Простые углеводы. Моносахариды. Дисахариды. Химические свойства дисахаридов и полисахаридов Определение дисахаридов

Олигосахариды – углеводы, молекулы которых содержат от 2 до 10 остатков моносахаридов, соединенных гликозидными связями. В соответствии с этим различают дисахариды, трисахариды и т.д. Дисахариды – сложные сахара, каждая молекула которых при гидролизе распадается на две молекулы моносахаридов. Дисахариды наряду с полисахаридами являются одними из основных источников углеводов в пище человека и животных. По строению дисахариды – это гликозиды, в которых 2 молекулы моносахаридов соединены гликозидной связью. Среди дисахаридов наиболее широко известны мальтоза, лактоза и сахароза. Мальтоза, являющаяся α-глюкопиранозил-(1–>4)-α-глюкопиранозой, образуется как промежуточный продукт при действии амилаз на крахмал (или гликоген), содержит 2 остатка α-D-глюкозы (название сахара,полуацетальный гидроксил которого участвует в образовании гликозидной связи, оканчивается на≪ил≫).

Мальтоза

В молекуле мальтозы у второго остатка глюкозы имеется свободный полуацетальный гидроксил. Такие дисахариды обладают восстанавливающими свойствами. Одним из наиболее распространенных дисахаридов является сахароза обычный пищевой сахар. Молекула сахарозы состоит из одного остатка D-глюкозы и одного остатка D-фруктозы. Следовательно, это α-глюко-пиранозил-(1–>2)-β-фруктофуранозид:

Сахароза

В отличие от большинства дисахаридов сахароза не имеет свободного полуацетального гидроксила и не обладает восстанавливающими свойствами. Гидролиз сахарозы приводит к образованию смеси, которую называют инвертированным сахаром. В этой смеси преобладает сильно левовращающая фруктоза, которая инвертирует (меняет на обратный) знак вращения правовращающего раствора исходной сахарозы. Дисахарид лактоза содержится только в молоке и состоит из D-галактозы и D-глюкозы. Это – β-галактопиранозил-(1–>4)-глюкопираноза:

Благодаря наличию в молекуле свободного полуацетального гидроксила (в остатке глюкозы) лактоза относится к числу редуцирующих дисахаридов. Среди природных трисахаридов наиболее известна рафиноза, содержащая остатки фруктозы, глюкозы и галактозы. Рафиноза в больших количествах содержится в сахарной свекле и во многих других растениях. В целом олигосахариды, присутствующие в растительных тканях, разнообразнее по своему составу, чем олигосахариды животных тканей.

30 Вопрос. Гетерополисахариды

    Хондроитинсульфаты – составные части сердечных клапанов, носовой перегородки, хрящевых тканей. М.б. нескольких типов. Хандроитин – 4-сульфат и 6-сульфат. Гетерополисахарид состоит изповторяющихся звеньев дисахаридов β(Д)-глюкуранозил-1,3-β(Д,N)-ацетилгалактозамин. Сульфат в положении 4 и 6.

    Глалуроновая ксилота – содержится в соединительных, покровных тканях, входит в состав стекловидного тела глаза. Вязкое в-во, хорошо предохраняет глазные кости от внешних воздействий. При гидролизе образует глюкуроновую к-ту иN-ацетилглюкозамин. Связь 1,3-β-гликозидная.

    Гепарин –содержится в печени, в селезенке, сильный антикоагулянт, предохраняет кровь от свертывания (1 мг гепарина предохраняет от свертывания 500мл) присутствует на поверхности многих клеток и внутри клеток.

В мед.практике используется для лечения тромбозов, ожогов, при переливании крови в качестве стабилизатора.

В состав входят повторяющиеся единицы из остатков 6-ти сахаров N-ацетилглюкозамин, его сульфопроизводное, неацетилированное производное.

Гомополисахариды (крахмал, целлюлоза, пектин и другие)

При гидролизе дают глюкозу

Крахмал переваривается под действием амилазы (1,4-гликозидазы), который расщепляет α-1,4-гликозидные связи.

Крахмал состоит из амилозы (лин.строение и амилопектина) разветвленное строение, но каждые 25 фрагментов.

Все крахмалы отличаются по кол-ву амилозы амилопектина.

При кислотном гидролизе крахмал расщепляется на декстрины (красное окрашивание). Окраска с иодом говорит о расщеплении. Если окраска бледная, то то расщепление больше.

Гликоген напоминает амилопектин (расщепление на каждые 10-12 связей) в печени, в мышцах запасное питат.в-во.

Целлюлоза имеет 1,4-β-гликозидную связь.

Пектиновые к-ты – полисахариды фруктов, плодов, овощей, представляют собой метиловые эфиры галактуроновой к-ты, связь 1,4-α-гликозидная.

Гликозиды – производные углеводороды по гликозидному гидролизу.

Амигдалин – входит в состав миндаля. Глюкозы, связанные между собой связями 1,6- β-гликозидными.

Гликованилин (глюкоза, β гликозидная связь).

Синигрин (входит в состав горчицы).

Нейраминовая к-та – продукт конденсации пировиноградной к-ты иN-ацетилмонозамина. Входит в состав гангмозидов (в липидах).


Мурановая кислота (входит в состав стенок бактерий).

Дубильные в-ва – растительного происхождения. Растворимы в воде, дают с хлорным железом окрашенные растворы. Делят на 2 типа: гидролизуемые и негидролизуемые (конденсируются приT с килотой).

Iтип –тонины – производные глюкозы и ди-, триммеров галловых кислот.

(галловая кислота
, способна образовывать диоксиды)

Тонины могут быть различными:

Тонин Фишера имеет структуру:

ДГ – дигаловая кислота

Г – галловая кислота

Точная структура природных танинов не установлена.

Используется: в медицине, фармации, для выделения алкалоидных реагентов.

Mr м.б. до 3000, содержатся в коре деревьев, в плодах некоторых растений.

Существуют эллаговые дуб.в-ва , отличающиеся тем, что при гидролизе образуют нерастворимую эллаговую к-ту.

IIтип –капихинн (конденсируемые дубильные в-ва).

Ф
равоноиды
: соединения: лейкоантоциан, катехин,флавонон, флавонол, флавон, антициан.

