Главный комплекс гистосовместимости, его основные биологические функции. Иммунная система. Индуцибельные факторы защиты организма (иммунная система). Главный комплекс гистосовместимости (МНС первого и второго класса). Гены MHC I и MHC II Главный ген гисто

2661 0

Согласно условиям формирования иммунологического ответа на антигены различной природы его развитие, как отмечено выше, сопровождается обязательной экспрессией молекул главного комплекса гистосовместимости (ГКГ) .

Система ГКГ обеспечивает регуляцию всех форм иммунологического ответа, начиная от распознавания, и в конечном итоге - общий контроль за иммунологическим гомеостазом.

Такой практически универсальный контроль за состоянием системы иммунитета обосновывается особенностями структурной организации системы ГКГ.

Успешное развитие молекулярной биологии и генетики способствовало получению новых данных и пониманию структуры ГКГ, изучение которой началось почти 50 лет назад. Результаты исследования системы главного комплекса гистосовместимости отражены в большом количестве монографий, обзоров, статей. Поэтому далее рассматриваются лишь те основные представления о системе ГКГ, которые необходимы для понимания сущности процесса распознавания опухолевых антигенов .

Известны две основные группы антигенов ГКГ - I и II классов, подавляющее большинство молекул которых могут участвовать в презентации антигена. При выраженных различиях в структуре, особенностях, функциях, генетической организации, локализации в клетке, перераспределении в тканях различных молекул I и II классов главного комплекса гистосовместимости они рассматриваются как своеобразный рецептор для пептидов антигенов различной природы, включая опухолевые.

Антигены первого класса главного комплекса гистосовместимости

Антигены I класса ГКГ в норме экспрессируются практически всеми ядросодержащими клетками (исключение составляют клетки ранних стадий эмбрионального развития). Антигены ГКГ представляют собой универсальные структуры, количество которых колеблется в зависимости от вида ткани и достигает максимума на мембране лимфоцитов всех лимфоидных тканей (лимфатических узлов, селезенки), а также в периферической крови.

Значительно ниже уровень экспрессии антигенов I класса главного комплекса гистосовместимости в клетках печени, почек и эндокринных органов. Особенности тканей и их функциональное состояние, возможность развития той или иной патологии также влияют на уровень экспрессии антигенов I класса ГКГ. Клетки, лишенные антигенов ГКГ, считаются мутантными. Беспрецедентный полиморфизм антигенов главного комплекса гистосовместимости внутри вида обеспечивает уникальность и неповторимость антигенной структуры отдельных индивидуумов одного и того же вида; контроль за этим полиморфизмом осуществляют гены ГКГ.

Необходимо также учитывать, что исходно в нормальных тканях уровень экспрессии антигенов ГКГ I класса различен и зависит от локализации и особенностей тех или иных клеток. Например, на клетках эпителия кишечника, гортани, молочной железы, легких уровень экспрессии антигенов I класса главного комплекса гистосовместимости обычно высокий, на клетках скелетных мышц и слизистой желудка - невысокий, а на клетках центральной нервной системы эти антигены практически не выявляются.

Гетерогенность клеточного состава тех или иных органов или тканей, в свою очередь, определяет и возможные различия в экспрессии антигенов I класса ГКГ различными клетками. Важную роль в этом играют особенности микроокружения, в частности продукция цитокинов, которые по-разному влияют на экспрессию антигенов I класса ГКГ.

Молекулы антигенов I класса ГКГ представлены различными локусами: А, В, С - классические молекулы с выраженным полиморфизмом, а также локусы G, Е и F, известные как неклассические молекулы антигенов I класса главного комплекса гистосовместимости; к неклассическим молекулам относятся и CDId. И классические молекулы антигенов ГКГ I класса, и неклассические антигены локуса G могут находиться в растворимой форме - sHLA-A, sHLA-B, sHLA-C, а также sHLA-G.

Основные структурные особенности антигенов I класса ГКГ таковы. Молекула антигенов этого класса представляет собой интегральный мембранный гликопротеин (гетеродимер с молекулярной массой 45 кД) и состоит из тяжелой ос-цепи, в состав которой входят а1-, а2- и аЗ-домены. Домены а1 и а2 могут непосредственно связываться с опухолевыми пептидами, в то время как а3-домен содержит неполиморфный регион - лиганд для цитотоксических Т-клеток, который взаимодействует с рецептором СD8+-лимфоцитов и гомологичен контактному участку Ig.

Функционирование молекул I класса ГКГ во многом связано с в2-микроглобулином (в2m) , который играет важную роль в особенностях а-цепи и представляет собой растворимую легкую цепь. В литературе все чаще появляются сообщения, авторы которых пытаются найти связь между экспрессией антигенов I класса ГКГ и геном в2m.

Полученные данные разноречивы. Тем не менее постановка этого вопроса имеет серьезное обоснование, базирующееся на таких двух убедительных фактах. Первый - независимо от того, можно ли в настоящее время утверждать наличие связи между снижением экспрессии главного комплекса гистосовместимости и в2m, показано, что опухолевые пептиды могут непосредственно связываться с в2m, образуя комплекс с тяжелой цепью молекулы антигена ГКГ I класса.

В частности, такой способностью обладает HLA-A2-peстриктированный эпитоп, связывающийся с N-концами в2m, который затем распознается цитотоксическими лимфоцитами (ЦТЛ) . Второй - аномалии в экспрессии в2m часто сочетаются с резистентностью к действию ЦТЛ.

Что касается выявления каких-либо корреляций между экспрессией антигенов I класса ГКГ и в2m, то, как уже указывалось, эти данные неоднородны. Исследование большого числа различных опухолей (меланома, рак кишечника, носоглотки и др.) показало, что в подавляющем количестве наблюдений экспрессия антигенов I класса ГКГ уменьшалась.

В одних случаях это сочеталось с мутацией гена в2m, а в других - нет. Из этого следует, что авторы приведенных данных не рассматривают соматические мутации гена в2m как главный механизм снижения уровня антигенов I класса главного комплекса гистосовместимости.

В противоположность такой точке зрения при изучении экспрессии антигенов I класса ГКГ (А, В, С) параллельно с геном в2m другие авторы показали, что уменьшение экспрессии указанных антигенов при первичных карциномах рака молочной железы в 40 % случаев сочеталось и со снижением экспрессии гена в2m по сравнению с этим показателем для нормальных тканей.

Лишь в 12 % появление в2m было сравнимо с нормой; снижение экспрессии в2m не сопровождалось дефектами гена в2m. Исследование молекулярных механизмов уменьшения экспрессии антигенов I класса ГКГ дало основание для заключения, что такое снижение представляет собой феномен, который происходит главным образом на посттранскрипционном уровне и может влиять на экспрессию гена в2m.

Более однозначную трактовку наличия в2m высказывают другие авторы. Так, показано, что в значительном количестве клеток различных линий злокачественных опухолей, включая меланому, рак почки и другие, резко снижен уровень экспрессии антигенов I класса ГКГ и параллельно экспрессия в2m либо ослаблена, либо этот микроглобулин вообще не экспрессируется.

Наконец, нельзя не отметить и данные, согласно которым отсутствие экспрессии или невысокий уровень в2m у мышей некоторых линий сочетается с дефектом созревания СD4-СD8+Т-лимфоцитов, экспрессирующих TCR и дефектом цитотоксичности Т-лимфоцитов. Из этих данных следует, что экспрессия молекул I класса главного комплекса гистосовместимости играет ключевую роль в положительной селекции Т-клеток, в частности тех из них, которые в период тимического созревания экспрессируют а- и в-цепи TCR.

Несмотря на указанную противоречивость данных, изучение в2m, его исследование при карциноме носоглотки показало достоверное повышение уровня этого белка с различиями на отдельных этапах процесса, при распространении опухоли и метастазах. Повышение уровня в2m наиболее часто наблюдалось при низкодифференцированных формах этой опухоли, однако, по мнению авторов исследований, диагностическая значимость этого маркера низкая.

Приведенные данные, несмотря на их некоторую разноречивость, свидетельствуют о том, что экспрессия в2m в злокачественно трансформированных клетках в значительном количестве случаев ассоциируется с дефектами распознавания и снижением цитотоксичности, что объясняет заслуженный интерес к изучению роли в2m в процессе распознавания опухолевых антигенов.

Весьма вероятно, что дальнейшие исследования в этом направлении могут послужить базой не только для прогнозирования течения опухолевого процесса, но и для подходов к регуляции индукции иммунологического ответа. Схематически структура классических антигенов I класса ГКГ представлена на рис. 4.

Рис. 4. Схематическая структура антигенов гистосовместимости I класса

Стремление к выяснению механизмов снижения экспрессии антигенов I класса ГКГ не ограничивается поисками связи с мутациями гена в2m. В частности, показано, что это может быть обусловлено потерей гетерозиготности (loss of heterozigosity - LOH) на 6p21 хромосоме.

Этот механизм приводит к необратимому снижению уровня HLA-гаплотипа в различных опухолях и, несмотря на недостаточную изученность, может быть серьезным препятствием для терапевтического эффекта при иммунизации опухолевыми антигенами. Уменьшение гетерозиготности было обнаружено в образцах, полученных из опухолей носоглотки, кишечника, меланомы, что позволило авторам на основании большого исследованного материала разделить опухоли на LOH-негативные и LOH-позитивные для выявления больных, которых можно рассматривать как перспективных для иммунотерапии.

Белки-транспортеры

Для реализации процесса распознавания антигены I класса ГКГ в комплексе с опухолевыми пептидами должны быть доставлены на поверхность опухолевой клетки. Транспорт этого комплекса, как правило, может быть осуществлен только при наличии белков-транспортеров - ТАР (transporter antigene proteines).

ТАР представляет собой гетеродимер, относящийся к субсемейству трансмембранных транспортеров, синтезируется в цитозоле, где связан с комплексом, включающим и а-цепи главного комплекса гистосовместимости, опухолевого пептида, в2m и транспортирует этот комплекс в эндоплазматический ретикулум, где и происходит процессинг. В настоящее время известны две субъединицы этого белка - ТАР-1 и ТАР-2.

Значение ТАР-1 и ТАР-2 в процессе распознавания не ограничивается транспортом указанного комплекса, так как наряду с этим они обеспечивают и организацию молекул ГКГ. Регуляция активности белков-транспортеров осуществляется факторами PSF1 и PSF2 (peptide suppy factors).

Молекула ГКГ I класса взаимодействует с белком-транспортером благодаря молекуле, известной как тапазин, которая кодируется геном, связанным с ГКГ. Экспрессия тапазина в ряде случаев может корректировать дефекты распознавания ЦТЛ, что свидетельствует о важной роли этого белка в HLA-l-рестриктированном распознавании.

Образовавшийся в последующем указанный выше тример из цитозоля через аппарат Гольджи транспортируется на поверхность опухолевой клетки и презентирует соответствующие эпитопы рецепторам СD8+Т-лимфоцитов. Рис. 5 иллюстрирует участие транспортных белков в перемещении комплекса антигены главного комплекса гистосовместимости - антигены опухоли.


Рис. 5. Участие транспортных белков в перемещении комплекса антигены ГКГ- антигены опухоли:
ТАР - белки-транспортеры опухолевых пептидов, TCR - рецептор Т-лимфоцитов

В плане общих представлений о функционировании ТАР имеют значение также данные, полученные в последнее время при исследовании клеток меланомы. Из них следует, что появление точечных мутаций в генах, кодирующих антигены I класса ГКГ нарушает транспортную способность ТАР, что может препятствовать распознаванию цитотоксическими лимфоцитами и рассматривается как еще одна причина ускользания опухоли из-под иммунологического контроля.

Эффективность презентации антигенов в комплексе с молекулами I класса ГКГ ЦТЛ зависит не только от наличия экспрессии ТАР, но и от их функциональной активности. Молекулярные механизмы нарушения функциональной активности ТАР изучены недостаточно. Однако в настоящее время уже есть сведения о некоторых механизмах нарушения экспрессии и функциональной активности ТАР.

Предполагается, что такие нарушения могут быть обусловлены транслокацией и точечными мутациями в генах, кодирующих эти белки, что ведет к потере способности клетки презентировать антигены I класса главного комплекса гистосовместимости. Поэтому есть все основания полагать, что дефект этой системы можно считать одним из центральных в изменении экспрессии антигенов I класса ГКГ.

Подтверждением этому служат результаты исследования клеток линии немелкоклеточной карциномы легкого, когда точечные мутации, сочетающиеся с нарушениями функции ТАР, были обнаружены в аденозинтрифосфатсвязывающем участке этого белка. Не исключается также возможность наличия ингибиторов активности ТАР.

Последнее предположение основано на том, что белок простого вируса герпеса ICP47 блокирует траспорт ТАР. В этой связи нельзя исключить и существование других ингибиторов активности ТАР как вирусного, так и другого происхождения.

Следует обратить внимание также на неодинаковую степень значимости экспрессии ТАР в клетках высоко- и низкоиммуногенных опухолей. Так, изучение презентации пептидов вирусиндуцированных опухолей мышей линии С57В1/6 показало, что эффективность презентации пептида слабоиммуногенными опухолями четко зависит от экспрессии ТАР, в то время как выраженной зависимости от презентации пептидов высокоиммуногенными опухолями не прослеживается.

Факт ТАР-независимого распознавания нуждался в объяснении, возможность которого появилась лишь в самое последнее время благодаря работам Т. Fiedler и сотрудников.

Им удалось получить данные, согласно которым в случаях дефекта ТАР презентация опухолевых антигенов с участием молекул CDld остается неизмененной. В связи с этими данными авторы считают возможным рассматривать презентацию с участием CDld как дополнительный механизм распознавания.

