресценции от длины волны и квантовый выход флуоресценции фи=число квантов фл/число погл квантов не зависят от длины волны возбуждающего света. Независимость спектра и квантового выхода флуоресценции от энергии поглощенного молекулой кванта называется законом Вавилова.

Поскольку энергия поглощенного кванта частично растрачивается на тепловые колебания, энергия кванта флуоресценции оказывается меньшей, т. е. спектр флуоресценции сдвинут в длинноволновую сторону относительно наиболее длинноволновой полосы поглощения (закон Стокса) (т.к. E=hc/лямбда, чем меньше энергия, тем длиннее лямбда). Если что рисуем 2 гладких холма, где правый – спектр флуоресценции, а левый – поглощения. Форма полос флуоресценции определяется распределением колебательных подуровней основного состояния, т. е. отражает колебательную структуру основного состояния S0.

Часто распределение колебательных подуровней по энергиям у основного и возбужденного состояний одинаково; следовательно, полосы флуоресценции и поглощения будут зеркально симметричны относительно так называемого (0 - 0)-перехода (единственный переход, имеющий одинаковую энергию поглощения и флуоресценции).

Принцип Франка – Кондона: электронные переходы в молекулах происходят очень быстро (около 10 в -15 с) по сравнению с движением ядер, благодаря чему расстояние между ядрами и их скорости при электронном переходе не успевают измениться. Существует несколько дополнительных формулировок этого принципа: электроны не обмениваются энергией с ядрами; электроны всегда имеют равновесную конфигурацию при любом расположении ядер. Зависимость потенциальной энергии системы от координат ядер многоатомной молекулы в основном и возбужденном состояниях различается. В наиболее простом случае (двухатомная молекула) минимумы кривых потенциальных энергий в основном и возбужденном состояниях сдвинуты, поскольку орбиталь, заполняемая электроном в возбужденном состоянии, занимает большую область пространства, чем в основном состоянии, и положение равновесия в возбужденном состоянии, следовательно, соответствует большему межъядерному расстоянию (поэтому сдвиг). Кроме того, форма таких потенциальных кривых в основном и возбужденном состояниях также различается (рис. 2).

В соответствии с принципом Франка - Кондона наиболее вероятным будет такой переход, при котором не произойдет изменений ни в положении ядер, ни в импульсе (принцип вертикальности перехода между двумя электронными состояниями). Решение волнового уравнения показывает, что хотя при поглощении кванта света возможны различные переходы, однако наиболее вероятным будет переход, обозначенный сплошной стрелкой вверх на рис. 2. Иными словами, наиболее вероятное межъядерное расстояние для молекулы с нулевой колебательной энергией соответствует середине АВ. В случае флуоресценции наиболее вероятным будет испускание из середины CD (сплошная стрелка вниз), что соответствует наиболее интенсивной полосе спектра. Флуоресценция происходит с самого нижнего колебательного уровня первого возбужденного состояния при переходе молекулы в основное состояние. Вероятность перехода из возбужденного в основное состояние может быть описана константой скорости перехода k, которая по физическому смыслу эквивалентна константе мономолекулярной реакции. Кинетика перехода может быть описана реакцией первого порядка dS*/dt=-kS*, где S* - количество возбужденных молекул. После интегрирования волшебным образом I=Io*exp(-kt), k – константа флуоресценции.

При отсутствии безызлучательных процессов (фи= 1) длительность пребывания молекулы в возбужденном состоянии определяется радиационным, или естественным, временем жизни тау0=1/константу флуоресценции. Это то время, в течение которого число возбужденных молекул уменьшается в e раз. В реальных ситуациях квантовый выход обычно меньше единицы, поскольку с флуоресценцией конкурируют безызлучательные процессы: интеркомбинационная конверсия с переходом в триплетное возбужденное состояние, сопровождающееся изменением спина, внутренняя конверсия, диссипация в тепло, фотохимическая реакция или дезактивация за счет тушения флуоресценции при взаимодействии с молекулами тушителя Q.

В действительности квантовый выход флуоресценции меньше единицы вследствие существования в молекуле безызлучательных процессов; следовательно, реальное (или измеряемое) время жизни тау флуоресц окажется меньше тау): 1/сумму констант происходящих процессов (флуоресценция, фотосинтез, интеркомбинационная конверсия в триплетное состояние, диссипация в тепло (внутренняя конверсия), тушение*[Q]). Квантовый выход флуоресценции в этом случае выражается соотношением: фи=константа флуоресценции/сумму констант происходящих процессов, т.е. Фи=константа флуоресценции*время жизни.

В отсутствие тушителя квантовый выход флуоресценции обозначают как фи фл0. Фи фл0/фи фл= 1 + константаq*[Q])/сумму всех констант без тушителя, то, обозначив время жизни в отсутствие тушителя через тау фл0 (не путать с тау0 которая вообще без побочных процессов), получим, что тау фл0 =1/ сумму всех констант без тушителя и (фи фл0/фи фл)1= тау фл0* константаq*[Q]=K[Q]. I=I0/(1+ K[Q]). Последнее уравнение называется соотношением Штерна и Фольмера, а К - константой тушения. Последняя легко определяется экспериментально при измерении интенсивностей флуоресценции различных образцов, отличающихся концентрацией тушителя. Для этого достаточно оценить угловой коэффициент прямой в координатах I без тушителя/(Iс тушителем - 1) и [Q].

Исходя из определения квантового выхода флуоресценции фи=I фл/(I0-Iпрошедшего через объект), с использованием закона Ламберта - Бэра можно установить связь между интенсивностью флуоресценции I и молярным коэффициентом поглощения, а также концентрацией с: I=K*I0*(1-Т)*фи, где I0- интенсивность возбуждающего света, (1 - Т) - величина поглощения, Т - величина пропускания, К - коэффициент пропорциональности, зависящий от способа измерения.

Так как D= - lg Т = эпсилон*с1, где D - оптическая плотность, то I=K*I0*(1-10 в степени -D)*фи. Выражение в скобках можно разложить в ряд при небольших значениях D и ограничиться линейным членом: I примерно=2,3K*I0*эпсилон*cl*фи

Это означает, что при малых оптических плотностях (меньше 0,1-0,2) I пропорциональна концентрации флуоресцирующего вещества и интенсивности возбуждающего света.