Катехин содержат в А и В ОН-, СН2- и различаются по ним. В природе не образуют гликозиды. Легко окисляются и способны к полимеризации, кристаллические бесцветные в-ва. Содержатся в плодах яблони, вишни, груши, в листьях побегов чайного дерева.

Ферментативный процесс приводит к димеризации. Изучает виноделие, чайная промышленность, производство какао.

Соединения – флавоноиды обладают витаминной способностью (Р). Увеличивают эластичность кров.капилляров, больше всего присуще катехину.

В
итамин Р – гликозид кварцетила

Кварцетил – агликон 6β(α)-рамнозидо-(Д)-глюкоза-рамноза. Связь за счет 6 угл.атома в глюкозе. При отсутствии рутина в пище капилляры становятся проницаемыми -> пурпурная болезнь.

Антоцианы – красящие в-ва растений (дильфинидин, пипоргонидин, цианидин(роза и василек)). Отличаются радикалами. Существуют в виде глюкозидов.

Дисахариды – это сахароподобные сложные углеводы, молеку­лы которых при гидролизе распадаются на две молекулы моносахаридов. Молекулярная формула С 12 Н 22 О 11 . Дисахариды содержатся в продуктах природного происхождения: сахароза (свекловичный сахар) в большом количестве, до 28%, – в сахарной свёкле; лактоза (молочный сахар) – в молоке; трегалоза (грибной сахар) – в грибах; мальтоза (солодовый сахар) образуется при частичном гидролизе крахмала и др.

По своему строению дисахариды представляют собой гликози-ды. В зависимости от того, какой гидроксил второго моносахарида участвует в образовании связи с первым моносахаридом, различают дисахариды двух типов: восстанавливающие (редуцирующие); невосстанавливающие.

Восстанавливающие дисахариды называют гликозил-гликозами; связь между моносахаридными молекулами у этих дисахаридов образована за счёт полуацетального гидроксила одной молекулы и спиртового гидроксила (чаще всего при четвёртом атоме углерода) второй молекулы. Важнейшие представители: мальтоза, лактоза, целлобиоза. В растворе они находятся в таутомерных формах: циклической (полуацетальной) и гидроксикарбонильной (альдегидной).

лактоза лактоза

Строение. В состав дисахаридов могут входить два одинаковых или различных моносахарида в полуацетальной (циклической) форме.

Так, молекула мальтозы (солодовый сахар) состоит из двух мо­лекул α-D-глюкозы в пиранозной форме, связанных между собойl-4-α-гликозидной связью.

Во втором моносахаридном остатке молекулы мальтозы сохра­няется свободный полуацетальный гидроксил. По этой причине в растворе мальтоза может существовать в таутомерных формах: циклической и гидроксикарбонильной, находящихся между собой в динамическом равновесии.

мальтоза мальтоза

(полуацетальная форма) (гидроксикарбонильная форма)

По такому принципу построены все восстанавливающие диса­хариды (лактоза, целлобиоза и др.).

Свойства восстанавливающих (редуцирующих) дисахаридов. Восстанавливающие дисахариды – это кристаллические вещества, хорошо растворимые в воде, имеют сладкий вкус, гигроскопичны. Растворы этих дисахаридов нейтральны, обладают оптической активностью. В химическом отношении восстанавливающие дисахариды проявляют свойства альдегидов: дают реакцию серебряного зеркала, восстанавливают жидкость Фелинга, реагируют с реактивами на карбонильную группу (с фенилгидразином, гидроксиламином). За счёт полуацетального гидроксила дисахариды образуют гликозиды, а также проявляют свойства многоатомных спиртов: вступают в реакции алкилирования, ацилирования, дают качественную реакцию на многоатомные спирты (растворяют Сu(ОН) 2).

мальтоза (альдегидная форма) мальтобионовая кислота

Эта группа дисахаридов способна восстанавливать Ag + доAg 0 в реакции серебряного зеркала, Сu 2+ до Сu + в реакции с раствором Фелинга, поэтому они и называются восстанавливающими дисахаридами. Как все сложные углеводы, дисахариды способны гидролизоваться под действием минеральных кислот или ферментов.

С 12 Н 22 О 11 +Н 2 О
2С 6 Н 12 О 6

мальтоза глюкоза

Невосстанавливающие дисахариды называют гликозил-гликозидами; связь между моносахаридами у этих дисахаридов образована с участием обоих полуацетальных гидроксилов, поэтому они не могут переходить в другие таутомерные формы. Важнейшими их представителями являются сахароза и трегалоза.


трегалоза сахароза

Молекула трегалозы состоит из двух остатков α-D-глюкопи-ранозы, молекула сахарозы – из остаткаα-D-глюкопиранозы и остаткаβ-D-фруктофуранозы. Так как у дисахаридов этой группы связь между моносахаридами осуществляется за счёт обоих полуацетальных гидроксилов, они не могут таутомерно переходить в оксикарбонильную форму, следовательно, не могут давать реакции на карбонильную группу, в том числе и на альдегидную группу (не дают реакцию серебряного зеркала, не реагируют с раствором Фелинга). Такие дисахариды не способны проявлять восстанавливающие свойства, поэтому их называют невосстанавливающими дисахаридами. Они проявляют свойства многоатомных спиртов (растворяют гидроксид меди, вступают в реакции алкилирования и ацилирования), как все сложные углеводы гидролизуются в присутствии минеральных кислот или под действием ферментов.

Строение и свойства сахарозы. Сахароза (свекловичный са­хар) – один из наиболее давно известных человеку пищевых продуктов. Первоначально сахароза была выделена из сахарного тростника, а затем – из сахарной свеклы. Сахароза содержится и во многих других растениях (кукуруза, клён, пальма и др.).

Молекулярный состав сахарозы С 12 Н 22 О 11 .

Молекула сахарозы состоит из двух моносахаридов: глюкозы в α-D-пиранозной форме и фруктозы вβ-D-фуранозной форме, свя­занных между собой 1-2-гликозидной связью с участием двух полуацетальных (гликозидных) гидроксилов. В молекуле сахарозы нет свободных полуацетальных гидроксилов, поэтому она не может таутомерно переходить в гидроксикарбонильную форму.

При нагревании выше 160°С сахароза частично разлагается, выделяя воду и превращаясь в бурую массу – карамель.