Стали известны и молекулярные механизмы снижения функциональной активности ТАР человека и мышей, выявлены также структуры, которые обеспечивают активность этих белков-транспортеров. В частности, при изучении аминокислотной последовательности ТАР было установлено, что наличие глютаминовой кислоты в позиции 263 (Glu-263) обеспечивает их транспортную функцию.

Снижение функциональной активности может быть также связано с нарушением стабильности гена мРНК, ответственного за презентацию антигена, что нередко сочетается и с уменьшением экспрессии антигенов I класса ГКГ.

Изменение функциональной активности транспортных белков может приводить к нарушению процессинга антигенов. Об этом свидетельствует недавно установленный факт, полученный при исследовании карциномы почки; степень выраженности таких дефектов в клетках отдельных линий карциномы почки отличалась большой вариабельностью.

Важно отметить, что частота обнаружения дефектов ТАР в различных опухолях неодинакова. Если они достаточно часто выявляются при меланомах, карциноме почки, то при раке легкого и карциномах кишечника снижение активности ТАР либо не наблюдалось, либо было слабо выраженным.

Данные о неодинаковом уровне повреждений функциональной активности ТАР в различных опухолях представляются важными не только потому, что еще раз иллюстрируют биологические особенности опухолевых клеток, но и ориентируют на поиск механизмов, повреждение которых также может способствовать нарушению представления опухолевых антигенов.

Важная роль экспрессии ТАР и должный уровень их функциональной активности для процесса распознавания опухолевых антигенов делает понятным, почему недостаточность этих транспортных белков очень существенно влияет на индукцию иммунологического ответа на данные антигены.

Уже появились сведения о том, что снижение уровня экспрессии ТАР может быть использовано и для оценки клинических особенностей течения опухолевого процесса, в частности его прогноза. Такие данные, например, были получены при изучении клеток меланомы, когда было отмечено, что прогрессирующее течение меланомы и ускользание ее от распознавания ЦТЛ сочеталось со снижением уровня экспрессии ТАР.

Параллельные исследования ТАР-1, ТАР-2, LMP-2, LMP-7, антигенов I класса ГКГ и в2m показали, что не только изменения ТАР-1, а, возможно, и ТАР-2, могут быть независимыми прогностическими маркерами при росте первичных меланом.

Белки вируса Эпштейна-Барр

Наряду с белками-транспортерами - важными компонентами распознавания большое значение имеет еще одна группа белков вирусного происхождения. Речь идет о белках вируса Эпштейна-Барр - LMP (large multifunctional protease), которые принадлежат к новому классу регуляторов и представляют собой субъединицу 20S протеосомы. В настоящее время известны несколько субъединиц этого белка - LMP-1, LMP-2A, LMP-2B, LMP-7, LMP-10 с различной молекулярной массой; идентифицированы 9 генов, кодирующих эти белки.

Экспрессия белков LMP выявлена в различных опухолях: назофарингальной карциноме, раке желудка и других злокачественных опухолях эпителиального происхождения, лимфогранулематозе, лимфоме Беркитта и др. Имеются наблюдения, что LMP-2 чаще других белков этого семейства, например LMP-7, экспрессируются клетками как первичных опухолей, так и метастазов.

Понимание роли LMP следует из особенностей тех процессов, в которых они участвуют. В этом плане достаточно изучены субъединицы LMP-2A и LMP-2B, которые имеют сходную молекулярную организацию. Белок LMP-2A связан с тирозиновыми киназами семейства src и является для них субстратом, а тирозинфосфорилирование LMP-2A индуцирует процесс адгезии к белку экстрацеллюлярного матрикса - ЕСМ (extra cellular matrix).

Наряду с перечисленными белками, участие которых обязательно практически во всех случаях распознавания, в этом процессе могут принимать участие и другие белки - MECL-1, РА28-а, РА28-в, тапазин и др., которые регулируются генами, сцепленными с генами, контролируюшими презентацию антигена.

Исходя из этого постулируется, что HLA-I-дефицитный фенотип опухоли, например меланомы, связан с уменьшением количества множества компонентов, среди которых прежде всего следует отметить ТАР, LMP, РА28-а или РА28-в, в то время как экспрессия других компонентов, таких, как калретикулин, ER60, белок дисульфидизомераза, калнексин либо вообще не изменена, либо снижена.

Дефекты ТАР и LMP чаще наблюдаются в клетках метастазов, чем первичных опухолей, что может быть обусловлено большей генетической нестабильностью этих клеток. В результате создаются условия для селекции клона опухолевых клеток, способных ускользать от распознавания, рестриктированного молекулами I класса главного комплекса гистосовместимости.

Исследование молекулярных механизмов процесса распознавания не ограничивается пониманием его сущности. Так, при изучении меланомы получены данные, согласно которым определение ТАР и LMP может иметь и клиническое значение.

Результаты параллельного исследования LMP-2, LMP-7, ТАР-1, ТАР-2, антигенов I класса ГКГ и в2m в клетках меланомы различной плотности свидетельствуют о том, что:

1) экспрессия указанных маркеров не коррелировала с плотностью опухоли;
2) уменьшение количества LMP и ТАР во многих случаях сочеталось с ослаблением экспрессии молекул ГКГ;
3) снижение уровня экспрессии ТАР-1 и ТАР-2 коррелировало с наличием метастазов.

Еще одним примером неблагоприятного сочетания снижения уровня экспрессии молекул ГКГ, белков-транспортеров и опухолевых антигенов служат следующие данные. Оказалось, что уменьшение экспрессии антигена меланомы MART-1/Melan-A, ТАР и молекул главного комплекса гистосовместимости I класса в клетках больных меланомой приводило в последующем к летальному исходу; иммунотерапия была неэффективной. Это объясняет, почему в настоящее время предпринимаются попытки использования результатов определения экспрессии белков ТАР и LMP в клинике.

Однако несмотря на бесспорную значимость белков ТАР и LM Р в процессе распознавания, имеются наблюдения, которые иллюстрируют возможность исключений. Как неоднократно отмечалось, снижение экспрессии ТАР, как правило, связано с уменьшением экспрессии антигенов I класса ГКГ.

Наряду с этим известны случаи, когда такой параллелизм отсутствует, что подтверждают результаты изучения клеток двух линий карциномы носоглотки человека. В клетках обеих линий уменьшалась экспрессия LMP-2, ТАР-1, ТАР-2, LMP-7, молекул аллелей HLA-B.

В клетках одной из линий - HSC5, несмотря на выраженное снижение уровня ТАР отмечена экспрессия молекул HLA-A2, что свидетельствует о возможности транспортировки антигенов ГКГ без участия ТАР.

Весьма вероятно, что такая возможность зависит от ряда еще не известных особенностей внутриклеточных процессов, происходящих в той или иной опухолевой клетке. Поэтому существование даже единичных случаев транспортировки комплексов опухолевых пептидов и молекул ГКГ при отсутствии ТАР ставит перед исследователями задачу выяснения, при каких условиях осуществляется распознавание.

Таким образом, можно констатировать, что ТАР и LMP - необходимые компоненты эффективного процесса распознавания опухолевых антигенов. Снижение уровня экспрессии этих белков и их функциональной активности - одна из главных причин ухода опухоли из-под иммунологического контроля. Уменьшение их экспрессии нередко ассоциируется со снижением чувствительности не только к лизису цитотоксическими лимфоцитами, но и к естественным киллерам.

Ключевая роль ТАР и LMP в распознавании обосновывает целесообразность еще одного несомненно перспективного подхода в общей стратегии иммунотерапии - повышение уровня экспрессии указанных белков различными путями: трансфекцией соответствующих генов, действием цитокинов, усиливающих их экспрессию, в частности IFNy и др.

Антигены, рестриктированные молекулами I класса главного комплекса гистосовместимости, могут быть представлены различными путями. Прямая презентация - деградация цитолитических белков с участием протеосом, транспортом пептидов через мембрану эндоплазматического ретикулума и последующей экспрессией комплекса молекула ГКГ - эпитопы антигена опухоли на поверхность опухолевой клетки.

Перекрестная презентация включает внутриклеточный процессинг опухолевых антигенов антигенпрезентирующими клетками. Как известно, прямая презентация, как правило, направлена на представление антигена СD8+Т-лимфоцитов, а перекрестная - СD4+Т-лимфоцитов. При этом показано, что перекрестная презентация необходима и для индукции клеток памяти CD8+, однако остается неясным, способна ли такая презентация влиять на цитотоксичность последних.

Для ответа на этот вопрос были проведены опыты с индукцией прямой и перекрестной презентации при использовании мутантных антигенов I класса ГКГ, не способных осуществлять презентацию даже нормальных антигенов этого класса.

Результаты исследований показали, что первые индуцируют очень слабую цитотоксичность ЦТЛ, а оптимальная индукция цитотоксичности, но не клеток памяти ЦТЛ, осуществляется при прямой презентации антигена опухолевыми клетками.

Антигены локуса G

Как уже указывалось, в структуру антигенов I класса ГКГ наряду с локусами А, В, С входят и другие локусы, в частности G, Е и F, которые, в отличие от антигенов локусов А, В, С, характеризуются ограниченным полиморфизмом и поэтому называются неклассическими молекулами. Они отличаются от классических не только ограниченным полиморфизмом, но и особенностями транскрипции, экспрессии и иммунологическими функциями.

Антигены локуса G (не принимающие участия в классическом распознавании) экспрессируются трофобластами, на поверхности которых обычно отсутствуют антигены других локусов главного комплекса гистосовместимости. Физиологическая роль HLA-G в этих случаях заключается в ограничении роста клеток, включая трофобласты, благодаря чему эти антигены играют важную роль в установлении толерантности плода к иммунологической системе матери.

Интерес к выявлению антигенов локуса G на опухолевых клетках возник сравнительно недавно и большой вклад в понимание значения экспрессии HLA-G внесли P. Paul и сотрудники. Стало известно, что HLA-G может находиться в мембранносвязанной и растворимой формах, что определяет наличие его различных изоформ: HLA-G1, HLA-G2, HLA-G3, HLA-G4 - изоформы, связанные с мембраной, HLA-G5, HLA-G6, HLA-G7 - растворимые изоформы; некоторые из них обнаруживаются как в супернатантах культивируемых клеток, так и в различных жидкостях организма.

Естественно, что сравнительная новизна этого вопроса оставляет неясными многие детали, касающиеся оценки значения экспрессии антигенов локуса G. Тем не менее, несмотря на некоторую неоднозначность такой оценки, полученные результаты позволяют достаточно определенно установить важность экспрессии молекул HLA-G опухолевыми клетками и могут быть использованы для понимания процессов лизиса цитотоксическими клетками.

Последнее объясняется, в основном, тем, что взаимодействие с HLA-G приводит к ингибиции лизиса опухолевых клеток, формированию толерантности, что можно рассматривать как благоприятные условия для ухода опухоли из-под иммунологического контроля. Возможный уход от лизиса опухолевых клеток, которые экспрессируют HLA-G, очевидно, связан с ингибицией рецепторов, ответственных за цитотоксичность.

В последнее время стали известны несколько типов таких ингибиторных рецепторов, впервые один из них был описан в начале 90-х годов. Более подробные сведения об ингибиторных рецепторах будут изложены ниже.

Стало известно, что ингибиторные рецепторы взаимодействуют с молекулами HLA-G и таким образом способствуют уходу опухоли из-под иммунологического контроля. Возможность этого усиливается и тем обстоятельством, что ингибиторные рецепторы экспрессируются на различных цитотоксических лимфоцитах: Т-лимфоцитах, естественных киллерах и естественных киллерных Т-лимфоцитах.

О неоднозначности трактовок значения экспрессии антигенов HLA-G для процесса распознавания свидетельствуют также результаты изучения значительного количества образцов различных опухолевых тканей и клеток многих опухолевых линий с целью выявления экспрессии антигенов А, В, С, а также G и его изоформы - G1.

Результаты этих исследований показали, что в небольшом числе случаев наблюдается транскрипция мРНК антигенов локуса G при отсутствии экспрессии его изоформы - G1. Итогом этих исследований было заключение, что антигены HLA-G, и в частности его изоформа G1, либо не играют роли в осуществлении ингибиторного сигнала киллерных клеток, либо эта роль ничтожно мала.

К аналогичным выводам при изучении экспрессии HLA-G клетками меланомы пришли и другие исследователи. Было установлено, что клетки меланомы экспрессировали этот антиген только de novo, что дало основание рассматривать экспрессию локуса HLA-G на клетках меланомы не как закономерную. Эти же исследователи показали, что IFNy не влияет на экспрессию антигенов HLA-G и поэтому терапия данным цитокином не способствует уходу опухоли от лизиса.

Несмотря на то, что авторы указанных исследований не дают окончательной оценки значения экспрессии HLA-G, они не исключают, что экспрессия этих антигенов может препятствовать развитию тех проявлений противоопухолевого иммунитета, которые способствуют опухолевой прогрессии.

Такое заключение было сделано при исследовании клеток меланомы, на которых был установлен высокий уровень сплайсинга HLA-G-транскрипции, сочетающийся с прогрессированием опухолевого роста.

Молекулы HLA-G могут экспрессироваться на активированных макрофагах и дендритных клетках, инфильтрирующих карциному легкого, а также легочную ткань при других патологических процессах.

Предполагается, что экспрессия HLA-G этими клетками может препятствовать презентации антигена и благоприятна для прогрессии как злокачественного роста, так и воспалительных процессов.

Некоторые авторы склонны рассматривать экспрессию HLA-G как фактор ускользания опухоли из-под иммунологического контроля даже в тех случаях, когда проведенные исследования не дают прямых доказательств для такого заключения. Например, при исследовании клеток (свежевыделенных и клеток различных линий) гепатомы, меланомы, карцином не выявлено экспрессии антигенов HLA-G.