Точное измерение интенсивности флуоресценции осложняется целым рядом факторов: реабсорбцией флуоресценции, экранированием возбуждающего света другими молекулами, светорассеянием, гетерогенностью объекта, миграцией энергии, тушением флуоресценции. При комнатной температуре квантовый выход флуоресценции хлорофилла в нативных фотосинтетических мембранах составляет не более 3%. Низкотемпературная техника может ослабить влияние возбуждающего света, вызывающего побочные процессы. Флуоресценция хлорофилла в нативных фотосинтетических мембранах продуцируется молекулами хлорофилла антенны и при комнатной температуре характеризуется главным максимумом 684-687 нм и «плечом» в более длинноволновой области около 720-730 нм. В случае целых листьев из-за реабсорбции доля длинноволновой полосы возрастает. При комнатной температуре квантовый выход для фотосистемы 1 в несколько раз меньше, чем для фотосистемы 2.

Люминесценция - «холодное» свечение некоторых веществ (люминофоров); излучение, представляющее собой избыток над тепловым излучением тела при данной температуре и имеющее длительность, значительно превышающую период световых волн. Характеристики: спектр возбуждения, спектр люминесценции, квантовый выход, время жизни молекулы в возбужденном состоянии. Она делится на уже описанную флуоресценцию (быструю люмин) и фосфоресценцию (медленную люмин). Фосфоресценция – переход с нижнего колебательного уровня триплетного состояния T1 на основное возбужденное (время жизни возбужденного состояния при фосфоресценции составляет порядка 10 в −2 – 10 в −4 с, т.к. синглет-триплетные переходы имеют квантово-механический запрет – так может делать хлорофилл). Механизмы миграции хорошо отражает рис 3 и описанные ранее процессы.

Рис. 3. Схематическое изображение физического механизма люминесценции: жирными горизонтальными линиями обозначены энергетические состояния молекулы люминесцирующего вещества; S0 - основное (невозбужденное) состояние; S2, S2 и Т1 - возбужденные состояния; тонкими горизонтальными линиями обозначены колебательные уровни (0, 1, 2.,. или 0’, 1’, 2’ и т.д.); в прямоугольниках показано направление спина возбужденного электрона (слева) по отношению к спину оставшегося электрона; ВК - внутренняя конверсия (переходы электрона без обращения спина); ИК - интеркомбинационная конверсия (переходы электрона с обращением спина). При поглощении энергии молекула переходит в возбужденное состояние S1 или S2 (обозначено синими вертикальными стрелками). Часть поглощенной энергии преобразуется в тепло (обозначено волнистыми стрелками), при этом молекула переходит на нижний колебательный уровень состояния S1 или трансформируется в состояние Т1 Возвращение молекулы из состояния S1 или Т1 на исходный энергетический уровень может сопровождаться излучением света - флюоресценцией (обозначена темно-зелеными стрелками) или фосфоресценцией (обозначена светло-зелеными стрелками).

Люминесценция биологических объектов может быть собственной (первичной) либо возникать после соответствующей химической модификации имеющихся веществ (вторичная), а также после введения так называемых флюоресцентных зондов.

Флюоресцирующие соединения могут быть определены в очень низких концентрациях, часто в присутствии посторонних веществ. Поэтому регистрация люминесценции успешно используется для количественного определения многих биологически важных веществ. Одним из наиболее ярко флюоресцирующих лекарственных соединений является хинин. В кислых растворах он люминесцирует в синей области (450-475 нм). Чтобы определить его в плазме крови проводят осаждение белков метафосфорной кислотой и измеряют люминесценцию хинина прямо в фильтрате. Яркой синей флюоресценцией обладает противогрибковый препарат гризеофульвин, он легко определяется в экстрактах из крови или мочи. Барбитураты в щелочной среде обладают яркой зеленой флюоресценцией, их можно определить в экстрактах из биологического материала. После экстракции возможна количественная регистрация многих витаминов, например витамина Е, максимум флюоресценции которого лежит в УФ-области при 330 нм. Витамин В6 имеет синюю, а витамин А - зеленую флюоресценцию. Витамины С, D, В12 и др. удается определить по вторичной люминесценции. Наркотические вещества морфин и героин флюоресцируют очень слабо, но после обработки образцов серной кислотой с последующим выщелачиванием возникает специфическая интенсивная синяя флюоресценция продуктов реакции. Этим методом удается определить до 0,02 мкг наркотика в пробе. Чувствительным лабораторным методом определения АТФ является регистрация хемилюминесценции в присутствии люциферина и люциферазы светлячка. Люцифераза катализирует реакцию восстановленного люциферина с АТФ; продукт этой реакции - аденилат при окислении испускает свет. По собственной люминесценции проводят контроль качества пищевых продуктов. Так, при длительном хранении молока и сливок рибофлавин окисляется в люмихром, что сопровождается изменением цвета флюоресценции от желто-зеленого к синему. Яйца, зараженные некоторыми видами бактерий рода Pseudomonas, при УФ-облучении начинают интенсивно флюоресцировать (за счет пигмента пиовердина, синтезированного этими бактериями).

Регистрация люминесценции позволяет получать важную информацию о физико-химических свойствах биологических объектов в норме и патологии. Молекулярные механизмы работы цепи переноса электронов в митохондриях, целых клетках и даже в тканях изучают по изменению синей (440 нм) флюоресценции восстановленных пиридиннуклеотидов, возбуждаемой при 365 нм. При изучении структуры нуклеиновых кислот применяют акридиновый оранжевый и другие зонды. При этом определение положения максимума люминесценции в спектре позволяет судить о структуре нуклеиновой кислоты. Так, максимум акридинового оранжевого и двуспиральной нативной ДНК располагается в зеленой области спектра (530 нм), тогда как в одноцепочечной ДНК и РНК он смещается в красную область (640 нм). Микрофлюориметрически с помощью зондов анализируют ДНК непосредственно в клетках. В медицинской технике распространение получили неорганические люминофоры - вещества, способные к фото-, рентгенофлюоресценции и т.д.