Водный раствор сахарозы растворяет гидроксид меди, образуя раствор сахарата меди, проявляет при этом свойства многоатомных спиртов. При нагревании раствора сахарозы в присутствии минеральных кислот сахароза гидролизуется, в результате образуется смесь глюкозы и фруктозы в равных количествах (искусственный мёд). Процесс гидролиза сахарозы называется инверсией, так как при этом наблюдается изменение правого вращения раствора на левое.

Сахароза широко используется как пищевой продукт, в произ­водстве кондитерских, хлебобулочных изделий, варенья, компотов, джемов и др. В фармакологии используется для приготовления сиропов, микстур, порошков и т.п.

Эфиры сахарозы и высших жирных кислот обладают высокой моющей способностью и используются как промышленные детергенты. Эти продукты не имеют запаха, совершенно неядовиты и полностью разрушаются бактериями при биологической самоочистке воды.

Диэфиры высших жирных кислот и сахарозы используются как эмульгаторы при получении маргарина, лекарственных препаратов и в косметике.

Октаметилсахароза применяется в промышленности пластмасс как пластификатор.

Октаацетат сахарозы используется в качестве промежуточного слоя при получении стекла триплекс.

Отходы сахарного производства (патока) употребляются для производства этилового спирта и в кондитерской промышленности.

Углеводы - органические вещества, молекулы которых состоят из атомов углерода, водорода и кислорода, причем водород и кислород находятся в них, как правило, в таком же соотношении, как и в молекуле воды (2: 1).

Общая формула углево­дов - С n (Н 2 О) m , т. е. они как бы состоят из углерода и во­ды, отсюда и название клас­са, которое имеет историче­ские корни. Оно появилось на основе анализа первых известных углеводов. В даль­нейшем было установлено, что имеются углеводы, в мо­лекулах которых не соблюда­ется указанное соотношение (2: 1), например дезоксирибоза - С 5 Н 10 О 4 . Извест­ны также органические соединения, состав кото­рых соответствует приведенной общей формуле, но которые не принадлежат к классу углеводов. К ним относятся, например, формальдегид СН 2 О и уксус­ная кислота СН 3 СООН.

Однако название «углеводы» укоренилось и в настоящее время является общепризнанным для этих веществ.

Углеводы по их способности гидролизоваться можно разделить на три основные группы: моно-, ди- и полисахариды.

Моносахариды - углеводы, которые не гидро­лизуются (не разлагаются водой). В свою очередь, в зависимости от числа атомов углерода, моноса­хариды подразделяются на триозы (молекулы ко­торых содержат три углеродных атома), тетрозы (четыре углеродных атома), пентозы (пять), гексозы (шесть) и т. д.

В природе моносахариды представлены преиму­щественно пентозами и гексозами .

К пентозам относятся, например, рибоза - С 5 Н 10 О 5 и дезоксирибоза (рибоза, у которой «от­няли» атом кислорода) - С 5 Н 10 О 4 . Они входят в состав РНК и ДНК и опре­деляют первую часть назва­ний нуклеиновых кислот.

К гексозам , имеющим об­щую молекулярную формулу С 6 Н 12 О 6 , относятся, например, глюкоза, фруктоза, галактоза.


Дисахариды - углево­ды, которые гидролизуются с образованием двух моле­кул моносахаридов, напри­мер гексоз. Общую формулу подавляющего большинства дисахаридов вывести несложно: нужно «сложить» две формулы гексоз и «вычесть» из получившейся формулы молекулу воды - С 12 Н 22 О 11 . Соответствен­но можно записать и общее уравнение гидролиза:

К дисахаридам относятся:

1. Сахароза (обычный пищевой сахар), которая при гидролизе образует одну молекулу глюкозы и молекулу фруктозы. Она содержится в большом количестве в сахарной свекле, сахарном тростнике (отсюда и названия - свекловичный или трост­никовый сахар), клене (канадские первопроходцы добывали кленовый сахар), сахарной пальме, ку­курузе и т. д.

2. Мальтоза (солодовый сахар), которая гидро­лизуется с образованием двух молекул глюкозы. Мальтозу можно получить при гидролизе крахмала под действием ферментов, содержащихся в соло­де, - пророщенных, высушенных и размолотых зернах ячменя.

3. Лактоза (молочный сахар), которая гидроли­зуется с образованием молекул глюкозы и галак­тозы. Она содержится в молоке млекопитающих (до 4-6 %), обладает невысокой сладостью и ис­пользуется как наполнитель в драже и аптечных таблетках.

Сладкий вкус разных моно- и дисахаридов раз­личен. Так, самый сладкий моносахарид - фрук­тоза - в 1,5 раза слаще глюкозы, которую при­нимают за эталон. Сахароза (дисахарид), в свою очередь, в 2 раза слаще глюкозы и в 4-5 раз - лактозы, которая почти безвкусна.

Полисахариды - крахмал, гликоген, декстри­ны, целлюлоза и т. д. - углеводы, которые гидро­лизуются с образованием множества молекул моно­сахаридов, чаще всего глюкозы.

Чтобы вывести формулу полисахаридов, нуж­но от молекулы глюкозы «отнять» молекулу во­ды и записать выражение с индексом n: (С 6 Н 10 О 5) n , ведь именно за счет отщепления молекул воды в природе образуются ди- и полисахариды.

Роль углеводов в природе и их значение для жизни человека чрезвычайно велики. Образуясь в клетках растений в результате фотосинтеза, они выступают источником энергии для клеток живот­ных. В первую очередь это относится к глюкозе.

Многие углеводы (крахмал, гликоген, сахаро­за) выполняют запасающую функцию, роль резерва питательных веществ .

Кислоты РНК и ДНК, в состав которых входят некоторые углеводы (пентозы-рибозы и дезоксирибоза), выполняют функции передачи наследствен­ной информации.

Целлюлоза - строительный материал расти­тельных клеток - играет роль каркаса для оболо­чек этих клеток. Другой полисахарид - хитин - выполняет аналогичную роль в клетках некоторых животных: образует наружный скелет членистоно­гих (ракообразных), насекомых, паукообразных.

Углеводы служат в конечном итоге источником нашего питания: мы потребляем зерно, содержа­щее крахмал, или скармливаем его животным, в организме которых крахмал превращается в бел­ки и жиры. Самая гигиеничная одежда изготовле­на из целлюлозы или продуктов на ее основе: хлоп­ка и льна, вискозного волокна, ацетатного шелка. Деревянные дома и мебель построены из той же целлю­лозы, образующей древесину.