Отмечено также, что опухоли не были инфильтрированы естественными киллерами и лизис опухолевых клеток не наблюдался. Тем не менее авторы не исключают возможной роли антигенов ГКГ локуса HLA-G в процессе ускользания опухоли от иммунологического контроля. Установлено, что HLA-G-молекулы в большем количестве случаев экспрессируются макрофагами и ДК, инфильтрирующими карциному легкого, чем при незлокачественных заболеваниях.

По мере изучения роли экспрессии HLA-G сомнения относительно ее значения уменьшались, и в настоящее время есть основания считать, что экспрессия HLA-G может:

1) быть дополнительным механизмом ускользания опухоли от иммунологического контроля;
2) вызывать иммунологическую толерантность;
3) ингибировать цитотоксичность киллерных клеток.

Если же учесть, что HLA-G может ингибировать лизис различными киллерными клетками, то спектр возможных негативных влияний экспрессии этих молекул значительно расширяется.

К неклассическим антигенам системы ГКГ относятся и молекулы локуса Е - HLA-E. Эти молекулы характеризуются ограниченным полиморфизмом и с высокой специфичностью связывают пептид 1а, который происходит из полиморфных классических молекул А, В, С и стабилизирует белки ГКГ, способствуя их продвижению к клеточной мембране.

Исследование кристаллической структуры HLA-E показало, что он обладает способностью связываться с пептидами la HLA-1 при участии белков-транспортеров (ТАР-зависимым путем), может взаимодействовать с рецепторами естественных киллеров, ингибируя их лизис. Специфичность связывания молекул локуса Е с 1а определяется внутренними свойствами молекулы HLA-E.

Подобно молекулам антигена HLA-G, молекулы антигенов HLA-E также выявляются на трофобластах, тормозят активность естественных киллеров и рассматриваются как компонент защиты от распознавания материнскими цитотоксическими лимфоцитами; при определенных условиях антигены HLA-E могут активировать естественные киллеры.

Если в эндоплазматическом ретикулуме нет основного пептида, то молекулы локуса Е теряют стабильность и деградируют еще до достижения поверхности клетки. Если в клетках происходят изменения (в результате попадания инфекции, злокачественной трансформации), снижается экспрессия А, В, С или ингибируется активность ТАР, молекулы локуса Е также могут не достигать поверхности.

Молекулярные механизмы определения функции антигенов локуса Е подлежат дальнейшему изучению. Однако при наличии ряда невыясненных вопросов есть данные о строгой зависимости между экспрессией антигенов локуса Е и ко-экспрессией в2m.

Как отмечалось, описан еще один локус молекул антигенов I класса главного комплекса гистосовместимости - локус F. Информация об этом локусе очень ограничена, а сравнительное исследование экспрессии антигенов локуса F у обезьян и человека показало, что он выявляется только у человека. Данных о роли молекул локуса F в распознавании опухолевых антигенов нет.

Заканчивая изложение данных о классических и неклассических молекулах, нельзя обойти вниманием и недавно полученные факты, что растворимые формы как классических, так и неклассических молекул, в частности HLA-G, могут индуцировать апоптоз активированных СD8+Т-лимфоцитов.

Изучение этой апоптозиндуцирующей способности в отношении активированных СD8+Т-лимфоцитов показало, что их связывание с растворимыми формами как классических, так и неклассических антигенов приводит к усилению Fas/FasL-взаимодействия, секреции растворимой формы FasL СD8+Т-лимфоцитами, что сопровождается ингибицией цитотоксичности этих клеток.

Авторы предполагают, что растворимые формы указанных антигенов выполняют иммунорегуляторную роль в различных условиях, включая и ряд заболеваний, который характеризуется активацией клеток системы иммунитета и повышением уровня sHLA-A, sHLA-B, sHLA-C, sHLA-G в сыворотке крови.

Для понимания значения экспрессии антигенов I класса ГКГ важен факт, согласно которому уровень экспрессии антигенов ГКГ по-разному влияет на индукцию цитотоксичности различных киллерных клеток. Так, для оптимального лизиса опухолевых клеток ЦТЛ необходим высокий уровень антигенов I класса ГКГ, в то время как эффективный лизис другими киллерными клетками, в частности естественными киллерами, может осуществляться и при низком уровне указанных антигенов главного комплекса гистосовместимости, что показано в опытах с аденокарциномой кишечника мышей.

Изменения экспрессии антигенов ГКГ

Изменения экспрессии антигенов ГКГ (преимущественно снижение) выявлены при многих предопухолевых состояниях, что особенно отчетливо проявляется у антигенов I класса ГКГ. Причины этого снижения могут быть различны: мутации соответствующих генов, контролирующих экспрессию антигенов I класса ГКГ, нарушение регуляции презентации антигенов с участием антигенов I класса ГКГ, ингибиция гликолизирования или транспорта молекул I класса главного комплекса гистосовместимости, мутации в ТАР-генах, мутации или перераспределение в в2m, изменение в структуре хроматина антигенов I класса ГКГ, экспрессия онкогенов и снижение уровня экспрессии молекул ГКГ под влиянием вирусов и др.

Достаточное количество данных показывает, что снижение уровня экспрессии антигенов I класса ГКГ часто наблюдается при таких предопухолевых патологиях, какдисплазии, кандиломы, папилломы. Однако это наблюдается не при всех предопухолевых состояниях. Например, при кондиломах, раке шейки матки, молочной железы, гортани и наличии соответствующих генетических и морфологических изменений экспрессия антигенов главного комплекса гистосовместимости I класса не нарушена.

Более того, в некоторых случаях, например, при аденомах кишечника, которые, как известно, характеризуются аккумуляцией таких онкогенов, как k-ras, экспрессия антигенов гистосовместимости не изменена. Наличие экспрессии антигенов I класса ГКГ во многих случаях сочетается с благоприятным прогнозом, например при раке молочной железы, гортани и др.

Различные дисплазии, которые сопровождаются снижением экспрессии антигенов I класса ГКГ, в частности с локализацией в шейке матки, органах дыхательного и желудочного тракта, нередко сочетаются с уменьшением экспрессии адгезивных молекул, важных для межклеточных взаимодействий при формировании противоопухолевого иммунитета.

Общее представление о динамике экспрессии антигенов I класса ГКГ на нормальных клетках, при предопухолевых состояниях, а также злокачественно трансформированных клетках различных органов дает схема 1.


Схема 1. Экспрессия антигенов I класса главного комплекса гистосовместимости в динамике формирования злокачественного фенотипа

Уровень экспрессии антигенов ГКГ I класса снижается значительнее по мере развития опухолевого процесса, о чем свидетельствуют многие наблюдения. Нередко уменьшение количества этих антигенов ассоциируется с ускользанием опухоли из-под иммунологического контроля, ранним метастазированием, дессиминацией процесса, что отмечено при меланомах, раке носоглотки, кишечника.

Это объясняет, почему во многих случаях наблюдается параллелизм между нарушениями в генах, кодирующих экспрессию антигенов ГКГ, особенностями течения опухолевого процесса и эффективностью иммунотерапии, точкой приложения которой являются Т-лимфоциты. Такое заключение подтверждают наблюдения, согласно которым увеличение частоты нарушения экспрессии антигенов I класса ГКГ может сочетаться либо с отсутствием эффекта иммунотерапии, либо быстрым рецидиви-рованием заболевания.

Эти наблюдения свидетельствуют о возможности того, что в основе усиления и распространения опухоли лежит селекция опухолевых клеток, которые приобретают способность ускользать от иммунологического распознавания в связи с нарушениями экспрессии антигенов главного комплекса гистосовместимости.

Различный характер уменьшения экспрессии антигенов отдельных локусов ГКГ I класса демонстрируют исследования, проведенные с клетками инвазивного рака прямой кишки. Исследования показали, во-первых, общую высокую частоту снижения экспрессии этих антигенов (до 40 %) и высокую частоту их повреждения (до 73 %), во-вторых, выявлены локус-специфические различия в повреждении: HLA-А и HLA-B - соответственно в 9 и 8 %, параллельное повреждение HLA-A и HLA-B - в 2 % и не отмечено изменений в экспрессии HLA-C-локуса.

Высокую частоту нарушения экспрессии антигенов I класса ГКГ при инвазивном раке прямой кишки авторы рассматривают как благоприятное условие для ускользания опухоли из-под иммунологического контроля.

Снижение уровня антигенов I класса ГКГ может быть различным - полным, локусспецифическим или аллелеспецифическим. Обнаружено, что во многих случаях уменьшение экспрессии антигенов I класса связано с формированием резистентности опухолевых клеток к лизису киллерными клетками.

Несмотря на то, что снижение уровня экспрессии антигенов I класса главного комплекса гистосовместимости опухолевыми клетками различного гистогенеза и локализации наблюдается в подавляющем большинстве случаев, возможны и исключения - экспрессия не уменьшается, а в отдельных случаях уровень экспрессии повышается.

Тем не менее обращает на себя внимание такой важный факт: в ряде случаев при отсутствии изменений в экспрессии молекул антигенов ГКГ либо даже при ее усилении противоопухолевая иммунологическая защита не формируется.

Такая нестандартная ситуация вызывает естественный вопрос: почему при незначительном снижении уровня экспрессии антигенов ГКГ, отсутствии изменений и даже усилении экспрессии противоопухолевый иммунологический ответ все-таки не развивается?

Причины этого могут быть различны и будут рассмотрены в последующих разделах. Однако очень важно иметь в виду, что отсутствие формирования противоопухолевого иммунитета еще не означает, что процесс распознавания не произошел. К сожалению, есть убедительные доказательства того, что в некоторых случаях процесс распознавания приводит к индукции другой формы иммунологического ответа - толерантности.

При том что, как правило, для представления антигенов опухоли необходимы экспрессия антигенов ГКГ и процессинг опухолевых антигенов имеются наблюдения, согласно которым ослабление процессинга и экспрессии антигенов I класса главного комплекса гистосовместимости не всегда служит препятствием для лизиса опухолевых клеток соответствующими лимфоцитами.

Такие данные получены при исследовании клеток нейробластомы с очень незначительным уровнем экспрессии антигенов I класса ГКГ. Однако даже этого уровня оказалось достаточно для распознавания при условии, что опухолевые клетки были инфицированы вирусом гриппа.

Такая чувствительность клеток нейробластомы к действию киллерных лимфоцитов позволяет характеризовать ее как опухоль, чувствительную к иммунотерапии. При всем интересе к этим данным возникают вопросы, на которые сегодня еще нет ответов.

Например, можно ли проводить параллель между такими условиями лизиса опухолевых клеток и возможностью лизиса неинфицированных опухолевых клеток со сниженной экспрессией антигенов I класса ГКГ? Можно ли определить минимальный порог экспрессии антигенов ГКГ, который вызывает индукцию иммунологического ответа?

При исследовании частоты изменения экспрессии антигенов различных локусов главного комплекса гистосовместимости I класса показано, что наиболее часто наблюдается уменьшение количества молекул HLA-A, а затем HLA-B; реже имеет место параллельное снижение экспрессии антигенов двух или трех локусов.

Обобщая результаты изучения экспрессии антигенов I класса ГКГ с учетом их клинического значения представляется возможным отметить следующее:

1. Существует достоверная отрицательная корреляция между снижением экспрессии антигенов I класса ГКГ и опухолевой прогрессией при многих опухолях - первичной карциноме молочной железы, раке кишечника, шейки матки, ротовой полости и гортани, мочевого пузыря, меланоме.

При этой выраженной общей закономерности известны единичные исключения, которые проявляются не только в усилении экспрессии антигенов I класса ГКГ, но даже в появлении этих антигенов на тех клетках, которые до этого их не экспрессировали, что наблюдалось при некоторых опухолях мышечной ткани, в частности при рабдомиосаркоме.

2. Резкое снижение уровня экспрессии антигенов I класса часто совпадает с ранним метастазированием, что особенно характерно для клеток меланомы, у которых, как правило, наблюдается выраженный дефицит экспрессии антигенов I класса главного комплекса гистосовместимости.

3. Существует корреляция между степенью дифференцировки опухолевых клеток и уровнем экспрессии антигенов I класса ГКГ - степень дифференцировки уменьшается по мере снижения уровня экспрессии.

Эти данные подтверждены при параллельном изучении экспрессии различных локусов ГКГ и данных гистологических исследований, которые показали, что наиболее слабая экспрессия антигенов I класса ГКГ сочеталась с низкой дифференцировкой опухолевых клеток, их выраженной инвазивностью и большой метастатической активностью, что особенно отчетливо проявилось при изучении клеток рака носоглотки.

4. Интенсивность снижения экспрессии антигенов I класса главного комплекса гистосовместимости варьирует в зависимости от локализации опухоли и исходного уровня экспрессии этих антигенов: клетки скелетных мышц и слизистой оболочки желудка могут быть отнесены к клеткам, слабо экспрессирующим антигены I класса ГКГ, а клетки центральной нервной системы практически их не экспрессируют.

5. Нередко снижение уровня экспрессии антигенов ГКГ ассоциируется со слабой иммуногенностью опухолевых клеток.

6. При многих опухолях человека, особенно при меланоме, уровень экспрессии ТАР-1 и ТАР-2 уменьшался также LMP, что обусловлено либо их структурными повреждениями, либо дисрегуляцией и ассоциируется с быстрым метастазированием.

7. Снижение уровня экспрессии антигенов главного комплекса гистосовместимости с полным основанием считают одной из важнейших причин ускользания опухоли из-под иммунологического контроля.

8. Принципиально важна необходимость учета особенностей экспрессии антигенов I класса ГКГ до начала иммунотерапии , что, по мнению многих авторов, может существенно предопределить ее эффективность, в частности вакцинации опухолевыми пептидами.

Бережная Н.М., Чехун В.Ф.