Биолюминесценция – видимое свечение организмов, связанное с процессами их жизнедеятельности; являет собой результат биохимической реакции, в которой химическая энергия возбуждает специфическую молекулу, и та излучает свет. Наблюдается у нескольких десятков видов бактерий, низших растений (грибов), у некоторых беспозвоночных животных (от простейших до насекомых включительно), у рыб. Светящиеся организмы иногда размножаются в таком количестве, что вызывают свечение моря. У многих организмов (бактерии, простейшие, ракообразные, грибы и др.) свечение происходит постоянно и непрерывно, если в окружающей среде есть кислород. У других биолюминесценция происходит отдельными вспышками и связана с условиями жизнедеятельности (голод, период размножения и др.). Биологическое значение биолюминесценции различно. Так, у светящихся насекомых вспышки биолюминесценции служат сигналом, позволяющим самцам и самкам находить друг друга; у ряда глубоководных рыб - для освещения и приманки добычи; у каракатицы - для защиты от хищников (путём выбрасывания светящейся жидкости) и др. В некоторых случаях источником биолюминесценции животного являются светящиеся бактерии-симбионты (например, т. н. несамостоятельное свечение ряда рыб).

Введение

флуоресценции люминисценция краситель поляризация

Время жизни электронно-возбужденного состояния молекул 10 -8 -10 -9 с. После этого молекула возвращается в исходное состояние, израсходовав дополнительную энергию безизлучательным образом на колебательные движения ядер и поступательные движения соседних молекул, т.е. растратив ее в виде тепла. Но эта энергия также может выделиться в виде излученного фотона. Это явление называют люминесценцией. В зависимости от способа возбуждения молекулы - светом, электрической энергией, химическими реакциями, нагреванием, и т.д. - различают фото-, электро-, хемо-, или термолюминесценцию. Нас больше интересует фотолюминесценция, обычно называемая флуоресценцией.

Законы флуоресценции

Спектром флуоресценции называют зависимость интенсивности излученного света от энергии фотонов: I фл = f (h) или F(). Но обычно в видимой и ультрафиолетовой области строят зависимость интенсивности флуоресцентного света от длины волны:

флуоресценция люминисценция краситель поляризация

I фл = f().

По закону Стокса , спектр флуоресценции смещен в длинноволновую область по сравнению со спектром поглощения . Это смещение называется стоксовским сдвигом. Оно отражает потерю части энергии возбуждения вследствие теплового рассеяния. Но нередко спектры флуоресценции частично перекрываются со спектрами поглощения света (и со спектрами возбуждения флуоресценции). В области перекрытия, называемой антистоксовской (Рис. 1), энергия излученных фотонов больше энергии поглощенных квантов. Дополнительная энергия в данном случае берется за счет колебательной энергии молекул, когда в результате излучения происходит переход на более низкий колебательный подуровень, чем тот, с которого происходило поглощение фотона (Рис. 2).

Рис. 1.

Правило Каша гласит, что в растворах излучательные переходы происходят, как правило, с нижних колебательных подуровней синглетных или триплетных возбужденных уровней. Это происходит потому, что за время жизни возбужденного состояния 10 -8 -10 -9 с успевают осуществиться все колебательно-вращательные переходы (их типичная длительность 10 -13 -10 -12 с). Можно сказать, что к моменту испускания фотона молекула «забывает», на какой подуровень она была возбуждена. Поэтому спектр флуоресценции не зависит от длины волны возбуждающего света .

Рис. 2. Схемы переходов между электронно-колебательными при стоксовой (а) и антистоксовой (б) флуоресценции, когда в результате перехода на более низкий колебательный подуровень энергия излученного кванта выше энергии поглощенного кванта

По правилу Лёвшина , спектры флуоресценции, построенные в шкале частот (энергий фотонов, зеркально-симметричны относительно длинноволновой полосе поглощения. Это связано с тем, что расстояния между колебательными подуровнями и вероятности переходов на них у молекул в возбужденном состоянии сходны с таковыми в основном состоянии. Причина этого в том, что за время электронных переходов порядка 10 -15 с положения ядер не успевают измениться, так как типичные периоды их колебаний на два-три порядка дольше - порядка 10 -13 -10 -12 с. Поэтому по принципу Франка-Кондона поглощение и испускание фотонов обусловлено одними и теми же колебательными подуровнями.

Квантовым выходом флуоресценции называется отношение числа излученных квантов к числу поглощенных:

= n фл /n погл

Величина 0 < < 1, потому что кроме испускания фотонов, есть и другие пути утилизации энергии возбуждения: она может быть передана другим молекулам, расходоваться в химических реакциях или рассеваться в виде тепла.

В соответствии с законом Вавилова , в стоксовой области квантовый выход флуоресценции сложных молекул в растворах не зависит от длины волны возбуждающего света.

Интенсивность флуоресценции разбавленных растворов пропорциональна концентрации флуорохромов. Действительно, в разбавленных растворах с низкой оптической плотностью D = cl < 0,05

I фл = K I погл = K I 0 (1-Т) = K I 0 (1 -10 -D ) 2,3 k I 0 D,

где k - доля флуоресцентного излучения, попадающего в фотоприемник. Это позволяет по флуоресценции определять количество флуорохрома и его изменения при различных воздействиях. Для количественного измерения концентрации флуорохрома используют калибровочную кривую:

c = c станд (I фл /I станд ),

где индекс «станд» относится к стандартному калибровочному раствору.

|
люминесценция в медицине, что такое люминесценция
Люминесце́нция (от лат. lumen, род. падеж luminis - свет и -escent - суффикс, означающий слабое действие) - нетепловое свечение вещества, происходящее после поглощения им энергии возбуждения. Впервые люминесценция была описана в XVIII веке.

Первоначально явление люминесценции использовалось при изготовлении светящихся красок и световых составов на основе так называемых фосфóров, для нанесения на шкалы приборов, предназначенных для использования в темноте. Особого внимания в СССР люминесценция не привлекала вплоть до 1948 года, когда советский учёный С. И. Вавилов на сессии Верховного совета предложил начать изготовление экономичных люминесцентных ламп и использовать люминесценцию в анализе химических веществ. быту явление люминесценции используется чаще всего в люминесцентных лампах «дневного света» и электронно-лучевых трубках кинескопов. На использовании явления люминесценции основано явление усиления света, экспериментально подтверждённое работами В. А. Фабриканта и лежащее в основе научно-технического направления квантовой электроники, конкретно находящее своё применение в усилителях света и генераторах стимулированного излучения (лазерах).