В основе производства фото- и кинопленки - все та же целлюлоза. Книги, газеты, письма, денежные банкно­ты - все это продукция цел­люлозно-бумажной промышленности. Значит, углеводы обеспечивают нас всем необходимым для жизни: пищей, одеждой, кровом.

Кроме того, углеводы участвуют в построении сложных белков, ферментов, гормонов. Углевода­ми являются и такие жизненно необходимые веще­ства, как гепарин (он играет важнейшую роль - предотвращает свертывание крови), агар-агар (его получают из морских водорослей и применяют в микробиологической и кондитерской промыш­ленности - вспомните знаменитый торт «Птичье молоко»).

Необходимо подчеркнуть, что единственным видом энергии на Земле (помимо ядерной, разуме­ется) является энергия Солнца, а единственным способом ее аккумулирования для обеспечения жизнедеятельности всех живых организмов явля­ется процесс фотосинтеза , протекающий в клетках живых растений и приводящий к синтезу угле­водов из воды и углекислого газа. Именно при этом превращении образуется кислород, без ко­торого жизнь на нашей планете была бы невозможна:

Моносахариды. Глюкоза

Глюкоза и фруктоза - твердые бесцветные кристаллические вещества. Глюкоза содержится в соке винограда (отсюда название «виноградный сахар») вместе с фруктозой, которая содержится в некоторых фруктах и плодах (отсюда название «фруктовый сахар»), составляет значительную часть меда. В крови человека и животных посто­янно содержится около 0,1 % глюкозы (80-120 мг в 100 мл крови). Большая ее часть (около 70 %) подвергается в тканях медленному окислению с выделением энергии и образованием конечных продуктов - углекислого газа и воды (процесс гли­колиза):

Энергия, выделяемая при гликолизе, в значи­тельной степени обеспечивает энергетические по­требности живых организмов.

Превышение содержания глюкозы в крови уровня 180 мг в 100 мл крови свидетельствует о нарушении углеводного обмена и развитии опас­ного заболевания - сахарного диабета.

Строение молекулы глюкозы

О строении молекулы глюкозы можно судить на основании опытных данных. Она реагирует с карбоновыми кислотами, образуя сложные эфи­ры, содержащие от 1 до 5 остатков кислоты. Ес­ли раствор глюкозы прилить к свежеполученно­му гидроксиду меди (II), то осадок растворяется и образуется ярко-синий раствор соединения меди, т. е. происходит качественная реакция на много­атомные спирты. Следовательно, глюкоза является многоатомным спиртом. Если же подогреть полу­ченный раствор, то вновь выпадет осадок, но уже красноватого цвета, т. е. произойдет качественная реакция на альдегиды. Аналогично, если раствор глюкозы нагреть с аммиачным раствором оксида серебра, то произойдет реакция «серебряного зер­кала». Следовательно, глюкоза является одновре­менно многоатомным спиртом и альдегидом - алъдегидоспиртом. Попробуем вывести структурную формулу глюкозы. Всего атомов углерода в моле­куле C 6 H 12 O 6 шесть. Один атом входит в состав альдегидной группы :

Остальные пять атомов связываются с пятью гидроксигруппами.

И наконец, атомы водорода в молекуле распре­делим с учетом того, что углерод четырехвалентен:

Однако установлено, что в растворе глюко­зы помимо линейных (альдегидных) молекул существуют молекулы циклического строения, из которых состоит кристаллическая глюкоза. Превращение молекул линейной формы в цикли­ческую можно объяснить, если вспомнить, что атомы углерода могут свободно вращаться вокруг σ-связей, расположенных под углом 109° 28′. При этом альдегидная группа (1-й атом углерода) мо­жет приблизиться к гидроксильной группе пятого атома углерода. В первой под влиянием гидрокси- группы разрывается π-связь: к атому кислорода присоединяется атом водорода, и «потерявший» этот атом кислород гидроксигруппы замыкает цикл:

В результате такой перегруппировки атомов образуется циклическая молекула. Циклическая формула показывает не только порядок связи ато­мов, но и их пространственное расположение. В ре­зультате взаимодействия первого и пятого атомов углерода появляется новая гидроксигруппа у пер­вого атома, которая может занять в пространстве два положения: над и под плоскостью цикла, а по­тому возможны две циклические формы глюкозы:

а) α-форма глюкозы - гидроксильные группы при первом и втором атомах углерода располо­жены по одну сторону кольца молекулы;

б) β-форма глюкозы - гидроксильные группы на­ходятся по разные стороны кольца молекулы:

В водном растворе глюкозы в динамическом равновесии находятся три ее изомерные формы - циклическая α-форма, линейная (альдегидная) форма и циклическая β-форма:

В установившемся динамическом равновесии преобладает β-форма (около 63 %), так как она энер­гетически предпочтительнее - у нее OH-группы у первого и второго углеродных атомов по разные стороны цикла. У α-формы (около 37 %) OH-группы у тех же углеродных атомов расположены по одну сторону плоскости, поэтому она энергетически ме­нее устойчива, чем β-форма. Доля же линейной фор­мы в равновесии очень мала (всего около 0,0026 %).

Динамическое равновесие можно сместить. На­пример, при действии на глюкозу аммиачного рас­твора оксида серебра количество ее линейной (аль­дегидной) формы, которой в растворе очень мало, пополняется все время за счет циклических форм, и глюкоза полностью подвергается окислению до глюконовой кислоты.

Изомером альдегидоспирта глюкозы является кетоноспирт - фруктоза :

Химические свойства глюкозы

Химические свойства глюкозы, как и любого другого органического вещества, определяются ее строением. Глюкоза обладает двойственной функ­цией, являясь и альдегидом , и многоатомным спиртом , поэтому для нее характерны свойства и много­атомных спиртов, и альдегидов.

Реакции глюкозы как многоатомного спирта.

Глюкоза дает качественную реакцию много­атомных спиртов (вспомните глицерин) со свеже­полученным гидроксидом меди (II), образуя ярко­-синий раствор соединения меди (II).

Глюкоза, подобно спиртам, может образовывать сложные эфиры.