1877 0

Структура молекул главного комплекса гистосовместимости I класса

На рис. 9.3, А показана общая схема молекулы главного комплекса гистосовместимости (МНС) I класса человека или мыши. Каждый ген МНС I класса кодирует трансмембранный гликопротеин, молекулярной массой около 43 кДа, который обозначается как α или тяжелая цепь. Он включает три внеклеточных домена: α1, α2 и α3. Каждая молекула МНС I класса экспрессируется на клеточной поверхности в нековалентной связи с инвариантным полипептидом , называемым β2-микроглобулином (β2-m молекулярная масса 12 кДа), который кодируется на другой хромосоме.

Рис. 9.3. Разные изображения молекулы главного комплекса гистосовместимости I класса

Он имеет структуру, гомологичную единичному домену Ig, и в самом деле является представителем этого суперсемейства. Таким образом, на клеточной поверхности структура МНС I класса плюс β2m имеет вид четырехдоменнои молекулы, в которой к мембране примыкают домен α3 молекулы МНС I класса и β2m.

Последовательности различных аллельных форм молекул главного комплекса гистосовместимости I класса очень схожи. Различия аминокислотных последовательностей среди молекул МНС сосредоточены на ограниченном участке их внеклеточных доменов α1 и α2. Таким образом, индивидуальная молекула МНС I класса может быть разделена на неполиморфную, или инвариантную, область (одинаковую для всех аллельных форм 1 класса) и полиморфную, или вариабельную, область (уникальную последовательность для данного аллеля). Т-клеточные молекулы CD8 связываются с инвариантными областями всех молекул главного комплекса гистосовместимости I класса.

Все молекулы МНС I класса, подвергнутые рентгеновской кристаллографии, имеют одинаковую общую структуру, изображенную на рис. 9.3, Б и В. Наиболее интересной особенностью строения молекулы является то, что максимально удаленная от мембраны часть молекулы, состоящая из доменов α1 и α2, имеет глубокую бороздку или полость. Эта полость в молекуле МНС I класса является местом связывания пептидов. Полость напоминает корзину с неровным дном (сплетенную из аминокислотных остатков в виде плоской β-складчатой структуры), а окружающие стенки представлены α-спиралями. Полость закрыта с обоих концов, поэтому в нее вмещается цепочка, состоящая из восьми или девяти аминокислотных последовательностей.

Сравнивая последовательности и структуру полости у разных молекул главного комплекса гистосовместимости I класса, можно обнаружить, что дно каждой из них различно и состоит из нескольких карманов, специфичных для каждого аллеля (рис. 9.3, Г). Форма и заряд этих карманов на дне полости помогают определить, какие пептиды связываются с каждой аллельной формой молекулы МНС. Карманы также помогают закрепить пептиды в таком положении, в котором они могут распознаваться специфичными TCR. На рис. 9.3, Г и 8.2 показано взаимодействие пептида, размещенного в полости, и участков молекулы МНС I класса с Т-клеточным рецептором.

Центр связанного пептида - единственная часть белка, не спрятанная внутри молекулы главного комплекса гистосовместимости, - взаимодействует с CDR3-TCR α и β, которые являются наиболее вариабельными в Т-клеточном рецепторе. Это означает, что для распознавания пептида TCR необходим контакт с небольшим количеством аминокислот центра пептидной цепочки.

Отдельная молекула МНС I класса может связываться с разными пептидами, но преимущественно с теми, которые обладают определенными (специфичными) мотивами (последовательностями). Такими специфичными последовательностями являются инвариантно расположенные 8 - 9 аминокислотных остатков (якорные последовательности), обладающие высоким сродством к аминокислотным остаткам в пептидсвязывающей полости данной молекулы МНС. При этом аминокислотные последовательности в позициях, не являющихся якорными, могут быть представлены любым набором аминокислотных остатков.

Так, например, человеческая молекула I класса HLA-А2 связывается с пептидами, имеющими во второй позиции лейцин, а в девятой - валин; в отличие от нее другая молекула HLA-A связывает только белки, у которых в якорную последовательность входят фенилаланин или тирозин в позиции 5 и лейцин в позиции 8. Другие позиции в связываемых пептидах могут быть заполнены любыми аминокислотами.

Таким образом, каждая из молекул главного комплекса гистосовместимости может связываться с большим количеством пептидов, обладающих различными аминокислотными последовательностями. Это помогает объяснить, почему ответы, опосредованные Т-клетками, могут развиться, за редким исключением, по меньшей мере к одному эпитопу почти всех белков и почему случаи отсутствия иммунного ответа на белковый антиген очень редки.

Структура молекул главного комплекса гистосовместимости II класса

Гены α и β МНС II класса кодируют цепи массой около 35000 и 28000 Да соответственно. На рис. 9.4, А показано, что молекулы МНС II класса, как и I класса, являются трансмембранными гликопротеинами с цитоплазматическими «хвостами» и внеклеточными доменами, похожими на Ig; домены обозначают α1, α2, β1, и β2.

Молекулы главного комплекса гистосовместимости II класса также являются членами суперсемейства иммуноглобулинов. Как и у молекул МНС I класса, в состав молекулы МНС II класса входят вариабельные, или полиморфные (различные у разных аллелей), и инвариабельные, или неполиморфные (общие для всех аллелей), области. T-клеточная молекула CD4 прикрепляется к неизменяемой части всех молекул главного комплекса гистосовместимости II класса.


Рис. 9.4. Разные изображения молекулы главного комплекса гистосовместимости II класса

На вершине молекулы МНС II класса также есть выемка или полость, способная связываться с пептидами (рис. 9.4, Б и В), которая структурно аналогична полости молекулы МНС I класса. Однако в молекуле главного комплекса гистосовместимости II класса полость формируется путем взаимодействия доменов разных цепочек, а и р. На рис. 9.4, В показано, что дно полости молекулы МНС II класса состоит из восьми β-складок, причем домены α1 и β1 образуют по четыре из них каждый; спиральные фрагменты доменов α1 и β1 формируют каждый по одной стенке полости.

В отличие от полости молекулы МНС I класса полость молекулы главного комплекса гистосовместимости II класса открыта с обеих сторон, что позволяет связывать более крупные белковые молекулы. Таким образом, полость молекулы МНС II класса может связывать пептиды, длина которых варьирует от 12 до 20 аминокислот в линейной цепочке, при этом концы пептида оказываются за пределами полости. На рис. 9.4, Г показано, что TCR взаимодействует не только с пептидом, связанным с молекулой МНС II класса, но и с фрагментами самой молекулы главного комплекса гистосовместимости II класса.

Пептиды, которые связываются с различными молекулами МНС II класса, также должны обладать определенными мотивами (последовательностями); поскольку длина пептидов в этом случае более вариабельна, чем у пептидов, которые могут прикрепляться к молекуле МНС I класса, мотивы чаше располагаются в центральной области пептида, т.е. в том месте, которое соответствует внутренней поверхности полости молекулы главного комплекса гистосовместимости II класса.

Р.Койко, Д.Саншайн, Э.Бенджамини


Генетика главного комплекса гистосовместимости
В 20-е годы XX века в Джексоновской лаборатории (Бар Харбор, США) была проведена масштабная работа по получению генетически чистых линий мышей путем длительного инбридинга. В опытах с межлинейной пересадкой опухолей сотрудники этой лаборатории Дж.Д. Литтл (G.D. Little), Дж. Снелл (G. Snell) и другие американские исследователи установили существование нескольких десятков (более 30) генетических локусов, различие по которым обусловливает отторжение трансплантируемых тканей. Они были обозначены как локусы гистосовместимости (Н-локусы, от английского Histocompatibility). Одновременно сходную задачу решал английский иммунолог П. Горер (P. Gorer), изучая группы крови мышей. В 1948 г. в совместной работе Дж. Снелла и П. Горера был описан локус гистосовместимости, определяющий наиболее сильную реакцию отторжения. Он был назван Н-2, поскольку соответствовал гену 2-й группы крови мышей. Вскоре была установлена сложная структура этого генетического комплекса, включающего очень большое число генов. К тому времени уже была доказана иммунологическая природа отторжения трансплантата и было ясно, что эффект несовместимости по Н-локусам обусловлен различиями в антигенах, кодируемых генами этого локуса. Такие антигены стали называть аллоантигенами, или антигенами гистосовместимости.
В 60-е годы ХХ века французский иммуногематолог Ж. Доссе (J. Dausset) описал несколько антигенов лейкоцитов, аналогичных некоторым аллельным продуктам Н-2. Вскоре Ж. Доссе вместе с другими специалистами по генетике трансплантаций на основе анализа накопленных к тому времени данных об аллоантигенах человека постулировал существование у человека генетического комплекса, аналогичного локусу Н-2 мышей. Была выявлена принадлежность к этому комплексу нескольких аллоантигенов, открытых ранее благодаря использованию сывороток многократно рожавших женщин. В этих сыворотках присутствовали антитела к аллоантигенам плодов. Открытый генетический комплекс был назван HLA (от Human leukocyte antigens). Аналогичные комплексы были обнаружены у всех изучавшихся млекопитающих и птиц. В связи с этим было введено общее обозначение для генетических комплексов такого рода - MHC (от Major histocompatibility complex). Это обозначение было перенесено и на продукты генов - MHC-антигены.
Комплекс Н-2 локализуется в хромосоме 17 мыши; комплекс HLA - в коротком плече хромосомы 6 человека (6р). Структура локуса HLA человека схематично представлена на рис. 3.28. Он занимает очень большое

Рис. 3.28. Карта генов главного комплекса гистосовместимости (MHC) на примере комплекса лейкоцитарных антигенов человека (HLA). Участок хромосомы разделен на 4 отрезка, представленные на рисунке последовательно. Справа указаны номера 3’-нуклеотидов каждого отрезка

пространство - 4 млн пар нуклеотидов и содержит больше 200 генов. Выделяют 3 класса генов MHC - I, II и III. В отторжении несовместимых трансплантатов и презентации антигена Т-клеткам участвуют продукты генов классов I и II, расположенные соответственно в 3’- и 5’-частях комплекса. Первоначально их разделяли по индукции их продуктами преимущественно гуморального (I класс) или клеточного (II класс, описанный несколько позже, чем I) иммунитета. Выделяют 2 группы генов I класса. Первую образуют гены А, В и С, отличающиеся беспрецедентно высоким полиморфизмом - известно по нескольку сотен их аллельных форм (например, HLA-B - 830) - см. табл. 3.7. Это классические гены I класса. Другую группу образуют неклассические гены Е, F, G, H (гены с ограниченным полиморфизмом). Только продукты классических генов I класса участвуют в презентации антигена Т-лимфоцитам.
Таблица 3.7. Полиморфизм генов лейкоцитарных антигенов человека (HLA)

Окончание табл. 3.7


Класс

Локус

Число аллелей, выявленных ДНК-типированием

II

HLA-DRA

3


HLA-DRB1

463


HLA-DRB2-9

82


HLA-DQA1

34


HLA-DQB1

78


HLA-DPA1

23


HLA-DPB1

125


HLA-DOA

12


HLA-DOB

9


HLA-DMA

4


HLA-DMB

7

Всего


2478

Гены MHC класса II также включают несколько вариантов. В презентации антигена непосредственно участвуют продукты генов DR (а и в), DP (а и в) и DQ (а и в), кодирующие соответствующие полипептидные цепи молекул. Во всех случаях для генов в-цепей характерен значительно более высокий полиморфизм, чем для генов а-цепей. Более позднее обнаружение этих генов связано с трудностями идентификации их продуктов: сыворотки многократно рожавших женщин, использованные для выявления продуктов MHC, содержали антитела к молекулам MHC почти исключительно I класса. С их помощью выявлены только аллоантигенные варианты гена HLA-DRB. Для определения молекул II класса применяли смешанную культуру лимфоцитов (т.е. Т-клеточную реакцию), предоставляющую значительно меньше возможностей для выявления тонкостей антигенных различий. В настоящее время антигены обоих классов определяют в полимеразной цепной реакции (т.е. определяют именно гены, а не их продукты, как раньше). К классу II относят несколько генов с невысоким уровнем полиморфизма, продукты которых не презентируют антиген, но участвуют в его внутриклеточной обработке - процессинге (гены ТАР, LMP) или способствуют встраиванию антигенного пептида в молекулы MHC-II (HLA-DM, HLA-DO).
Гены MHC класса III, как уже упоминалось, не причастны к молекулам гистосовместимости и осуществляемой ими презентации. Они кодируют некоторые компоненты комплемента, цитокины семейства фактора некроза опухоли, белки теплового шока.
Строение мышиного локуса Н-2 аналогично описанному выше строению локуса HLA человека. Основное различие касается локализации генов класса I (К и D), которые у мышей пространственно разобщены, тогда как расположение генов классов II (A, E) и III соответствует таковому в локусе HLA человека.

Молекулы MHC - полиморфные продукты главного комплекса гистосовместимости классов I и II
При значительном сходстве общего плана строения молекул MHC классов I и II они имеют ряд различий. Схема доменной структуры этих молекул представлена на рис. 3.29. Молекулы обоих типов образованы двумя полипептидными цепями, содержащими 1-3 домена (табл. 3.8). Каждый домен содержит около 90 аминокислотных остатков. Молекулы MHC классов I и II имеют сходную молекулярную массу - около 60 кДа.

Рис. 3.29. Схема строения молекул MHC

Таблица 3.8. Характеристика полипептидных цепей молекул HLA классов I и II


Молекула

Название цепи

ей
о
О
ей
S
о А

Внеклеточные
домены

1
Я
О. g
1 | Ф Z, 2 ?
* ^ Й в
г- з н *

Число
S-S-связей

Число остатков в доменах

1
Я
О
Н
Ф
ч
ф в
я 3 CQ Q

1
ю
S
ф
S « « 3 и я
ей щ Н о.