  • 1 Общая характеристика
  • 2 Типы люминесценции
  • 3 Спектры люминесценции
    • 3.1 Принцип Франка - Кондона
    • 3.2 Правило Стокса - Ломмеля
    • 3.3 Правило Каши
    • 3.4 Правило зеркальной симметрии Левшина
  • 4 Выход люминесценции
  • 5 Тушение люминесценции
  • 6 См. также
  • 7 Литература
  • 8 Ссылки
  • 9 Примечания

Общая характеристика

«Будем называть люминесценцией избыток над температурным излучением тела в том случае, если это избыточное излучение обладает конечной длительностью примерно 10−10 секунд и больше». Таково каноническое определение люминесценции, данное русским учёным С. И. Вавиловым в 1948 году. Это значит, что яркость люминесцирующего объекта в спектральном диапазоне волн его излучения существенно больше, чем яркость абсолютно чёрного тела в этом же спектральном диапазоне, имеющего ту же температуру, что и люминесцирующее тело.

Первая часть определения позволяет отличить люминесценцию от теплового излучения, что особенно важно при высоких температурах, когда термоизлучение приобретает большую интенсивность. Важной особенностью люминесценции является то, что она способна проявляться при значительно более низких температурах, так как не использует тепловую энергию излучающей системы. За это люминесценцию часто называют «холодным свечением». Критерий длительности, введённый Вавиловым, позволяет отделить люминесценцию от других видов нетеплового излучения: рассеяния и отражения света, комбинационного рассеяния, излучения Черенкова. Длительность их меньше периода колебания световой волны (то есть <10−10 c).

Физическая природа люминесценции состоит в излучательных переходах электронов атомов или молекул из возбуждённого состояния в основное. При этом причиной первоначального их возбуждения могут служить различные факторы: внешнее излучение, температура, химические реакции и др.

Вещества, имеющие делокализованные электроны (сопряжённые системы), обладают самой сильной люминесценцией. Антрацен, нафталин, белки, содержащие ароматические аминокислоты и некоторые простетические группы, многие пигменты растений и в частности хлорофилл, а также ряд лекарственных препаратов обладают ярко выраженной способностью к люминесценции. Органические вещества, способные давать люминесцирующие комплексы со слабо люминесцентными неорганическими соединениями, часто используются в люминесцентном анализе. Так, в люминесцентной титриметрии часто применяется вещество флуоресцеин.

Первоначально понятие люминесценция относилось только к видимому свету. настоящее время оно применяется к излучению в инфракрасном, видимом, ультрафиолетовом и рентгеновском диапазонах (см. шкала электромагнитных волн).

Многие формы природной люминесценции были известны людям очень давно. Например, свечение насекомых (светлячки), свечение морских рыб и планктона, полярные сияния, свечение минералов, гниющего дерева и других разлагающихся органических веществ. настоящее время к природным формам прибавилось много искусственных способов возбуждения люминесценции. Твёрдые и жидкие вещества, способные люминесцировать, называют люминофорами (от лат. lumen - свет и др.-греч. phoros - несущий).

Чтобы вещество было способно люминесцировать, его спектры должны иметь дискретный характер, то есть его энергетические уровни должны быть разделены зонами запрещённых энергий. Поэтому металлы в твёрдом и жидком состоянии, обладающие непрерывным энергетическим спектром, не дают люминесценции. Энергия возбуждения в металлах непрерывным образом переходит в тепло. И лишь в коротковолновом диапазоне металлы могут испытывать рентгеновскую флуоресценцию, то есть под действием рентгеновского излучения испускать вторичные Х-лучи.

Типы люминесценции

Фотолюминесценция минералов под действием ультрафиолетового света

Люминесцентное свечение тел принято делить на следующие виды:

  • Фотолюминесценция - свечение под действием света (видимого и УФ-диапазона). Она, в свою очередь, делится на
    • флуоресценцию (время жизни 10−9−10−6 с);
    • фосфоресценцию (10−3−10 с);
  • Хемилюминесценция - свечение, использующее энергию химических реакций;
  • Катодолюминесценция - вызвана облучением быстрыми электронами (катодными лучами);
  • Сонолюминесценция - люминесценция, вызванная звуком высокой частоты;
  • Радиолюминесценция - при возбуждении вещества ионизирующим излучением;
  • Триболюминесценция - люминесценция, возникающая при растирании, раздавливании или раскалывании люминофоров. Триболюминесценция вызывается электрическим разрядами, происходящими между образовавшимися наэлектризованными частями - свет разряда вызывает фотолюминесценцию люминофора.
  • Биолюминесценция - способность живых организмов светиться, достигаемая самостоятельно или с помощью симбионтов.
  • Электролюминесценция- возникает при пропускании электрического тока через определённые типы люминофоров.
  • Кандолюминесценция - калильное свечение.
  • Термолюминесценция - люминесцентное свечение, возникающее в процессе нагревания вещества. научной литературе часто используется термин Термостимулированная люминесценция, сокращенно ТСЛ, что одно и то же.

В настоящее время наиболее изучена фотолюминесценция.

У твёрдых тел различают три вида люминесценции:

  • мономолекулярная люминесценция - акты возбуждения и испускания света происходят в пределах одного атома или молекулы;
  • метастабильная люминесценция - акты возбуждения и испускания света происходят в пределах одного атома или молекулы, но с участием метастабильного состояния;
  • рекомбинационная люминесценция - акты возбуждения и испускания света происходят в разных местах.