Реакции глюкозы как альдегида

1. Окисление альдегидной группы . Глюкоза как альдегид способна окисляться в соответствующую (глюконовую) кислоту и давать качественные ре­акции альдегидов.

Реакция «серебряного зеркала»:

Реакция со свежеполученным Cu(OH) 2 при на­гревании:

Восстановление альдегидной группы . Глю­коза может восстанавливаться в соответствующий спирт (сорбит):

Реакции брожения

Эти реакции протекают под действием особых биологических катализаторов белковой приро­ды - ферментов.

1. Спиртовое брожение:

издавна применяемое человеком для получения этилового спирта и алкогольных напитков.

2. Молочнокислое брожение:

которое составляет основу жизнедеятельности мо­лочнокислых бактерий и происходит при скиса­нии молока, квашении капусты и огурцов, силосо­вании зеленых кормов.\

Химические свойства глюкозы - конспект

Полисахариды. Крахмал и целлюлоза.

Крахмал - белый аморфный порошок, не рас­творяется в холодной воде. В горячей воде он раз­бухает и образует коллоидный раствор - крах­мальный клейстер.

Крахмал содержится в цитоплазме раститель­ных клеток в виде зерен запасного питательного вещества. В картофельных клубнях содержится около 20 % крахмала, в пшеничных и кукуруз­ных зернах - около 70 %, а в рисовых - почти 80 %.

Целлюлоза (от лат. cellula - клетка), выделен­ная из природных материалов (например, вата или фильтровальная бумага), представляет собой твер­дое волокнистое вещество, нерастворимое в воде.

Оба полисахарида имеют растительное проис­хождение, однако играют в клетке растений разную роль: целлюлоза - строительную, конструкционную функцию, а крахмал - запасающую. Поэтому цел­люлоза является обязательным элементом клеточ­ной оболочки растений. Волокна хлопка содержат до 95 % целлюлозы, волокна льна и конопли - до 80 %, а в древесине ее содержится около 50 %.

Строение крахмала и целлюлозы

Состав этих полисахаридов можно выразить общей формулой (C 6 H 10 O 5) n . Число повторяю­щихся звеньев в макромолекуле крахмала может колебаться от нескольких сотен до нескольких тысяч. Целлюлоза же отли­чается значительно большим числом звеньев и, следова­тельно, молекулярной мас­сой, которая достигает не­скольких миллионов.

Различаются углеводы не только молекулярной мас­сой, но и структурой. Для крахмала характерны два вида структур макромолекул: линейная и развет­вленная. Линейную структуру имеют более мел­кие макромолекулы той части крахмала, которую называют амилозой, а разветвленную структуру имеют молекулы другой составной части крахма­ла - амилопектина.

В крахмале на долю амилозы приходится 10- 20 %, а на долю амилопектина - 80-90 %. Ами­лоза крахмала растворяется в горячей воде, а ами­лопектин только набухает.

Структурные звенья крахмала и целлюлозы по­строены по-разному. Если звено крахмала вклю­чает остатки α-глюкозы , то целлюлоза - остатки β-глюкозы , ориентированные в природные волок­на:

Химические свойства полисахаридов

1. Образование глюкозы. Крахмал и целлюлоза подвергаются гидролизу с образованием глюкозы в присутствии минеральных кислот, например сер­ной:

В пищеварительном тракте животных крахмал подвергается сложному ступенчатому гидролизу:

Организм человека не приспособлен к перева­риванию целлюлозы, так как не имеет ферментов, необходимых для разрыва связей между остатка­ми β-глюкозы в макромолекуле целлюлозы.

Лишь у термитов и жвачных животных (на­пример, коров) в пищеварительной системе живут микроорганизмы, вырабатывающие необходимые для этого ферменты.

2. Образование сложных эфиров . Крахмал мо­жет образовывать эфиры за счет гидроксигрупп, однако эти эфиры не нашли практического при­менения.

Каждое звено целлюлозы содержит три свобод­ных спиртовых гидроксигруппы. Поэтому общую формулу целлюлозы можно записать таким обра­зом:

За счет этих спиртовых гидроксигрупп целлю­лоза и может образовывать сложные эфиры, которые широко применяются.

При обработке целлюлозы смесью азотной и сер­ной кислот получают в зависимости от условий мо­но-, ди- и тринитроцеллюлозу:

Применение углеводов

Смесь моно- и динитроцеллюлозы называют коллоксилином . Раствор коллоксилина в смеси спирта и диэтилового эфира - коллодий - приме­няют в медицине для заклеивания небольших ран и для приклеивания повязок к коже.

При высыхании раствора коллоксилина и камфа­ры в спирте получается целлулоид - одна из пласт­масс, которая впервые стала широко использовать­ся в повседневной жизни человека (из нее делают фото- и кинопленку, а также различные предметы широкого потребления). Растворы коллоксилина в органических растворителях применяются в каче­стве нитролаков. А при добавлении к ним красите­лей получаются прочные и эстетичные нитрокраски, широко используемые в быту и технике.

Как и другие органические вещества, содержа­щие в составе молекул нитрогруппы, все виды ни­троцеллюлозы огнеопасны. Особенно опасна в этом отношении тринитроцеллюлоза - сильнейшее взрывчатое вещество. Под названием «пирокси­лин» она широко применяется для производства оружейных снарядов и проведения взрывных ра­бот, а также для получения бездымного пороха.

С уксусной кислотой (в промышленности для этих целей используют более мощное этерифицирующее вещество - уксусный ангидрид) получают аналогичные (ди- и три-) сложные эфиры целлюло­зы и уксусной кислоты, которые называются аце­тилцеллюлозой :

Ацетилцеллюлозу используют для получения лаков и красок, она служит также сырьем для из­готовления искусственного шелка. Для этого ее рас­творяют в ацетоне, а затем этот раствор продавлива­ют через тонкие отверстия фильер (металлических колпачков с многочисленными отверстиями). Выте­кающие струйки раствора обдувают теплым возду­хом. При этом ацетон быстро испаряется, а высыха­ющая ацетилцеллюлоза образует тонкие блестящие нити, которые идут на изготовление пряжи.