I *
А н
* ^ м О
и 2 о? н S я Й Я 2

HLA, класс I

«1

45

аЬ ^ а3

есть

2

90-90-90

25

30

в2-микро-
глоублин

12

в2-микро-
глобулин

нет

0

100

-

-

HLA, класс II

а

33-35

ai, а2

есть

1

90-90

25

варьирует

в

29

Pi, в2

есть

2

90-90

25

варьирует

В молекулах класса I полипептидные цепи сильно отличаются друг от друга. Цепь а состоит из трех внеклеточных доменов, из которых 3-й (прилегающий к мембране) принадлежит суперсемейству иммуноглобулинов, а 2 других имеют иное строение, которое рассмотрим ниже. а-Цепь заякорена в мембране; помимо трансмембранного, она имеет короткий цитоплазматический участок (30 остатков), не обладающий ферментативной активностью и не связанный с ферментами. в-Цепь, называемая также Р2-микроглобулином, относится к суперсемейству иммуноглобулинов. Она нековалентно связана с а3-доменом а-цепи и не имеет трансмембранного участка. р2-Микроглобулин кодируется геном, расположенным вне комплекса MHC (в хромосоме 15). Описанная структура свойственна молекулам HLA-A, HLA-B и HLA-C человека, а также молекулам H-2K и H-2D мыши и молекулам MHC-I всех других видов животных.
Молекулы MHC-II тоже имеют одинаковое строение для HLA-DP, HLA-DQ, HLA-DR человека, а также Н-2А и Н-2Е мыши. В их состав входят 2 цепи аналогичного строения - а и р. Обе цепи пронизывают мембрану, имеют 2 домена во внеклеточной части и короткий (12-15 остатков) цитоплазматический участок. Домены а2 и р2, прилежащие к мембране, принадлежат к суперсемейству иммуноглобулинов, а дистальные домены aj и Pj по своей структуре сходны с доменами а1 и а2 молекул MHC-I.
Таким образом, все молекулы MHC в общей сложности содержат 2 при- мембранных домена суперсемейства иммуноглобулинов и 2 дистальных домена другой (сходной между собой) структуры. Дистальные домены в молекулах MHC-I образованы одной цепью (а), а в молекулах MHC-II - разными цепями (а и р). Именно эти дистальные домены молекул MHC связывают антигенный пептид и играют ключевую роль в формировании лиганда TCR.
Схематично строение антигенсвязывающих полостей (или желобков, щелей - от английского - groove) представлено на рис. 3.30. Полости имеют дно и стенки. Дно - плоский участок, выстланный р-слоистой (N-концевой) частью доменов полипептидной цепи, тогда как стенки сформированы С-концевыми а-спирализованными участками доменов. В молекулах MHC-I вся эта структура образована непрерывной полипептидной цепью а1 и а2-доменов единой а-цепи, тогда как в молекулах MHC-II пеп- тидсвязывающая полость образована доменами двух разных цепей (а1- и Pj-доменами соответствующих цепей), примыкающих друг к другу в области в-структурированного дна желобка.
Выше говорилось о чрезвычайно высоком полиморфизме классических молекул MHC обоих классов: существует по нескольку сотен аллельных вариантов генов и, следовательно, их белковых продуктов. Если наложить расположение варьирующих аминокислотных остатков на схему молекул MHC, оказывается, что, во-первых, они расположены в основном в дистальных доменах (а1 и а2 - в молекулах MHC-I, а1 и Pj - в молекулах MHC-II), во-вторых, они связаны почти исключительно со стенками антигенсвязыва- ющей полости. В молекулах MHC-II варибельность преобладает в той части стенок, которая образована ргдоменом. Таким образом, эта полость имеет стандартную организацию, но в зависимости от MHC-генотипа, тонкие детали ее строения варьируют. Сродство различных пептидов к антигенсвя-


Рис. 3.30. Трехмерные модели строения молекул главного комплекса гистосовместимости. Пространственные модели молекул главного комплекса гистосовместимости, представленные под разными углами зрения (по Bjorkman et al, 1987)

зывающей щели молекул MHC изменяется в широких пределах. Достаточно высоким считается сродство порядка 10-5 М.
Подчеркнем одно очень важное обстоятельство, касающееся вариабельности ключевых молекул иммунной системы. Исключительно высокий уровень вариабельности свойствен как антигенраспознающим структурам (антителам, TCR), так и молекулам MHC, участвующим в построении лиганда "TCR. Однако все варианты антител и TCR (порядка 106) присутствуют в одном организме, являясь продуктами одновременно присутствующих в нем генов, в то время как вариабельность молекул МНС проявляется на

уровне популяций человека и животных, тогда как в каждом конкретном организме может присутствовать не более 2 вариантов молекул - продуктов аллельных генов. Если учесть, что у человека есть 8 высокаполиморфных генов MHC (А, В, С, а также p-гены DP, DQ и DR и a-гены DP и DQ), то число вариантов полипептидных цепей MHC не может превышать 16.
Молекулы MHC-I и MHC-II представлены на поверхности клеток, но существенно различаются по тканевому распределению. Молекулы MHC-I присутствуют практически на всех ядросодержащих клетках организма и отсутствуют на эритроцитах и клетках ворсинчатого трофобласта. На каждой клетке обычно содержится около 7000 молекул MHC-I. Плотность их экспрессии может изменяться под влиянием различных факторов, в частности, цитокинов. Молекулы MHC-II присутствуют на поверхности ограниченного числа клеточных типов. Они экспрессируются прежде всего на АПК - дендритных клетках, В-лимфоцитах и активированных макрофагах. Содержание молекул на поверхности этих клеток сильно варьирует. На одной дендритной клетке обычно содержится порядка 100 000 молекул MHC-II. При определенных условиях (например, при воспалении) они могут появляться на поверхности других активированных клеток - эпителиальных, эндотелиальных и т.д. Классический индуктор молекул MHC-II - IFNy. Особенность мембранных молекул MHC - их быстрый обмен на поверхности клеток, особенно характерный для MHC-I (время обновления молекул - около 6 ч).
Особую группу антигенпрезентирующих молекул образуют гомологи продуктов MHC-I - молекулы CD1 (CD1a, CD1b, CD1c и CD1d), кодируемые пятью полиморфными генами (CD1 A-D), локализованными у человека в хромосоме 1. По своей структуре молекулы CD1 сходны с MHC-I (гомология составляет 20-25%). Они обладают сходной доменной структурой (домены aj, a2 и a3). CD1 - трансмембранные белки, связанные с молекулой р2-мик- роглобулина. Молекулярная масса белковой части CDl-комплекса - 33 кДа. Домены aj и a2 образуют антигенсвязывающую полость, закрытую с обоих концов (как и в молекулах MHC-I). Ее вместимость несколько больше, чем в молекулах MHC-I. CD1 связывает бактериальные и аутологичные липиды (диацилглицерол, миколевую кислоту и т.д.) и липопептиды. От других молекул CD1 по ряду свойств отличается CD1d. Эта молекула связывает аутологчиные гликолипиды. Ее наиболее известный лиганд - a-галакто- зилцерамид. Молекулы CD1a, CD1b и CD1c экспрессируются на поверхности дендритных клеток, моноцитов и макрофагов, причем у человека CD1c служит маркером всей популяции дендритных клеток, а CD^ - клеток Лангерганса. CD1d в малом количестве экспрессируется на дендритных клетках (кроме клеток Лангерганса), моноцитах и макрофагах.

ГОУ ВПО Тверская ГМА Минздрава России Кафедра клинической иммунологии с аллергологией

ГЛАВНЫЙ КОМПЛЕКС ГИСТОСОВМЕСТИМОСТИ

Учебно-методическое пособие по общей иммунологии. Тверь 2008.

Продукты

Учебно-методическая разработка для практических занятий по общей иммунологии для студентов 5 курса лечебного и педиатрического факультетов, а также для клинических ординаторов и врачей, интересующихся вопросами иммунологии.

Составлена доцентом Ю.И.Будчановым.

Заведующий кафедрой, профессор А.А.Михайленко Методическая рекомендация утверждена на цикловой методической комиссии ТГМА п

© Будчанов Ю.И. 2008 гг.

Мотивация Иммуногенетика – новый, важный раздел иммунологии. Знание системы гистосовместимости

необходимо не только в трансплантологии, но и в понимании регуляции иммунного ответа, так и взаимодействия клеток при иммунном ответе. Определение HLA-антигенов используется в судебной медицине, популяционно-генетических исследованиях и в изучении гене предрасположенности к заболеваниям.

1. Студент должен знать: А. Строение HLA-системы человека.

Б. HLA антигены I, II классов и их роль в межклеточных взаимодействиях. В. Понятия генотипа, фенотипа, гаплотипа.

Г. Значение HLAтипирования в медицине.

Д. Взаимосвязь HLA-антигенов и ряда заболеваний человека. 2. Студент должен уметь:

Применить полученные знания по иммуногенетике в клинической практике.

Вопросы для самоподготовки по теме занятия:

1. Понятие о генах и антигенах гистосовместимости. HLA система человека. Номенклатура, генная организация (гены классов I, II,III).

2. Антигены классов I и III, их роль в межклеточных взаимодействиях, в представлении антигена Т-лимфоцитам, в феномене двойного распознавания.

3. Понятие HLA фенотипа, генотипа, гаплотипа. Особенности наследования.

4. Методы исследования и типированияHLA системы: серологические, клеточноопосредованные, генные (полимеразная цепная реакция, зонды ДНК).

5. Практические аспекты типированияHLA антигенов. HLA в популяциях, биологическое значение.

6. HLA и заболевания человека, механизмы ассоциации.

ЛИТЕРАТУРА ДЛЯ САМОПОДГОТОВКИ

1. Хаитов Р.М., Игнатьева Г.А., Сидорович И.Г. Иммунология. Норма и патология. Учебник. – 3-е

изд., М., Медицина, 2010. – 752 с. – [ с.241 - 263 ].

2. Хаитов Р.М. Иммунология: учебник для студентов медицинских вузов. – М.: ГЕОТАР-Медиа, 2006. – 320с. – [с. 95 – 102].

3. Белозеров Е.С. Клиническая иммунология и аллергология. А-Ата., 1992, с. 31-34.

4. Зарецкая Ю.М. Клиническая иммуногенетика. М., 1983.

5. Методическая разработка. 6. Лекция.

Дополнительная литература

Коненков В.И. Медицинская и экологическая иммуногенетика. Новосибирск, 1999 г. Ярилин А.А. Основы иммунологии. М., 1999, с. 213-226.

Алексеев Л.П., Хаитов Р.М. HLA и медицина. Сб. Современные проблемы аллергологии, иммунологии и иммунофармакологии. М., 2001, с. 240-260.

СМОЖЕТЕ ЛИ ВЫ ОТВЕТИТЬ?

(Впишите дома . Самоконтроль позволит выявить трудные вопросы для обсуждения. На занятии Вы проверите правильность ответов, дополните их. Постарайтесь самостоятельно найти ответы и покажите, что Вам это по силам.)

1. В какой паре хромосом локализуется главный комплекс гистосовместимости у человека? …………… .

2. На клетках каких органов и тканей содержатся трансплантационные? …………антигены

……………………………………………………………………………….……………………. .

3. Что обозначает сокращениеHLA? ………………………………………………………………………….

………………………………………………………………………………………… .

4. На каких клетках не обнаруживаются антигены системыHLA? ……………………….…

…………………………………………………………………………………………. .

5. Из каких локусов, сублокусов состоит ГКГС: I класс ……..……… II класс ………………………………

III класс …………………………………….. .

6. Продукты генов какого класса ГКГС не экспрессируются на мембране клеток? ……………………… .

7. Какие клетки необходимо выделить для выявления HLA II класса? ………………..…………………… .

8. Какими методами выявляютHLA антигены? ……………………………………………………………

………………………………………………………………………………………….. .

9. У типируемого пациента выявлено6 возможных антигенов HLA-A, HLA-B, HLA-C. Как называется такая ситуация? …………………………… .

10. Какой антиген гистосовместимости часто встречается у больных с анкилозирующим спондилитом?

…………………….. .

11. Какие гены входят HLAв класса III? ………………………………..……………………………

…………………………………………………………………………………………… .

12. Из каких цепей состоят антигены HLA класса I? ………………….

13. Из каких цепей состоят антигены HLA класса II? …………………

14. Цитотоксический лимфоцит (CD8) распознает чужеродный пептид в комплексе сHLA какого класса?

…………………………. .

15. Th (CD4+) распознает чужеродный антиген презентированный дендритной клеткой или макрофагом в комплексе с HLA какого класса? …..………

Каковы возможные комбинации эритроцитарных антигенов у ребенка, если изоантигенный состав

эритроцитов

Отца: AO, NM, ss, dd, Cc, Ee ,

а матери: AB, MM, SS, DD, Cc, EE .

Выберите правильный ответ.

AO, MN, Ss, DD, CC, EE

AA, MM, Ss, Dd, cc, ee

OO, NN, Ss, Dd, CC, Ee

AB, MN, Ss, Dd, cc, EE

AO, NN, Ss, Dd, Cc, EE

AB, MM, SS, Dd, cc, Ee

Напишите еще один правильный вариант ответа___, ___, ___, ___, ___, ___.

А больше можете?

Сколько? …………. .

Справочные и теоретические материалы

Главный комплекс гистосовместимости - ГКГС (англ. МНС – Major Histocompatibility Complex) представляет собой систему генов, контролирующих синтез антигенов, которые определяют гистосовместимость тканей при пересадках органов и индуцируют реакции, вызывающие отторжение трансплантатов. Поверхностные структуры цитомембраны клеток, индуцирующие реакции

отторжения, получили название антигенов гистосовместимости , а кодирующие их гены были названы генами гистосовместимости – Н-генами (Histocompatibility). Открытие антигенов гистосовместимости послужило основой развития трансплантационной иммунологии.