Спектры люминесценции

Спектром люминесценции называют зависимость интенсивности люминесцентного излучения от длины волны испускаемого света. Наиболее простые - атомные спектры, в которых указанная выше зависимость определяется только электронным строением атома. Спектры молекул гораздо более сложные вследствие того, что в молекуле реализуются различные деформационные и валентные колебания. При охлаждении до сверхнизких температур сплошные спектры люминесценции органических соединений, растворенных в определённом растворителе, превращаются в квазилинейчатые. Это явление получило название эффекта Шпольского. Это ведёт к снижению предела обнаружения и повышению избирательности определений, расширению числа элементов, которые можно определять люминесцентным методом анализа.

Принцип Франка - Кондона

Часть электронной энергии при поглощении и испускании света должна расходоваться на увеличение колебаний структуры, превращаться в тепло. Явление наблюдается в результате резкого изменения градиента электронной энергии около ядер при возбуждении и релаксации.

Правило Стокса - Ломмеля

Спектр люминесценции, как правило, сдвинут относительно спектра поглощения в сторону длинных волн. Данное правило принято объяснять потерей некоторой части поглощённой энергии на тепловое движение молекул. Существует, однако, антистоксовский люминофор, излучающий более коротковолновое излучение, чем падающее. Как правило, одно и то же вещество способно испускать излучение как в стоксовой, так и в антистоксовой областях спектра относительно частоты возбуждающего люминесценцию излучения.

Правило Каши

Основная статья: Правило Каши

Независимо от способа возбуждения и длины волны возбуждающего света спектр люминесценции остаётся неизменным при данной температуре. Поскольку испускание квантов люминесценции всегда происходит с низшего электронно-возбуждённого уровня молекулы, то спектр люминесценции всегда будет одним и тем же независимо от того, на какой энергетический уровень попал электрон в результате поглощения фотона. Данное правило справедливо только в случае использования одной и той же возбуждаемой среды, системы регистрации излучения люминесценции. Множество разрешённых энергетических уровней в атоме/молекуле, а также множество длин волн источников возбуждения люминесценции позволяет для используемой среды получать множество спектров люминесценции в разных областях спектра, не повторяющих друг друга.

Правило зеркальной симметрии Левшина

Спектральные линии испускания и поглощения в координатах частоты являются взаимным зеркальным отражением. Положение оси симметрии показывает энергию чисто электронного перехода. Данным свойством обладают в основном жидкие люминофоры; исследования последних лет показали, что оно может быть справедливо и для сред в иных агрегатных состояниях.

Выход люминесценции

Выход - одна из важнейших характеристик люминесценции. Выделяют квантовый выход и энергетический выход. Под квантовым выходом понимают величину, показывающую отношение среднего числа излучённых квантов к числу поглощённых:

  • - число излучённых квантов,
  • - число поглощённых квантов.

Вавиловым было показано, что квантовый выход в растворах не зависит от длины волны возбуждающего света. Это связано с огромной скоростью колебательной релаксации, в ходе которой возбуждённая молекула передаёт избыток энергии молекулам растворителя.

Энергетический выход - отношение энергии излучённых квантов к энергии поглощённых:

где - частота излучения. Энергетический выход с ростом длины волны возбуждающего света сначала растёт пропорционально длине волны возбуждающего её света, затем остаётся постоянным и после некоторой граничной длины волны резко падает вниз (закон Вавилова).

Тушение люминесценции

Отличие выхода люминесценции от единицы обусловлено т. н. процессами тушения. Различают концентрационное, внутреннее, температурное, внешнее статическое и динамическое тушение.

Внутреннее тушение обусловлено безызлучательными переходами внутренней конверсии и колебательной релаксации. Наиболее ярко оно проявляется в симметричных структурах с большим числом сопряжённых связей, конформационно нежёстких структурах.

Температурное тушение является разновидностью внутреннего. Под влиянием температуры способность молекулы деформироваться растёт, и, как следствие, растёт вероятность безызлучательных переходов.

Внешнее статическое тушение основано на взаимодействии люминесцирующего соединения с другой молекулой и образованием неизлучающего продукта.

Динамическое тушение наблюдается, когда возбуждённая молекула люминофора вступает в постороннюю реакцию и теряет свои свойства.

Концентрационное тушение - результат поглощения молекулами вещества собственного излучения.

См. также

  • Флуоресценция
  • Фосфоресценция
  • Биолюминесценция
  • Хемилюминесценция
  • Сонолюминесценция
  • Электрофосфоресценция
  • Люминоскоп
  • Термолюминесценция

Литература

  • Шпольский Е. В. Атомная физика (в 2-х тт.). - М.: Наука, 1984.
  • Ландсберг Г. С. Оптика. - 6-е изд., стереот. - М.: ФИЗМАТЛИТ, 2003. - 647 с.
  • Лакович Дж. Основы флуоресцентной спектроскопии. - М.: Мир, 1986. - 496 с.
  • Harvey D. Modern Analytical Chemistry. - Boston, 2000. - 798 p.
  • Столяров К. П., Григорьев Н. Н. Введение в люминесцентный анализ неорганических веществ. - Л., 1967. - 364 с.
  • Захаров И. А., Тимофеев В. Н. Люминесцентные методы анализа. - Л., 1978. - 95 с.

Ссылки

  • Luminosity on Scienceworld

Примечания

  1. Ландсберг Г. С. Оптика. - 6-е изд., стереот. - М.: ФИЗМАТЛИТ, 2003. - 848 с.

люминесценция, люминесценция в медицине, что такое люминесценция, шеелит люминесценция

Люминесценция Информацию О

Люминесценция: основные понятия ■ Упоминание о люминесценции датируется XV веком, когда было описано свечение неорганических кристаллов. Возникновение люминесценции многие связывают с моментом выхода работы Давида Брустера, который в 1833 году описал красную флуоресценцию хлорофилла. ■ The Hound of the Baskervilles (Конан Дойл Артур).

Люминесцения: основные понятия ■ Итак, что такое люминесценция? Определение этого понятия довольно сложно и исходит из сопоставления свойств люминесцентного излучения и законов теплового равновесного излучения. Под тепловым излучением понимают электромагнитное излучение, обусловленное возбуждением частиц вещества (атомов, молекул, ионов) вследствие их теплового движения. Чтобы вызвать люминесценцию вещества к нему необходимо подвести извне определенное количество энергии. ■ Люминесценция – это свечение атомов, молекул и других более сложных комплексов, возникающего в результате электронного перехода в этих частицах при их возвращении из возбужденного состояния в нормальное (В. Л. Левшин).