Крахмал , в отличие от целлюлозы, дает синее окрашивание при взаимодействии с йодом. Эта ре­акция является качественной на крахмал или йод в зависимости от того, наличие какого вещества требуется доказать.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Наименование параметра Значение
Тема статьи: Дисахариды
Рубрика (тематическая категория) Химия

Дисахариды – это сахароподобные сложные углеводы, молеку­лы которых при гидролизе распадаются на две молекулы моносахаридов. Молекулярная формула С 12 Н 22 О 11 . Дисахариды содержатся в продуктах природного происхождения: сахароза (свекловичный сахар) в большом количестве, до 28%, – в сахарной свёкле; лактоза (молочный сахар) – в молоке; трегалоза (грибной сахар) – в грибах; мальтоза (солодовый сахар) образуется при частичном гидролизе крахмала и др.

По своему строению дисахариды представляют из себягликози-ды. Учитывая зависимость оттого, какой гидроксил второго моносахарида участвует в образовании связи с первым моносахаридом, различают дисахариды двух типов: восстанавливающие (редуцирующие); невосстанавливающие.

Восстанавливающие дисахариды называют гликозил-гликозами; связь между моносахаридными молекулами у этих дисахаридов образована за счёт полуацетального гидроксила одной молекулы и спиртового гидроксила (чаще всœего при четвёртом атоме углерода) второй молекулы. Важнейшие представители: мальтоза, лактоза, целлобиоза. В растворе они находятся в таутомерных формах: циклической (полуацетальной) и гидроксикарбонильной (альдегидной).

лактоза лактоза

Строение. В состав дисахаридов могут входить два одинаковых или различных моносахарида в полуацетальной (циклической) форме.

Так, молекула мальтозы (солодовый сахар) состоит из двух мо­лекул α-D-глюкозы в пиранозной форме, связанных между собой l-4-α-гликозидной связью.

Во втором моносахаридном остатке молекулы мальтозы сохра­няется свободный полуацетальный гидроксил. По этой причинœе в растворе мальтоза может существовать в таутомерных формах: циклической и гидроксикарбонильной, находящихся между собой в динамическом равновесии.

мальтоза мальтоза

(полуацетальная форма) (гидроксикарбонильная форма)

По такому принципу построены всœе восстанавливающие диса­хариды (лактоза, целлобиоза и др.).

Свойства восстанавливающих (редуцирующих) дисахаридов. Восстанавливающие дисахариды - ϶ᴛᴏ кристаллические вещества, хорошо растворимые в воде, имеют сладкий вкус, гигроскопичны. Растворы этих дисахаридов нейтральны, обладают оптической активностью. В химическом отношении восстанавливающие дисахариды проявляют свойства альдегидов: дают реакцию серебряного зеркала, восстанавливают жидкость Фелинга, реагируют с реактивами на карбонильную группу (с фенилгидразином, гидроксиламином). За счёт полуацетального гидроксила дисахариды образуют гликозиды, а также проявляют свойства многоатомных спиртов: вступают в реакции алкилирования, ацилирования, дают качественную реакцию на многоатомные спирты (растворяют Сu(ОН) 2).

мальтоза (альдегидная форма) мальтобионовая кислота

Эта группа дисахаридов способна восстанавливать Ag + до Ag 0 в реакции серебряного зеркала, Сu 2+ до Сu + в реакции с раствором Фелинга, в связи с этим они и называются восстанавливающими дисахаридами. Как всœе сложные углеводы, дисахариды способны гидролизоваться под действием минœеральных кислот или ферментов.

С 12 Н 22 О 11 +Н 2 О2С 6 Н 12 О 6

мальтоза глюкоза

Невосстанавливающие дисахариды называют гликозил-гликозидами; связь между моносахаридами у этих дисахаридов образована с участием обоих полуацетальных гидроксилов, в связи с этим они не могут переходить в другие таутомерные формы. Важнейшими их представителями являются сахароза и трегалоза.

трегалоза сахароза

Молекула трегалозы состоит из двух остатков α-D-глюкопи-ранозы, молекула сахарозы – из остатка α-D-глюкопиранозы и остатка β-D-фруктофуранозы. Так как у дисахаридов этой группы связь между моносахаридами осуществляется за счёт обоих полуацетальных гидроксилов, они не могут таутомерно переходить в оксикарбонильную форму, следовательно, не могут давать реакции на карбонильную группу, в т.ч. и на альдегидную группу (не дают реакцию серебряного зеркала, не реагируют с раствором Фелинга). Такие дисахариды не способны проявлять восстанавливающие свойства, в связи с этим их называют невосстанавливающими дисахаридами. Οʜᴎ проявляют свойства многоатомных спиртов (растворяют гидроксид меди, вступают в реакции алкилирования и ацилирования), как всœе сложные углеводы гидролизуются в присутствии минœеральных кислот или под действием ферментов.

Строение и свойства сахарозы. Сахароза (свекловичный са­хар) – один из наиболее давно известных человеку пищевых продуктов. Первоначально сахароза была выделœена из сахарного тростника, а затем – из сахарной свеклы. Сахароза содержится и во многих других растениях (кукуруза, клён, пальма и др.).

Молекулярный состав сахарозы С 12 Н 22 О 11 .

Молекула сахарозы состоит из двух моносахаридов: глюкозы в α-D-пиранозной форме и фруктозы в β-D-фуранозной форме, свя­занных между собой 1-2-гликозидной связью с участием двух полуацетальных (гликозидных) гидроксилов. В молекуле сахарозы нет свободных полуацетальных гидроксилов, в связи с этим она не может таутомерно переходить в гидроксикарбонильную форму.

При нагревании выше 160°С сахароза частично разлагается, выделяя воду и превращаясь в бурую массу – карамель.

Водный раствор сахарозы растворяет гидроксид меди, образуя раствор сахарата меди, проявляет при этом свойства многоатомных спиртов. При нагревании раствора сахарозы в присутствии минœеральных кислот сахароза гидролизуется, в результате образуется смесь глюкозы и фруктозы в равных количествах (искусственный мёд). Процесс гидролиза сахарозы принято называть инверсией, так как при этом наблюдается изменение правого вращения раствора на левое.

Сахароза широко используется как пищевой продукт, в произ­водстве кондитерских, хлебобулочных изделий, варенья, компотов, джемов и др.
Размещено на реф.рф
В фармакологии используется для приготовления сиропов, микстур, порошков и т.п.

Эфиры сахарозы и высших жирных кислот обладают высокой моющей способностью и используются как промышленные детергенты. Эти продукты не имеют запаха, совершенно неядовиты и полностью разрушаются бактериями при биологической самоочистке воды.