В последующем было доказано, что главный комплекс гистосовместимости является

основной генетической системой, определяющей функционирование иммунной системыи,

прежде всего Т-системы иммунитета. ГКГС регулирует иммунный отв ,еткодирует способност ь распознавать «своё» и «чужое», отторгать чужеродные клетки, способность синтезировать ряд

Совсем не обнаруживаются классические антигены системыHLA в жировой ткани и на эритроцитах, а так же на нейронах и клетках трофобласта.

СХЕМА РАСПОЛОЖЕНИЯ ГЕНОВ СИСТЕМЫ HLA

НА 6 ХРОМОСОМЕ

DP LMP TAP DQ DR

C2 Bf C4b C4a TNF

У человека главная система гистосовместимости получила названиеHLA-система (Human Leukocyte Antigens). Это система генов, контролирующих синтез антигенов гистосовместимости. Она состоит из трех регионов расположенных на коротком плече6-й хромосомы. Эти регионы носят название: класс 1, класс 2, класс 3 (класс I, класс II, класс III).В состав региона входят гены или локусы. В названии каждогоHLA-гена присутствует буквенное обозначение локуса(А, В, С) и порядковый номер, например: HLA-A3, HLA-B27, HLA-C2 и т.д. Одноименное обозначение имеют и антигены, кодируемые геном . В локусе D выявлено 3 сублокуса (DP, DQ, DR). (Смотри схему расположенную выше). В утвержденном ВОЗ списке насчитывается138 антигенов HLA. (Однако использование ДНК-типирования, т.е. возможности изучать сами гены, привело к выявлению буквально в последние годы более 2000 аллелей).

К I классу относятся HLA - А, -В и -С локусы. Эти три локуса главного комплекса гистосовместимости человека контролируют синтез трансплантационных антигенов, которые можно определить серологическими методами(CD – Serological Determined). Молекулы антигенов HLA I класса состоят из 2 субъединиц: α- и β- цепей (смотри рисунок). Тяжелая или α-цепь состоит из 3 внеклеточных фрагментов – доменов α1, α2, и α3 (экстрацеллюлярные домены), небольшого участка принадлежащего клеточной мембране(трансмембранный участок) и внутриклеточный фрагмент (цитоплазматический участок). Легкая цепь – β2 -микроглобулин, нековалентно связана с α-цепью, а с мембраной клетки не связана.

Домены α1 и α2 образуют углубление, в котором может располагаться пептид(участок антигена) длиной 8-10 аминокислот. Это углубление называют пептидсвязывающий клефт (от англ cleft).

(К новым антигенам HLA класса I открытым недавно относятся антигены MIC и HLA-G. О них мало что известно в настоящее время. Необходимо отметить HLA-G, который называют неклассическими, выявлен только

на поверхности клеток трофобласта и он обеспечивает иммунологическую толерантность матери к антигенам плода.)

Регион класса 2 (D-регион) системы HLA состоит из 3 сублокусов: DR, DQ, DP, кодирующих трансплантационные антигены. Эти антигены относят к разряду антигенов выявляемых клеточноопосредованными методами, а именно реакцией смешанной культуры лимфоцитов(англ. mixed lymphocyte culture – MLC). В последнее время выделены ещё локусы HLA-DM, -DN , а также гены ТАР и LMP (не экспрессированы на клетках). Классическими являются DP, DQ, DR .

Красным цветом показан презентируемый пептид

Недавно были получены антитела, с помощью которых удается идентифицировать антигены DR и DQ. Поэтому антигены второго класса в настоящее время определяются не только клеточноопосредованными методами, но и серологически, так же как и антигены HLA 1 класса.

Молекулы HLA 2-го класса представляют собой гетеродимерные гликопротеиды, состоящие из двух разных цепей α и β(смотри рисунок). Каждая цепь содержит по 2 внеклеточных домена α1 и β1 на N-терминальном конце, α2 и β2 (ближе к мембране клетки). Имеются ещё трансмембранный и цитоплазматический участки. α1 и β1домены формируют углубление, которое может связывать пептиды длиной до 30 аминокислотных остатков.

Белки МНС-II экспрессированы не на всех клетках. HLA молекулы II класса в большом количестве присутствуют на дендритных клетках, макрофагах и В-лимфоцитах, т.е. на тех клетках, которые взаимодействуют с Т-лимфоцитами-хелперами во время иммунной реакции, с помощью

HLA молекул II класса

Т-лимфоциты

значительного количества

антигенов2-го класса, но при стимуляции митогенами, ИЛ-2

начинают экспрессировать молекулы HLA 2-го класса.

Необходимо

отметить,

все 3 вида интерферонов

значительно усиливают

экспрессию

молекул HLA 1-го

на клеточной мембране различных клеток. Так

γ-интерферон в

значительной мере усиливает экспрессию молекул 1-го класса на Т- и В-лимфоцитах, но коме того на клетках злокачественных опухолей (нейробластом и меланом).

Иногда обнаруживается врожденное нарушение экспрессии молекулHLA 1-го или 2-го классов, что приводит к развитию«синдрома голых лимфоцито в». Больные с такими нарушениями страдают недостаточностью иммунитета и зачастую погибают в детском возрасте.

Регион III класса содержит гены, продукты которых непосредственно вовлечены в иммунную реакцию. Он включает структурные гены для компонентов комплемента С2 и С4, Bf (пропердиновый фактор) и гены фактора некроза опухолей– ФНО (TNF). Сюда входят гены, кодирующие синтез 21гидроксилазы. Таким образом, продукты HLA-генов 3 класса не экспрессированы на клеточной мембране , а они находятся в свободном состоянии.

HLA-антигенный состав тканей человека определяют аллельные, геныотносящиеся к каждому из локусов, т.е. на одной хромосоме может быть только по одному гену каждого локуса.

В соответствии с основными генетическими закономерностями каждый индивидуум является носителем не более двух аллелей каждого из локусо ви сублокусов (по одному на каждой из парных аутосомных хромосом). В гаплотипе (набор аллелей на одной хромосоме) присутствует по одному аллелю каждого из сублокусовHLA. При этом, если индивид гетерозиготе н по всем аллелямHLAкомплекса, у него при типировании(A, B, C, DR, DQ, DP – сублокусов) выявляется не более двенадцати HLA антигенов. Если индивид гомозиготен по некоторым антигенам, у него выявляется меньшее число антигенов, однако это число не может быть меньше 6.

Если у типируемого субъекта выявлено максимально возможное количество антигеновHLA, это получило название «full house» («полный дом» антигенов).

Наследование HLA-генов происходит по кодоминантному типу, при котором у потомства в

Наиболее богаты антигенамиHLA – лимфоциты. Поэтому выявление этих антигенов проводится именно на лимфоцитах. (Вспомните, как выделить из периферической крови лимфоциты).

Молекулы антигенов HLA-A, -B, -C составляют около 1% белков поверхности лимфоцитов, что примерно равно 7 тыс. молекул.

Одним из наиболее значимых достижений в иммунологии явилось обнаружение центральной роли, которую играет МНС млекопитающих и человека в регуляции иммунного ответа. В строго контролируемых экспериментах было показано, что один и тот же антиген вызывает иммунный ответ разной высоты у организмов с разным генотипом,инаоборот, один и тот же организм может быть реактивным в различной степени по отношению к разным антигенам. Гены контролирующие такой высокоспецифичный иммунный ответ, названы Ir-генами (Immune response genes). Они локализованы в области 2-класса системы HLA человека. Ir-генный контроль реализуется через -Т систему лимфоцитов.

Центральным

клеточного

взаимодействия

иммунном

отявляетсяете

взаимодействие

молекулами HLA,

экспрессированными

поверхности

антигенпредставляющих клеток,

представляющих

для распознавания

чужеродный

антигенный

пептид, и антиген-распознающим рецептором – TCR (T-cell receptor)

на поверхности Т-лимфоцита

хелпера. При

одновременно

распознаванием

чужеродного

происходит

распознавание собственных HLA антигенов.

Т-лимфоцит хелпер (CD4+) распознает чужеродный антиген лишь в комплексе поверхностными молекулами ГКГС 2 класса антигенпредставляющих клеток.

Цитотоксические лимфоциты (Т-эффекторы, CD8+) распознают антиген,

например вирусной природы, в комплексе с молекулой HLA I класса клетки мишени. Экзогенные антигены представляются молекулами HLA II класса,

эндогенные – молекулами I класса.

(Таким образом, процесс распознавания чужеродного огранич(е сриктирован) собственными HLA-антигенами. Это и есть концепция «двойного распознавания» или «распознавания измененного своего».)

Важная роль системыHLA состоит также в том, что она контролирует синтез факторов комплемента, вовлекаемых как в классический(С2 и С4), так и альтернативный (Bf) пути активации комлемента. Генетически обусловленный дефицит этих компонентов комплемента, может вызвать предрасположенность к инфекционным и аутоиммунным заболеваниям.

Практическое значение HLA-типирования. Высокий полиморфизм делает системуHLA великолепным маркером в популяционно-генетических исследованиях и изучении генетической предрасположенности к заболеваниям, но в то же время создает проблемы в подборе пар донор– реципиент при трансплантации органов и тканей.

Популяционные исследования, проведенные во многих странах мира, выявили характерные различия в распределении HLAантигенов в разных популяциях. Особенности распределения HLA-

антигенов используются в генетических исследованиях для изучения структуры, происхождения и эволюции различных популяций. Например, грузинская популяция, относящаяся к южным европеоидам, имеет сходные черты HLA-генетического профиля с греческой, болгарской, испанской популяциями, указывающими на общность их происхождения.

Типирование HLA-антигенов широко используется в судебно-медицинской практике для исключения или установления отцовства, родства.

Обратите внимание на связь некоторых заболеваний с наличием в генотипе того или иного HLA-антигена. Это связано с тем, что HLA широко используется для изучения генетических основ предрасположенности к заболеваниям . Если раньше не предполагалось, например, что заболевание рассеянным склерозом имеет наследственную основу, то в настоящее время благодаря изучению связи с системойHLA факт наследственной предрасположенности твердо установлен. Используя

системойHLA, для некоторых заболеваний определен также и способ наследования.

Например,

анкилозирующий

спондилит

аутосомно-доминантный

наследования,

гемохроматоз и врожденная адреналовая гиперплазия– аутосомно-рецессивный. Благодаря очень

ассоциации

анкилозирующего

спондилита

антигеномHLA-B27, HLA-типирование

используется в диагностике ранних и неясных случаев этого заболевания. Выявлены генетические маркеры инсулинзависимого сахарного диабета.

ПРАКТИЧЕСКАЯ РАБОТА

Определение HLA антигенов «у доноров»

Типирование тканевых антигенов производят при помощи набора сывороток, состоящего из 50 и более антилейкоцитарных сывороток (сыворотки многорожавших женщин, дающие от 10 до 80% положительных реакций с лейкоцитами плода, или сыворотки добровольцев, иммунизированных

человеческими

лейкоцитами, содержащими

определенные SD-антигены.

Сыворотки

многорожавших женщин, в результате естественной иммунизацииHLA-антигенами мужа во время

беременности, содержат в ряде случаев антитела к HLA в достаточно высоком титре.).

Серологически

антигены

гистосовместимости

определяют

лимфоцитотоксического

теста (англ.

lymphocytotoxicity test).

называют

микро лимфоцитотоксическим

использования

постановке

микрообъем

ингредиентов.

Принцип его основан на взаимодействииHLA-молекул на поверхности лимфоцитов обследуемого человека со специфическими анти-HLA-антителами и комплементом, что приводит к гибели клеток. Гибель клеток определяется при обычном световом микроскопировании после окрашивания витальными красителями.

Суспензии лимфоцитов смешивают с антисывороткой к определенному антигену(HLA-B8, HLA-B27 и т.д.), инкубируют 1 час при 25 С, добавляют комплемент и инкубирует вновь 2ч при 37 С, а затем добавляют трипановый синий или эозин. В случае присутствия в лимфоцитах антигена, соответствующего антителам, содержащимся в сыворотке, антитела в присутствии комплемента повреждают мембрану лейкоцитов, краска проникает в их цитоплазму и они окрашиваются в синий или же в красный цвет (если использовался эозин).

Какие клетки будут окрашены при HLA-типировании?

На основании результатов типирования устанавливают степень совместимости донора и реципиента и возможность трансплантации органа или ткани между ними. Донор и реципиент должны быть совместимы по эритроцитарным антигенам АВО иRh, по лейкоцитарным антигенам системы HLA. Однако на практике трудно бывает подобрать полностью совместимых донора и реципиента. Селекция сводится к подбору наиболее подходящего доно. Трансплантация возможна при

несовместимости по одному из антигеновHLA, но на фоне значительной иммуносупрессии. Подбор оптимального соотношения антигенов гистосовместимости между донором и реципиент значительно продлевает жизнь трансплантата.

На занятии будут продемонстрированы планшеты HLAдля типирования лейкоцитов. Вспомните, как получить чистую суспензию лимфоцитов из клеток периферической крови. Подумайте, как защитить содержимое лунок от высыхания в процессе постановки реакции? Как получаются сыворотки для HLA типирования?

В настоящее время могут использоваться для типирования комплемент фиксирующие моноклональные антитела (МАТ). Они используются как в микролимфоцитотоксическом тесте, так и в реакции иммунофлуоресценции. Учет реакции возможен как люминисцентной микроскопией, так и с помощью проточного цитофлуориметра.

современный метод

определенияHLA-генов ДНК-типирование . Он

основан на различных вариантах полимеразной цепной реакции (ПЦР) и молекулярной гибридизации.

этих методов

заключается в

накоплении необходимого

анализа значительног

количества

её полимеризации и в использовании, комплементарныхзондов

анализируемым участкам ДНК. Причем одним из преимуществ ДНК-типирования является то, что не

требуется наличия жизнеспособных лимфоцитов, а используется ДНК любых клеток. А ведь

ДНК может храниться годами и десятилетиями. Для реакции необходимы,

дорогостоящие

олигонуклеотидные зонды, праймеры.