Люминесцения: основные понятия ■ Люминесценция – это излучение (B`v, T), представляющее собой избыток над тепловым излучением (Bv, T) вещества при данной температуре и имеющее длительность (>10 -10 c), значительно превышающую период световых волн (Видеман - Вавилов).

Src="https://present5.com/presentation/37574361_76674408/image-5.jpg" alt="Классификация видов люминесценции n По длительности свечения: флуоресценция (~10 -8 c), фосфоресценция (>10 -6"> Классификация видов люминесценции n По длительности свечения: флуоресценция (~10 -8 c), фосфоресценция (>10 -6 с). n По способу возбуждения (таблица). n По механизму свечения: свечение дискретных центров – поглощающими и излучающими центрами являются одни и те же частицы (атомы, молекулы, ионы); рекомбинационное свечение – процессы поглощения и излучения разделены во времени и в пространстве. В процессе возбуждения происходит разделение частицы вещества на две противоположно заряженные части. Последующая их рекомбинация сопровождается выделением энергии.

Основные характеристики люминесценции n Спектры поглощения: A = f(λ); A = f(v); T, % = f(λ); T, % = f(v). n Cпектры люминесценции: I = f(λ); I = f(v). n Спектры возбуждения: зависимости интенсивности люминесценции (I) от частоты (волнового числа) или длины волны возбуждающего света; у частиц, люминесцирующих по типу дискретных центров, спектры возбуждения идентичны спектрам поглощения. n Энергетический выход люминесценции. n Квантовый выход люминесценции. n Время жизни возбужденного люминесцентного центра.

Выход люминесценции n Способность вещества к люминесценции в данной среде характеризуется величиной выхода люминесценции. n Различают абсолютный квантовый и энергетический выходы люминесценции и относительный выход люминесценции. n Абсолютным квантовым выходом люминесценции (φкв) называют отношение числа квантов Nл, излученных веществом, к числу поглощенных квантов возбуждающего света Nп: φкв = Nл / Nп ■ φкв определяется соотношением между вероятностями излучательного (α) и безызлучательного (β): φкв = α / α + β

Выход люминесценции n Абсолютным энергетическим выходом люминесценции (φэн) называют отношение излучаемой веществом энергии Ел к поглощенной энергии возбуждения Еп: φэн = Ел / Еп ■ Абсолютный энергетический и квантовые выходы связаны простым соотношением: φэн = Ел / Еп = Nл hvл / Nп hvп = φкв (vл / vп) или φэн = φкв (λп / λл); φкв = φэн (λл / λп) ■ Измерение абсолютных выходов люминесценции представляет трудную задачу, поэтому на практике чаще измеряют относительный выход люминесценции.

Время жизни возбужденного люминесцентного центра n В случае люминесцентных дискретных центров число возбужденных центров n после прекращения возбуждения в отсутствии безызлучательных процессов дезактивации будет уменьшаться со временем: -dn/dt = k 1 n, где k 1 – константа скорости мономолекулярного излучательного процесса. ■ Среднее излучательное время жизни (τ0) люминесцентного центра определяется выражением: τ0 = 1/ k 1

Время жизни возбужденного люминесцентного центра n Для грубых оценок применимо соотношение: 10 -4 τ0 ≈ ---- ε(λmax) n Таким образом, среднее излучательное время жизни возбужденного состояния тем меньше, чем интенсивнее поглощение, приводящее к его возникновению. n Поскольку имеют место безызлучательные процессы, измеряемые времена жизни τ всегда меньше τ0: 1 τ = ------ k 1 + k 2 + k 3

Энергетические переходы в молекуле n При комнатной температуре молекула обычно находится в n n основном S 0 синглетном состоянии. При поглощении энергии молекула оказывается в возбужденном электронном состоянии S 2. Далее практически мгновенно (~10 -12 с) в результате колебательной релаксации (КР) достигается невозбужденный колебательный уровень S 2. Далее также практически мгновенно (~10 -11 с) вследствие внутренней конверсии молекула перейдет в более низкое электронно-возбужденное состояние S 1. Переход S 1 → S 0 с испусканием фотона (10 -6 - 10 -9 с) – флуоресценция.

Энергетические переходы в молекуле ■ Безызлучательный переход S 1 → T 1 с изменением спина электрона – интеркомбинационная конверсия. n Переход T 1 → S 0 с испусканием фотона (>10 -4 c) – фосфоресценция.

Замедленная флуоресценция n Помимо флуоресценции и фосфоресценции существует еще один вид люминесценции – замедленная флуоресценция. n Этот вид молекулярной люминесценции наблюдается в весьма ограниченных диапазонах температур, вязкостей и концентраций растворов. n По сравнению с флуоресценцией и фосфоресценцией ее интенсивность невелика и достигает максимальных значений при комнатной и более высоких температурах, заметно ослабевая с понижением температуры. n Различают замедленную флуоресценцию Е – типа.

Замедленная флуоресценция Е - типа n Замедленная флуоресценция Е – типа: за счет термической активации молекул в состоянии Т 1 происходит их переход на более высокие колебательные уровни, которые могут перекрываться с колебательными уровнями S 1 и и становится возможным переход Т 1 → S 1.

Замедленная флуоресценция n Замедленная флуоресценция Р - типа (наблюдаемая у молекул пирена и других ароматических соединений): возникает при переносе энергии в результате столкновений

Диаграмма потенциальной энергии n При рассмотрении люминесценции полезно рассмотрение диаграммы потенциальной энергии. n Ограничимся двумерными диаграммами, относящимися, строго говоря, к случаю двухатомной молекулы.

Диаграмма потенциальной энергии n Кривые потенциальной энергии состояний S 1 и T 1 пересекаются в некоторой точке. n В этой точке положение и импульсы атомных ядер одни и те же, т. е. возможен S 1 → T 1 переход. n В сложных многоатомных молекулах многомерные потенциальные поверхности могут пересекаться во многих точках, что увеличивает вероятность ИК. n Принцип Франка – Кондона. Согласно этому принципу электронные переходы являются настолько быстрыми процессами (10 -13 с) по сравнению с движением ядер (10 -12 с), что за время электронного перехода ядра не успевают изменить ни своей скорости ни своего взаимного расположения.