Диэфиры высших жирных кислот и сахарозы используются как эмульгаторы при получении маргарина, лекарственных препаратов и в косметике.

Октаметилсахароза применяется в промышленности пластмасс как пластификатор.

Октаацетат сахарозы используется в качестве промежуточного слоя при получении стекла триплекс.

Отходы сахарного производства (патока) употребляются для производства этилового спирта и в кондитерской промышленности.

Дисахариды - понятие и виды. Классификация и особенности категории "Дисахариды" 2017, 2018.

  • - Моносахариды Дисахариды Полисахариды

    Многообразие углеводов Глюкоза Сахароза Крахмал Фруктоза Лактоза Гликоген Галактоза Мальтоза Хитин Дезоксирибоза Целлюлоза (клетчатка) Рибоза Моносахариды – это простые сахара. Из них наиболее важны глюкоза,... .


  • - Дисахариды. Отдельные представители

    Олигосахариды. Строение, физико-химические свойства отдельных представителей Олигосахариды представляют собой углеводы, построенные из небольшого (от 2 до 10) количества моносахаридов. Олигосахариды делят на ди-, три-, тетрасахариды и т.д. по числу остатков... .

  • В зависимости от числа молекул моносахаридов, образующихся при гидролизе полисахаридов, последние подразделяются на олигосахариды (дисахариды, трисахариды) и полисахариды.

    Наибольшее практическое значение имеют дисахариды. Дисахариды (биозы) при гидролизе образуют два одинаковых или разных моносахарида. Дисахариды подразделяются на две группы: восстанавливающие и невосстанавливающие.

    Связь между двумя молекулами моносахаридов устанавливается с помощью двух гидроксильных групп – по одной от каждой молекулы монозы. Однако характер этой связи может быть различным. Если одна из молекул моносахарида всегда предоставляет свой полуацетальный (гликозидный) гидроксил, то вторая молекула участвует в этом либо полуацетальным гидроксилом (образуется гликозид – гликозидная связь), либо спиртовым гидроксилом (образуется гликозид – гликозная связь).

    Отсутствие или наличие в молекуле дисахарида полуацетального гидроксила отражается на свойствах дисахаридов. Если при образовании дисахарида обе молекулы участвовали своими полуацетальными гидроксилами (гликозид – гликозидная связь), то у обоих остатков моноз циклические формы являются закрепленными, альдегидная группа такого дисахарида образоваться не может. Такой дисахарид не обладает восстанавливающими свойствами и называется невосстанавливающим дисахаридом.

    В случае гликозид – гликозной связи циклическая форма одного остатка моносахарида не является закрепленной, она может перейти в альдегидную форму, и тогда дисахарид будет обладать восстанавливающими свойствами. Такой дисахарид называется восстанавливающим. Восстанавливающие дисахариды проявляют реакции, характерные для соответствующих моносахаридов.

    К восстанавливающим дисахаридам относится, в часности, мальтоза (солодовый сахар), содержащаяся в солоде, т.е. проросших, а затем высушенных и измельченных зернах хлебных злаков.

    (мальтоза)

    Мальтоза составлена из двух остатков D- глюкопиранозы, которые связаны (1–4) -гликозидной связью, т.е. в образовании простой эфирной связи участвуют гликозидный гидроксил одной молекулы и спиртовой гидроксил при четвертом атоме углерода другой молекулы моносахарида. Аномерный атом углерода (С 1), участвующий в образовании этой связи, имеет α-конфигурацию, а аномерный атом со свободным гликозидным гидроксилом (обозначен красным цветом) может иметь как α - (α - мальтоза), так и β- конфигурацию (β- мальтоза).

    Мальтоза представляет собой белые кристаллы, хорошо растворимые в воде, сладкие на вкус, однако значительно меньше, чем у сахара (сахарозы).

    Как видно, в мальтозе имеется свободный гликозидный гидроксил, вследствие чего сохраняется способность к раскрытию цикла и переходу в альдегидную форму. В связи с этим, мальтоза способна вступать в реакции, характерные для альдегидов, и, в частности, давать реакцию "серебряного зеркала", поэтому ее называют восстанавливающим дисахаридом. Кроме того, мальтоза вступает во многие реакции, характерные для моносахаридов, например, образует простые и сложные эфиры (смотри химические свойства моносахаридов).

    К невосстанавливающим дисахаридам относится сахароза (свекловичный или тростниковый сахар). Она содержится в сахарном тростнике, сахарной свекле (до 28% от сухого вещества),соках растений и плодах. Молекула сахарозы построена из α, D- глюкопиранозы и β, D- фруктофуранозы.

    (сахароза)

    В противоположность мальтозе гликозидная связь (1–2) между моносахаридами образуется за счет гликозидных гидроксилов обеих молекул, то есть свободный гликозидный гидроксил отсутствует. Вследствие этого отсутствует восстанавливающая способность сахарозы, она не дает реакции "серебряного зеркала", поэтому ее относят к невосстанавливающим дисахаридам.

    Сахароза – белое кристаллическое вещество, сладкое на вкус, хорошо растворимое в воде.

    Для сахарозы характерны реакции по гидроксильным группам. Как и все дисахариды, сахароза при кислотном или ферментативном гидролизе превращается в моносахариды, из которых она составлена.

    Полисахариды являются высокомолекулярными веществами. В полисахаридах остатки моносахаридов связываются гликозид – гликозными связями. Поэтому их можно рассматривать как полигликозиды. Остатки моносахаридов, входящие в состав молекулы полисахарида могут быть одинаковыми, но могут и различаться; в первом случае это гомополисахариды, во втором – гетерополисахариды.

    Важнейшие из полисахаридов – это крахмал и целлюлоза (клетчатка). Они построены из остатков глюкозы. Общая формула этих полисахаридов (C 6 H 10 O 5) n . В образовании молекул полисахаридов обычно принимает участие гликозидный (при С 1 -атоме) и спиртовой (при С 4 -атоме) гидроксилы, т.е. образуется (1–4) -гликозидная.