Применение молекулярно-генетического метода – ДНК-типирования, позволило значительно расширить представление о полиморфизме ранее известных генетических локусов системы HLA-A, B, C, DR,DQ, DP. Кроме того, открыты новые гены, в частности TAP, DM, LMP и другие. Открыты гены HLA класса I - E, F, G, H, но функция их продуктов пока неясна. На декабрь 1998 г. число идентифицированных аллелей генов HLA-комплекса составило 942. А на 31 декабря 2000 года было выявлено молекулярно-генетическим ДНК-типированием 1349 аллелей и их обнаружение продолжает расти.

НОВАЯ НОМЕНКЛАТУРА HLA . Как уже отмечалось, молекулы HLA 1 класса состоят из α- и β-цепей. Причем полиморфной является только α-це .пьАллельные варианты кодирующих генов получили в новой номенклатуре четырехзначное наименование (например, HLA-A0201 вместо ранее применяемого обозначения HLA-A2 , причем методами молекулярной биологии установлено12 (!) новых субтипов этого антигена (новых аллельных вариантов), получивших наименование А0201, А0202, А0203, … до А0212). У HLA-B27 установлено 9 аллельных вариантов специфичности и только часть из них ассоциирована с анкилозирующим спондилитом(это, естественно, повышает их прогностическую ценность).

Эффективность трансплантации аллогенных почек(по результатам годовой выживаемости в центрах трансплантологии, перешедших на селекцию доноров на основе молекулярно-генетического

координационного центра органного донорства и институтом Иммунологии.

Ещё более впечатляющие данные, полученные за последние2-3 года в ходе проведения национальных (в первую очередь в США) и международных программ по пересадке аллогенного, «неродственного» костного мозга. Благодаря переходу селекции пар донор-реципиент на -ДНК типирование и созданию банкаHLA-генотипированных доноров, включающего 1,5 млн. человек, годовую выживаемость пересаженного костного мозга удалось повысить 10с -20% до 70-80% (!). В свою очередь это привело к тому, что число трансплантаций костного мозга от неродственных доноров в США (где в настоящее время насчитывается наибольшее число генотипированных доноров и реципиентов) за период с 1993 по 1997 г. возросло более чем в 8 раз. Ошеломляющий

эффект от пересадок неродственного костного мозга достигнут исключительно за счет подбора полностью HLA совместимых пар донор-реципиент ДНК-типированием.

Ниже приводится выдержка из книги академика Р.В.Петрова«Я или не я: Иммунологические мобили». М., 1983. - 272 с.

«…Получая в 1930 году Нобелевскую премию, в своей торжественной лекции по этому поводу Карл Ландштейнер говорил, что открытие всё новых антигенов в клетках человеческих тканей будет

теоретический интерес. Оно нашло в числе других практических применений судебно-медицинское применение.

Представьте себе такую ситуацию: необходимо определить принадлежность пятна крови. Чья эта кровь – человека или животного? Нет необходимости объяснять, что такая ситуация чаще всего имеет отношение к криминалистике. И решение задачи зачастую становится ответом на главнейшие вопросы следствия. Ответить не него можно только с помощью иммунных сывороток. Ни по каким

другим показателям различить кровь человека и, например, собаки невозможно. Микроскопические или биохимические методы исследования бессильны.

Судебные медики имеют в арсенале своих средств набор иммунных сывороток различной специфичности: против белков человека, лошади, курицы, собаки, коровы, кошки и т.д. Исследуемое пятно смывают, а затем ставят реакции преципитации. При этом используют весь набор иммунных сывороток. Какая сыворотка вызовет преципитацию, тому виду животного или человеку принадлежит кровь исследуемого пятна.

Допустим, судебный эксперт заключает: «Нож испачкан кровью человека». А подозреваемый в убийстве говорит: «Да. Но это моя кровь. Не так давно этим ножом я порезал свой палец». Тогда экспертиза продолжается. На столе криминалистов появляются антисыворотки против групп крови и к HLA-антигенам. И иммунология снова дает точный ответ: кровь относится к группе АВ, содержит фактор М, резус-отрицательный, антигены гистосовместимости такие то и т.д. Ситуация окончательно

разъясняется. Полученная характеристика полностью совпадает с антигенной характеристикой крови подозреваемого. Следовательно, он сказал правду, это действительно его кровь.

Остановимся ещё на одной ситуации, которая имеет огромное моральное звучание. Представьте себе, что война или иное бедствие разлучили родителей с детьми. У детей потерялись фамилии и имена. Неужели нельзя найти своего ребенка среди других? Ведь антигены эритроцитов и HLA передаются по наследству. И если у отца и матери нет фактора, Мто его не может быть и у ребенка. И наоборот, если оба родителя принадлежат к группе А, то ребенок не может иметь группу крови В или АВ. Так же и по HLA-антигенам. Причем с очень высокой достоверностью».

Установление подлинности останков членов царской семьи НиколаяII проводилось именно так, с помощью ДНК типирования.

например, в Англии, к вопросам определения отцовства относятся особенно щепетильно. Но там это чаще всего связано не с войной. Строгие законы об отцовстве объясняются строгими законами о наследниках и правах наследования капиталов, титулов, прав, привилегий.

Вообразите лорда, который объявляет своим наследником юношу, которого родила не его жена. Тогда может возникнуть необходимость доказать, что юноша его сын. Или вдруг появляется джентльмен, объявляющий себя незаконнорожденным сыном и, следовательно, наследником миллионера. Может быть, это правда, но может быть, сей джентльмен – аферист. Вопрос решает анализ антигенов родителей и детей».

Распределение HLA-антигенов оказалось разным у представителей разных рас национальностей. С 1966 г. интенсивное исследование структуры антигенов тканевой совместимости по инициативе ВОЗ стало проводиться во всех странах мира. Вскоре карта мира оказалась покрытой иммунологическими иероглифами, показывающими, где и в каком сочетании встречаются антигены

HLA. Теперь, пожалуй, нет необходимости подобно Туру Хейердалу снаряжать экспедицию на тростниковой лодке, чтобы доказать миграцию населения из Южной Америки на острова Полинезии. Достаточно взглянуть в современный атлас распространенияHLAантигенов и с уверенностью сказать, что в обоих этих географических регионах есть общие генетические маркеры.

Полиморфизм классических HLA - антигенов, выявляемых серологическими и клеточно-опосредованными методами

МНС человека имеет акроним HLA (от англ. Human Leukocyte Antigens – антигены лейкоцитов человека). Это связано с тем, что они были впервые обнаружены на лейкоцитах человека в реакциях с сыворотками от многорожавших женщин и больных, получавших многократные гемотрансфузии. Такие сыворотки содержат антилейкоцитарные антитела, которые образуются в ответ на аллоантигены плода или доноров крови.

Комплекс HLA локализован на хромосоме 6, занимая область размером 3-4 6 пар нуклеотидов. Представления о масштабах HLA-генофонда заметно расширились с внедрением моноклональных анти-HLA антител и молекулярно-генетического анализа, т.е. прямого изучения HLA-генов. Согласно имеющимся данным комплекс HLA включает около 800 аллелей, альтернативное наследование которых обеспечивает беспрецедентную мозаику HLA-генотипов. В соответствии с генетической структурой HLA каждый индивид наследует около 20 аллельных генов (см. ниже). Благодаря столь малой выборке (20 из 800) вероятность полного совпадения индивидуальных HLA-генотипов (и, следовательно, HLA-фенотипов) ничтожно мала. Совпадение возможно лишь по отдельным аллелям или их комбинациям. Этим определяется вероятность относительно успешного приживления тканей в аллогенных парах «донор-реципиент».

Лишь малая часть МНС(HLA)-области кодирует антигены гистосовместимости. Кроме них здесь локализовано более 100 генов, которые не имеют отношения к тканевому полиморфизму и иммунологическим функциям молекул МНС. Тем не менее этот участок ДНК продолжают называть главным комплексом гистосовместимости, подчеркивая исторический приоритет и значимость MHC-зависимых реакций.

Дополнительное разнообразие вносит диплоидность соматических клеток, благодаря которой каждая из них содержит по два комплекта МНС-генов, на материнской и отцовской хромосомах. Это означает, что индивид может иметь не более двух аллелей каждого HLA-гена (по одному на материнской и отцовской хромосомах) и, следовательно, не более двух разновидностей каждого HLA-антигена.



Набор генов одной хромосомы, называется гаплотипом (от греч. haplous – единственный). МНС-гаплотипы кодоминантны, т.е. одинаково влияют на фенотип клеток. Это означает, что HLA-фенотип (т.е. полный комплект молекул HLA, экспрессируемых клетками данного организма) является суммарным выражением двух гаплотипов, унаследованных по материнской и отцовской линиям.

МНС(HLA)-фенотип можно определить как уникальную совокупность поверхностных антигенов, по которой клетки одного индивида отличаются от всех остальных особей данного вида животных. Следует понимать принципиальное различие между полиморфизмом молекул МНС и антигенных рецепторов В и Т лимфоцитов (BCR и TCR). В первом случае речь идет об аллотипии, связанной с альтернативным наследованием аллельных генов, циркулирующих в популяциях человека и животных; во втором – об идиотипии, т.е. о структурных вариантах одних и тех молекул, продуцируемых разными клонами клеток. Иными словами, идиотипия отражает гетерогенность молекул на уровне клеточных популяций, возникающую в результате мутаций и рекомбинационных перестроек генетического материала соматических клеток. Аллотипия определяется перетасовкой (рекомбинацией) генов в зародышевых клетках. Она связана с половым процессом и формируется на уровне «организменных» популяций.

Для всех видов животных характерно наличие двух основных классов МНС – МНС-I и МНС-II. При общей стратегии они различаются по генетической, структурной организации, тканевому распределению и функциям.

HLA-I. Молекулы I класса содержатся на поверхности клеток всех типов, кроме эритроцитов и ворсинчатого трофобласта. Они представляют гетеродимеры, состоящие из двух полипептидных цепей - тяжелой (46 кД) и легкой (12 кД) (рис. 1). Из них только тяжелая субъединица (α-цепь) является продуктом главного комплекса гистосовместимости, и именно с ней связаны иммунологические функции молекулы. α-цепь пронизывает плазматическую мембрану и имеет три внеклеточных домена – α1, α2 и α3. Вариабельность молекулы сконцентрирована в α1 и α2 доменах; домен α3 лишен полиморфизма.

Легкая (β) цепь представлена β2-микроглобулином. Это продукт гена, который локализован на хромосоме 15, т.е. не входит в состав комплекса HLA. β2-микроглобулин генетически однороден и напрямую не участвует в реализации функций HLA-I. Его роль сводится к транспорту α-цепи на поверхность клетки (у мутантных мышей, лишенных β2-микроглобулина, молекулы I класса не экспрессируются). β2-микроглобулин не имеет трансмембранного участка, удерживаясь на мембране за счет нековалентной связи с α3-доменом1.

Рис. 1. Структура молекул главного комплекса гистосовместимости (G. Reeves, p. 46).

Молекулы HLA-I представлены тремя наиболее важными подклассами – А (HLA-A), В (HLA-B) и С (HLA-C). Они кодируются одноименными генами, которым соответствует определенная позиция (локус) на хромосоме. По данным молекулярно-генетического анализа общее число аллельных вариантов для генов HLA-1 приближается к 400 (HLA-A – 108, HLA-B – 223, HLA-C – 67). Количество известных HLA-1 антигенов гораздо меньше – около 100 (HLA-A – 28, HLA-B – 61, HLA-C –10)1. Они обозначаются цифрами, которые добавляются к буквенному обозначению подкласса (например, А1, В27, С8).

В генотипе каждого человека имеется шесть генов HLA-I – по три в каждом гаплотипе. При несовпадении материнского и отцовского гаплотипов по генам всех трех локусов (А, В и С) индивид будет иметь наиболее полный HLA-фенотип, т.е. шесть аллотипических вариантов HLA-I (например, А4,14; В2,31; С4,10). Если гаплотипы частично дублируют друг друга, набор молекул HLA-I будет редуцирован (например, А4; В2,44; С6). То же самое справедливо для HLA-II (см. ниже).

Недавно открыты дополнительные локусы HLA-I: E, F и G. Их гены отличаются ограниченным полиморфизмом и необычным тканевым распределением своих продуктов (HLA-E, HLA-F и HLA-G). Функции этих так называемых «неклассических» HLA(МНС)-молекул неизвестны, но они не участвуют в представлении антигенов, по крайней мере «обычных пептидов» (см. ниже).

HLA-II. Молекулы II класса построены из двух нековалентно связанных пептидных цепей примерно одинакового размера – α (35 кД) и β (28 кД). Обе они являются продуктами главного комплекса гистосовместимости и участвуют в реализации его иммунологических функций. Каждая цепь состоит из двух внеклеточных доменов (α1-α2 и β1-β2), которые прочно фиксированы на клетках при помощи трансмембранного участка молекулы (рис. 8). Вариабельные последовательности входят в состав α1 и β1 доменов; α2 и β2 домены не имеют аллотипов.

В отличие от HLA-I, конститутивная (т.е. постоянная) экпрессия молекул II класса ограничена клетками иммунной системы, презентирующими антигены Т-хелперам. Это так называемые профессиональные антигенпредставляющие клетки – дендритные клетки, макрофаги, В-лимфоциты. Появление HLA-II на других клетках указывает на их активацию, т.е. является индуцибельным.

Впрочем, динамичность экспрессии молекул МНС (MHC-I, MHC-II) характерна для всех клеток. Она зависит от функционального состояния клетки, меняясь под влиянием различных стимулов (например, цитокинов). Это однин из механизмов, контролирующих индукцию и реализацию иммуного ответа.