Принцип Франка - Кондона n Поэтому прежнее положение ядер будет соответствовать изменившимся в результате электронного перехода силам только в том случае, если молекула будет совершать достаточные колебания. n Так, при электронном возбуждении молекулы прочность связи мгновенно ослабевает, а ядра в первый момент продолжают занимать прежнее близкое друг к другу положение (сжатая молекула). n Такое несоответствие приводит к тому, что молекула начинает совершать колебания. n За короткое время жизни возбужденного состояния (10 -9 с) избыточная колебательная энергия успевает распределиться между многочисленными колебаниями молекулы или передаться окружающей среде.

Принцип Франка - Кондона n В результате молекула из неравновесного Франк – Кондоновского состояния переходит в равновесное, в котором ядра в соответствии с ослабленной связью разнесены друг от друга и совершают относительно этого положения колебания. n Далее – при испускании кванта люминесценции прочность связи в молекуле мгновенно усиливается, ядра же в первый момент продолжают занимать прежнее, далекое друг от друга положение (растянутая молекула). n И снова – переход из неравновесного Франк - Кондоновского состояния в равновесное осуществляется в результате колебаний.

Принцип Франка - Кондона n Итак, согласно принципу Франка - Кондона, при электронном возбуждении внутримолекулярные связи, как правило, ослабляются. n Это приводит к тому, что минимум потенциальной кривой возбужденного состояния расположен при несколько большем межъядерном расстоянии, чем у основного состояния. n Как следует из квантовой механики, наиболее вероятное межъядерное расстояние для молекулы с нулевой колебательной энергией соответствует средней точке АВ или CD.

Принцип Франка - Кондона n Наиболее вероятными будут переходы, отвечающие вертикальным линиям, проведенным из середины отрезков АВ (поглощение)или CD (испускание) до пересечения с соответствующими потенциальными кривыми:

Фотолюминесценция n Способность веществ к люминесценции, как и к поглощению излучения, связана с их электронным строением. n Например, если низшее возбужденное синглетное состояние органической молекулы обусловлено π → π* переходом, то она часто имеет высокие выходы и флуоресценции и фосфоресценции. n В тех же случаях, когда низшее возбужденное синглетное состояние возникает в результате n → π* перехода, то молекула обычно обладает малым выходом флуоресценции, но может обладать высоким выходом фосфоресценции при низкой температуре. n Обычно переход n → π* является наиболее длинноволновым переходом.

Фотолюминесценция n Вероятность такого перехода мала (ε λmax ~ (1 - 2) 103 M -1 см-1), а время жизни возбужденного синглетного состояния n , π*, а значит и вероятность безызлучательной дезактивации велики. n Экспериментально установлено, что разница в энергиях S 1 ↔ T 1 для состояния n , π* в 2 - 4 раза меньше, чем для состояния π, π*. n Все это приводит к тому, что часто соединения, содержащие n - электроны, слабо или вовсе не флуоресцируют, но сильно фосфоресцируют.

Структура и оптические свойства молекул n Замечено, что наибольшей способностью к люминесценции обладают симметричные молекулы с протяженной системой сопряженных связей, склонные к образованию орто - и пара - хиноидных колец. n Одним из наиболее важных факторов, обуславливающих люминесценцию, является требование о наличии жесткой и плоской структуры. n По - видимому, относительное вращение частей «гибкой» молекулы возмущает электронные оболочки и облегчает безызлучательные переходы. n Например, известный гормон адреналин не люминесцирует, но при окислении превращается в ярко люминесцирующий триоксидон.

Структура и оптические свойства молекул n Люминесцирующий флуоресцеин отличается от нелюминесцирующего фенолфталеина только тем, что в молекуле флуоресцеина кислородный мостик жестко удерживает два кольца в одной плоскости: флуоресцеин фенолфталеин

Основные закономерности молекулярной люминесценции n Правило Каши: форма спектра люминесценции не зависит от длины волны возбуждающего света. n Закон Стокса - Ломмеля: спектр люминесценции в целом и его максимум сдвинут со спектром поглощения и его максимумом в длинноволновую область. n Правило Левшина (правило зеркальной симметрии): нормированные спектры поглощения и флуоресценции, представленные в виде графиков ε = f(v) и I/v = f(v), зеркально симметричны относительно прямой, перпендикулярной к оси частот и проходящей через точку пересечения спектров v 0.

Основные закономерности молекулярной люминесценции n Правило Левшина: va + vf = 2 v 0, где va, vf – симметричные частоты поглощения и флуоресценции; v 0 – частота чисто электронного перехода, т. е. перехода между нулевыми колебательными уровнями S 0 ↔ S 1; ∆v = va - vf = 2(va - v 0)

Основные закономерности молекулярной люминесценции n Закон Вавилова: по мере увеличения λв энергетический выход флуоресценции возрастает, сохраняет постоянную величину и затем уменьшается.

Закон затухания люминесценции n Для интенсивности люминесценции Iл, определяемой скоростью испускания квантов люминесценции, имеем: dn Iл = - --- = k 1 n 0 e-k 1 t = Iл 0 e-k 1 t, dt где Iл 0 – интенсивность люминесценции в первый момент после прекращения возбуждения. n Таким образом, интенсивность люминесценции дискретного центра уменьшается со временем по экспоненциальному закону. n Затухание рекомбинационного свечения происходит по более сложному гиперболическому закону.

Зависимость интенсивности люминесценции от концентрации n При стационарном (непрерывном) возбуждении образца и отсутствии тушения: Iл = k 1 φкв Nп (Nп – число поглощенных квантов); Nп = k 2 (I 0 – I); I = I 0 10 -εℓC; Iл = k φкв I 0 (1 - 10 -εℓC), где k – коэффициент пропорциональности; Разложение 10 -εℓC в ряд дает: (2, 3εℓC) 2 (2, 3εℓC)3 1 - 2, 3εℓC + ---- - ---- + ……. ; 2! 3!