    Крахмал представляет собой смесь двух полисахаридов, построенных из α, D- глюкопиранозных звеньев: амилозы (10-20%) и амилопектина (80-90%). Крахмал образуется в растениях при фотосинтезе и откладывается в виде "резервного" углевода в корнях, клубнях и семенах. Например, зерна риса, пшеницы, ржи и других злаков содержат 60-80% крахмала, клубни картофеля – 15-20%. Родственную роль в животном мире выполняет полисахарид гликоген, "запасающийся", в основном, в печени.

    Крахмал – это белый порошок, состоящий из мелких зерен, не растворимый в холодной воде. При обработке крахмала теплой водой удается выделить две фракции: фракцию, растворимую в теплой воде и состоящую из полисахарида амилозы, и фракцию, лишь набухающую в теплой воде с образованием клейстера и состоящую из полисахарида амилопектина.

    Амилоза имеет линейное строение, α, D- глюкопиранозные остатки связаны (1–4) -гликозидными связями. Элементная ячейка амилозы (и крахмала вообще) представляется следующим образом:

    Молекула амилопектина построена подобным образом, однако имеет в цепи разветвления, что создает пространственную структуру. В точках разветвления остатки моносахаридов связаны (1–6) -гликозидными связями. Между точками разветвления располагаются обычно 20-25 глюкозных остатков:

    (амилопектин)

    Крахмал легко подвергается гидролизу: при нагревании в присутствии серной кислоты образуется глюкоза:

    (C 6 H 10 O 5) n + nH 2 O –– H2SO4,t ° ® nC 6 H 12 O 6

    крахмал глюкоза

    В зависимости от условий проведения реакции гидролиз может осуществляться ступенчато с образованием промежуточных продуктов:

    (C 6 H 10 O 5) n ® (C 6 H 10 O 5) m ® xC 12 H 22 O 11 ® nC 6 H 12 O 6

    крахмал декстрины (m

    Качественной реакцией на крахмал является его взаимодействие с йодом – наблюдается интенсивное синее окрашивание. Такое окрашивание появляется, если на срез картофеля или ломтик белого хлеба поместить каплю раствора йода.

    Крахмал не вступает в реакцию "серебряного зеркала".

    Крахмал является ценным пищевым продуктом. Для облегчения его усвоения продукты, содержащие крахмал, подвергают термообработке, т.е. картофель и крупы варят, хлеб пекут. Процессы декстринизации (образование декстринов), осуществляемые при этом, способствуют лучшему усвоению организмом крахмала и последующему гидролизу до глюкозы. В пищевой промышленности крахмал используется при производстве колбасных, кондитерских и кулинарных изделий. Применяется также для получения глюкозы, при изготовлении бумаги, текстильных изделий, клеев, лекарственных средств и т.д.

    Целлюлоза – наиболее распространенный растительный полисахарид. Она обладает большой механической прочностью и исполняет роль опорного материала растений. Древесина содержит 50-70% целлюлозы, хлопок представляет собой почти чистую целлюлозу.

    Как и у крахмала, структурной единицей целлюлозы является D- глюкопираноза, звенья которой связаны (1-4) -гликозидными связями. Однако, от крахмала целлюлоза отличается β- конфигурацией гликозидных связей между циклами и строго линейным строением:

    Целлюлоза состоит из нитевидных молекул, которые водородными связями гидроксильных групп внутри цепи, а также между соседними цепями собраны в пучки. Именно такая упаковка цепей обеспечивает высокую механическую прочность, волокнистость, нерастворимость в воде и химическую инертность, что делает целлюлозу идеальным материалом для построения клеточных стенок.

    β- Гликозидная связь не разрушается пищеварительными ферментами человека, поэтому целлюлоза не может служить ему пищей, хотя в определенном количестве является необходимым для нормального питания балластным веществом. В желудках жвачных животных имеются ферменты, расщепляющие целлюлозу, поэтому такие животные используют клетчатку в качестве компонента пищи.

    Несмотря на нерастворимость целлюлозы в воде и обычных органических растворителях, она растворима в реактиве Швейцера (раствор гидроксида меди в аммиаке), а также в концентрированном растворе хлористого цинка и в концентрированной серной кислоте.

    Как и крахмал, целлюлоза при кислотном гидролизе дает глюкозу.

    Целлюлоза – многоатомный спирт, на элементную ячейку полимера приходятся три гидроксильных группы. В связи с этим, для целлюлозы характерны реакции этерификации (образование сложных эфиров). Наибольшее практическое значение имеют реакции с азотной кислотой и уксусным ангидридом.

    Полностью этерифицированная клетчатка известна под названием пироксилин, который после соответствующей обработки превращается в бездымный порох. В зависимости от условий нитрования можно получить динитрат целлюлозы, который в технике называется коллоксилином. Он так же используется при изготовлении пороха и твердых ракетных топлив. Кроме того, на основе коллоксилина изготавливают целлулоид.

    При взаимодействии целлюлозы с уксусным ангидридом в присутствии уксусной и серной кислот образуется триацетилцеллюлоза.

    Триацетилцеллюлоза (или ацетилцеллюлоза) является ценным продуктом для изготовления негорючей кинопленки и ацетатного шелка. Для этого ацетилцеллюлозу растворяют в смеси дихлорметана и этанола и этот раствор продавливают через фильеры в поток теплого воздуха. Растворитель испаряется и струйки раствора превращаются в тончайшие нити ацетатного шелка.

    Целлюлоза не дает реакции "серебряного зеркала".

    Говоря о применении целлюлозы, нельзя не сказать о том, что большое количество целлюлозы расходуется для изготовления различной бумаги. Бумага – это тонкий слой волокон клетчатки, проклеенный и спрессованный на специальной бумагоделательной машине.

    Из приведенного выше уже видно, что использование целлюлозы человеком столь широко и разнообразно, что применению продуктов химической переработки целлюлозы можно посвятить самостоятельный раздел.

    Вопросы для самоконтроля

    1. Напишите альдегидные формулы Д- глюкозы, Д- фруктозы.

    2. Что такое L- иD-, α- и β- формы сахара?

    3. Напишите возможные циклические формы глюкозы.

    4. Что такое полуацетальный гидроксил? Какие химические свойства сахаров он определяет?

    5. Напишите уравнения реакций образования мальтозы и целлобиозы. Чем отличаются формулы этих дисахаридов?

    6. Приведите примеры восстанавливающих и невосстанавливающих дисахаридов.

    7. Гидролиз крахмала и клетчатки. Какие промежуточные и конечные продукты при этом образуются?