Подобно HLA-I, молекулы HLA-II представлены тремя основными подклассами – DR, DQ и DP. Гены, кодирующие их α- и β-цепи, сконцентрированы в одноименных локусах на 6-й хромосоме. Наиболее полиморфны гены β-цепей: они представлены 367 аллельными вариантами (DR – 249, DQ – 36, DP – 82). Гены α-цепей гораздо однороднее – 36 разновидностей (DR – 3, DQ – 20, DP – 13).

Буква "D" ошибочно продолжает нотацию HLA, начатую локусами А, В и С. Эти обозначения возникли до разделения HLA на классы. Область D оказалась суммой нескольких локусов (DR, DQ, DP) и по сути является синонимом II класса. «Неклассические» молекулы HLA-II включают HLA-DM и HLA-DN. Их функции неизвестны или гипотетичны.

В генотипе каждого человека имеется 12 функционально значимых (т.е. экспрессируемых) генов HLA-II – шесть в каждом гаплотипе (по три гена для α (DRA, DQA, DPA) и β (DRB, DQB, DPB) цепей). В связи с доминированием полиморфизма В(β)-генов в цифровой формуле молекул II класса обычно указываются разновидности только β-цепей (например, R4,8/DQ1,6/DP5).

Функции МНС (HLA)

Отторжение чужеродных тканей, которое происходит в ситуациях, искусственно создаваемых человеком, ничего не говорит о физиологических функциях МНС. С этой точки зрения неудачна и терминология: понятие «главный комплекс гистосовместимости» не отражает природного назначения его продуктов. Это стало очевидным после утверждения центральной позиции МНС в представлении (презентации) антигенов Т-лимфоцитам. Возможно, это не единственное, но, безусловно, главное назначение данной системы.

МНС-зависимое представление антигенов имеет четкую направленность, которая проявляется в том, что молекулы I и II классов обеспечивают альтерантивную презентацию антигенов двум основным категориям Т-клеток – CD8 и CD4. Такая адресность объясняется лиганд-рецепторной комплементарностью в парах CD8 – МHC-I и CD4 – МНС-II. Это обеспечивает избирательное связывание CD8 с МНС-I (a3-домен), а CD4 – с МНС-II (b2-домен). Этим объясняется корецепторная функция молекул CD4 и CD8 в распознавании антигенов Т-лимфоцитами (рис. 2).

Зависимость реакций Т-лимфоцитов от МНС называется рестрикцией (от англ. restriction – ограничение). Говорят, что Т-лимфоциты рестриктированы по МНС, причем CD4 Т-лимфоциты рестриктированы по МНС(HLA)-I, а CD8 – по МНС(HLA)-II.

Рис. 2. Молекулы, принимающие участие в распознавании антигенов Т-лимфоцитами. Т-лимфоциты рестриктированы по МНС, т.е. распознают антигены (точнее продукты их протеолиза), презентируемые молекулами главного комплекса гистосовместимости (МНС) антигенпредставляющих клеток. А: Антигенные пептиды в комплексе с молекулами МНС-I воспринимаются CD8 Т-клетками. CD8 играет роль корецептора, реагируя с консервативным (неполиморфным) участком МНС-I. Взаимодействие в системе TCR-антиген/МНС-I-СD-8 генерирует сигнал, который усиливается и транслируется внутрь клетки при помощи CD3-комплекса. В: Антигенные пептиды, презентируемые молекулами МНС-II, воспринимаются CD4 Т-лимфоцитами. Благодаря комплементарности c МНС-II, СD4 выполняет функцию корецептора, укрепляя контакт между TCR и комплексом антиген/МНС-II. Сигнал транслируется в клетку молекулами костимулирующего CD3-комплекса (D.M. Weir, J. Stewart. Immunology. 8 th ed. Churchill & Levinstone. 1997).

Учитывая универсальность тканевого распространения молекул I класса, следует ожидать, что в представлении антигенов могут участвовать многие типы клеток. Именно так обстоит дело на этапе реализации иммунного ответа, когда любая клетка, презентирующая на своей поверхности “чужие” антигены в комплексе с МНС-I, атакуется цитотоксическими (СD8) Т-лимфоцитами. Активность молекул II класса связана главным образом с профессиональными антигенпредставляющими клетками. Они презентируют антигены Т-хелперам, опираясь на корецепторную активность CD4. Возможность индуцированной экспрессии МНС-II на эндотелиоцитах, эпителиальных и ряде других клеток допускает вероятность «непрофессиональной» MHC-II–презентации антигенов CD4 Т-лимфоцитам. Это возможно на этапе реализации иммунного ответа.

Для индукции иммунного ответа этого недостаточно. Здесь требуется более сложная кооперация антигенпредставляющих клеток и Т-лимфоцитов. Она происходит при участии нескольких пар комплементарных адгезивных молекул и цитокинов на территории лимфоидных тканей, т.е. в зоне, оптимальной для взаимодействия иммунокомпетентных клеток (см. «Индукция иммунного ответа»).

Презентация антигенов молекулами I и II классов происходит по общей схеме. Короткие пептиды (Т-эпитопы), которые образуются из белковых антигенов в результате внутриклеточного протеолиза (процессинг), соединяются с комплементарными молекулами МНС и вместе с ними выносятся на поверхность клетки*.

* Антигенные пептиды, воспринимаемые МНС-I и MHC-II, построены соответственно 9-10 и 12-25 аминокислот. Большинство из них являются внутренними фрагментами молекул, которые обнажаются после протеолиза. Пептидосвязывающий участок молекул МНС представляет собой щель, образуемую комбинацией вариабельных доменов: a1-a2 (MHC-I) и a1-b1 (MHC-II). Аллельные варианты МНС отличаются по конфигурации “пептидной ловушки” и, следовательно, по сродству к различным пептидам.

Принципиальное различие между МНС-I и MHC-II связано с источником (происхождением) представляемых антигенов. Молекулы I класса презентируют антигены, которые образуются внутри собственных клеток – “эндогенные пептиды”. К их числу относятся производные вирусных и опухолевых антигенов. Молекулы II класса воспринимают пептиды экзогенной природы. Они образуются из материала, поступающего в клетки извне, путем эндоцитоза.

Это различие не абсолютно. При гибели клеток синтезированные ими (т.е. эндогенные) антигены могут поглощаться дендроцитами и макрофагами и экспрессироваться в комплексе с MHC-II, как это характерно для экзогенных пептидов. Возможен и альтернативный механизм: переключение потока антигенных пептидов с экзогенного пути (комплексирование с MHC-II) на эндогенный (комплексирование с MHC-I). Такого рода перекрестная презентация содействует развитию полноценных Т-клеточных реакций, нацеленных, в частности, против вирусов, которые не реплицируются в профессиональных антигенпредставляющих клетках.

Повторим, что ассортимент каждого индивида ограничен примерно 20 вариантами аллельных генов и соответственно молекул MHC(HLA). Это несопоставимо с изобилием антигенных пептидов, которые потенциально могут быть представлены Т-лимфоцитам. Отюда следует, что каждая молекула МНС способна презентировать не один, а множество пептидов1. В то же время все пептиды, воспринимаемые однотипным вариантом МНС, имеют элементы структурного сходства, которые обеспечивают фиксацию в “пептидной ловушке” МНС. Это не лишает их антигенной (эпитопной) индивидуальности, так как специфичность Т-эпитопов определяется всего 1-2 аминокислотами.

Вероятность и прочность связывания разных пептидов с одной и той же молекулой МНС неодинакова, отражая степень родства (комплементарности) между пептидом и МНС. Справедливо и обратное: благодаря особенностям конфигурации пептидосвязывающего участка аллельные варианты МНС различаются по набору презентируемых ими пептидов. Здесь сконцентрирована идея о генетическом контроле иммунного ответа в системе МНС. Она сводится к тому, что индивиды с разными МНС(HLA)-фенотипами могут неодинаково (даже альтернативно) реагировать на один и тот же антиген. Это объясняется качеством взаимодействия антигенных пептидов с аллельными вариантами молекул МНС – от выраженной до нулевой аффинности. С этой точки зрения, концепция о генах, контролирующих силу иммунного ответа (Ir-гены, от англ. Immune response), во многом сливается с представлениями о главном комплексе гистосовместимости, прежде всего МНС-II. Это понятно, так как молекулы II класса презентируют антигены Т-хелперам, от активации которых зависят все формы иммунного ответа.

Презентация антигенов – сложный процесс, связанный с участием многих молекул. Для ряда из них возможны аллельные варианты, которые неодинаково влияют на функции МНС и поэтому тоже включаются в генетический контроль за иммунным ответом.

Влияние МНС на реактивность к антигенам наиболее отчетливо проявляется в опытах на линейных (инбредных) животных. Но положительные связи между МНС(HLA)-фенотипом и особенностями иммуного ответа известны и для человека. Так, носители аллелей HLA-DR2 и HLA-DR5 характеризуются склонностью к образованию IgE антител против аллергена пыльцы амброзии. Протективные пептиды вируса гриппа А встраиваются в молекулы В27 и А2; поэтому носители данных аллелей более устойчивы к гриппозной инфекции.

Загадкой остается предрасположенность к ряду болезней у лиц с определенным HLA-фенотипом, т.е. у носителей определенных HLA-I/HLA-II аллелей или их комбинаций. На этот счет имеется несколько гипотез, одна из которых базируется на неодинаковой способности аллотипических вариантов HLA связывать (презентировать) разные пептиды. Яркий пример – анкилозирующий спондилит (болезнь Бехтерева): около 90% больных являются носителями гена В27. Допускают, что молекулы этого аллотипа могут быть рецептором неизвестного вируса или избирательно представлять патогенетически значимые пептиды CD8 T-лимфоцитам.

Интригует и вопрос о причинах, приведших к формированию столь полиморфной системы генов и их продуктов. Согласно наиболее популярной версии главный комплекс гистосовместимости эволюционировал как механизм, обеспечивающий распознавание достаточно большого количества антигенов для оптимальной защиты каждого вида животных от инфекционных агентов. Бесконечное многообразие МНС-генотипов гарантирует полноценность антигенраспознающего потенциала иммунной системы на уровне популяции. В то же время каждый из ее отдельных представителей, обладая малой выборкой из общего числа аллельных МНС-генов, ограничен более узким набором антигенпрезентирующих молекул. Иными словами, индивидуализация МНС влияет на спектр воспринимаемых антигенов и, следовательно, на качество иммунитета против экзогенной агрессии. Неадекватные аллели и их комбинации выбраковываются естественным отбором.

Не исключено, что специфика МНС оказывает влияние и на другие проявления биологической индивидуальности. Непонятной (но, вряд ли, случайной) является экспрессия на поверхности клеток аутологичных (собственных) пептидов в комплексе с МНС-I. Более того, на долю чужих антигенов приходится ничтожная часть пептидов, встраиваемых в молекулы I класса. Возможно, за этим скрыт механизм, поддерживающий иммунологическую толерантность к собственным тканям, но смысл может быть и другим. Замечено, например, что МНС-генотип влияет на сексуальное поведение животных. При спаривании мыши отдают предпочтение партнерам гетерологичных линий, т.е. особям с другим МНС-генотипом. Поразительно, но речь скорее всего идет о способности дифференцировать структурные особенности МНС по запаху, т.е. продукты МНС-аллельных генов играют роль феромонов. В этом есть логика. Она нацелена на повышение генетического полиморфизма популяции.

Естественно, для человека это невозможно. Но утеряв функцию выбора сексуального партнера, HLA-система «пытается» защитить его от появления HLA-гомозигот. Было проведено сопоставление совместимых по антигенам HLA классов I и II супругов в группе с нормально протекающей беременностью и в группе с беременностью, неоднократно прерывавшейся спонтанным абортом. Оказалось, что в группе с физиологически протекающей беременностью более чем в половине случаев муж и жена были полностью несовместимы по HLA-II. Количество HLA-совместимых пар по антигенам класса I составило около 2%. Напротив, в группе женщин с привычной невынашиваемостью только 26% супружеских пар оказались несовеместимыми по антигенам HLA-I; совместимость по антигенам класса II наблюдалась более чем в половине случаев (цит. Р.М.Хаитов, Л.П.Алексеев. Физиологическая роль главного комплекса гистосовместимости человека. Иммунология, 2001, № 3, С. 4-12).


1От англ. B С ell R eceptor.

2 Мембраносвязанная и секреторная формы иммуноглобулинов образуются благодаря альтернативному сплайсингу первичного ДНК-транскрипта (мРНК). Секреторная форма лишена трансмембранного фрагмента, необходимого для закрепления молекулы на клеточной мембране.

3 На определенных этапах «доантигенной» дифференцировки В-лимфоциты содержат mIgD. Его участие в индукции иммунного ответа остается неясным. В отличие от IgM, лишь ничтожная часть IgD cекретируется в среду.

4 mIg вместе с CD79a и CD79b образует рецепторный комплекс В-лимфоцитов (BCR-комплекс).

1От англ. T С ell R eceptor.

1 Вместе с TCR компоненты CD3 образуют рецепторный комплекс Т-лимфоцитов (TCR-

комплекс). Цепи TCR экспрессируются на клеточной мембране только в сочетании с CD3.

1 Средняя вероятность полной MHC(HLA)-идентичности двух произвольно взятых людей приближается к 1 на 1 000 000 (цит. Р.М.Хаитов, Л.П.Алексеев. Физиологическая роль главного комплекса гистосовместимости человека. Иммунология, 2001, № 3, С. 4-12).

1β2-микроглобулин легко сбрасывается с клетки, и его определение в крови и моче использует

ся в диагностике некоторых (прежде всего гематологических) заболеваний.

1Цит. Р.М. Хаитов и соавт. Достижения иммуногенетики – медицине. Иммунология, 1999, № 1, с. 10-17

1 Речь идет не об одновременной презентации, а о потенциальной способности связывать разные

антигенные пептиды.