Зависимость интенсивности люминесценции от концентрации ■ При εℓC ≤ 10 -2 вклад третьего и последующих членов разложения незначительны: Iл = 2, 3 k φкв I 0 ε ℓ C; Iл = k C; обычно ε ~ 103 – 104, тогда при ℓ = 1 см Сi = 10 -5 – 10 -6 M

Причины отклонения зависимости Iл = k. C от линейности ■ Эффект внутреннего фильтра связан с поглощением части возбуждающего излучения при прохождении через слой люминофора; ■ Самопоглощение – поглощение люминофором части люминесцентного излучения; ■ Тушение люминесценции: концентрационное тушение (образование нелюминесцирующих агрегатов, миграция энергии от возбужденных молекул к невозбужденным); температурное тушение (внутримолекулярный процесс, обусловленный значительным увеличением колебательной энергии при повышении Т);

Тушение люминесценции ■ Тушение люминесценции: тушение посторонними веществами (тяжелые ионы: I-, Br-, Cs+, Cu+; парамагнитные Mn 2+, O 2; молекулы растворителя); статическое тушение (примесное вещество образует с невозбужденным люминофором нелюминесцирующие продукты); динамическое тушение (примесное вещество образует с возбужденным люминофором нелюминесцирующие продукты).

Тушение люминесценции ■ Уравнение Штерна - Фольмера: φкв(Q) = k 1 / (k 1 + k 2 + k 3 [Q];

Практическое применение люминесценции Флуориметрические определения: cобственная люминесценция (UO 22+, комплексные галогениды тяжелых металлов Tl+, Sn 2+, Sb 3+, Te(IV), Pb 2+, Bi 3+, In 3+ и др. , кристаллофосфоры, органические соединения); флуоресценция комплексных соединений ионов металлов с органическими реагентами. ■ Фосфориметрические определения. ■ Временная селекция. ■ Синхронное сканирование спектров (производные спектры). ■ Хемилюминесцентный анализ. ■

Синхронные спектры ■ Синхронные спектры получают при одновременном (синхронном) сканировании (изменении) длин волн возбуждения и испускания с постоянным сдвигом Δλ между ними. ■ При этом наблюдается значительное упрощение спектров люминесценции сложных молекул, сужение их полос и, как следствие, повышение селективности определений, а также уменьшение фонового свечения за счет подавления релеевского и комбинационного рассеяния растворителя. ■ Оптимальным условием для достижения наиболее интенсивного сигнала и наименьшей полуширины линии является синхронное сканирование с условием: Δλ = λисп (макс.) - λвозб (макс.)

Трехмерные спектры ■ Трехмерные спектры представляют собой зависимость интенсивности люминесценции как от длины волны возбуждения, так и от длины волны испускания. ■ Трехмерные спектры имеют вид «горной гряды» . Каждая строка такой гряды представляет собой спектр излучения, а каждый столбец – спектр возбуждения. ■ Такие спектры получают из большого числа (обычно не менее 50) индивидуальных спектров люминесценции, записанных через определенные промежутки длин волн возбуждения. ■ Трехмерные спектры дают полную картину спектральных свойств исследуемого образца.

Контурные (двумерные) спектры ■ Использование трехмерных спектров для анализа смесей, содержащих более трех компонентов, и имеющих широкие размытые полосы в одной и той же спектральной области, представляет неразрешимую задачу. ■ В данном случае более перспективным является использование контурных спектров – результат сечения трехмерного спектра плоскостями, параллельными плоскости ХОУ, с последующим объединением полученных сечений в одной плоскости ХОУ. ■ Получающиеся изображения напоминают контурные карты (контурные спектры), которые являются «отпечатками пальцев» индивидуального соединения.

Хемилюминесцентный анализ ■ Хемилюминесцентный анализ основан на явлении хемилюминесценции (ХЛ). Этот вид свечения не требует внешнего источника возбуждения, а возникает за счет энергии экзотермических химических процессов: A + B → P* + C P* → P + hvcl n В растворах ХЛ наблюдается главным образом в реакциях окисления органических веществ кислородом или пероксидом водорода. n Образование продуктов реакции происходит чаще всего по сложному радикально-цепному механизму. n Так, многие полагают, что окисление люминола (I) протекает с участием радикалов HO 2*, HO*, O 2*.


Хемилюминесцентный анализ ■ Основные группы определяемых соединений: хемилюминесцентные соединения, которые при окислении излучают свет (люминол, люцигенин, лофин и др.); окислители (пероксид водорода, гипохлориты, гипобромиты, персулфаты, перманганат калия, молекулярный кислород и др.); катализаторы индикаторных реакций (ионы меди, кобальта, марганца, никеля, железа и др.); ингибиторы индикаторных реакций (ароматические соединения, содержащие фенольные и аминогруппы); соединения, изменяющие р. Н среды (щелочи, карбонаты, органические основания и др.). ■ Сортовой ХЛ анализ и индикаторные методы.

Хемилюминесцентный анализ ■ Сортовой ХЛ анализ применяется при испытаниях вин, соков плодов и овощей, мясных экстрактов и т. д. Так, по реакции окисления люминола в присутствии катализатора - комплекса ионов меди с α-аминокислотами, содержащимися в соке картофеля, можно улавливать сортовые различия картофеля: сорта различаются по содержанию аминокислот. ■ К индикаторным методам ХЛ анализа относятся различные виды титрования с использованием хемилюминесцентных индикаторов (ХЛИ). В отличии от флуоресцентных индикаторов для работы с ХЛИ не требуется источника возбуждения.

Хемилюминесцентный анализ (аналитические характеристики) ■ Большей частью ХЛ – определения отличаются высокой чувствительностью: пределы обнаружения 10 -10 – 10 -4 г/мл при конечном объеме 2 – 5 мл. ■ Селективность ХЛ – определений, как правило, невысока, так как многие вещества влияют на скорость индикаторной реакции. Однако варьирование условий определения или применение маскирующих агентов позволяет «смягчить» этот недостаток. ■ Простота, доступность и дешевизна аппаратуры, используемой в ХЛ, в сочетании с возможностью экспрессного, высокочувствительного, а при определенных условиях, и селективного определения большого круга соединений обуславливает распространенность ХЛ.