Щелочноземельные металлы свойства и применение. Химические свойства щелочноземельных металлов. Применение щелочноземельных металлов. Физические свойства щелочноземельных металлов. Примеры решения задач

Щелочноземельные металлы представляют собой элементы, которые относятся ко второй группе периодической таблицы. Сюда можно отнести такие вещества, как кальций, магний, барий, бериллий, стронций и радий. Название этой группы свидетельствует о том, что в воде они дают щелочную реакцию.

Щелочные и щелочноземельные металлы, а точнее их соли, широко распространены в природе. Они представлены минералами. Исключением является радий, который считается довольно редким элементом.

Все вышеперечисленные металлы имеют некоторые общие качества, которые и позволили объединить их в одну группу.

Щелочноземельные металлы и их физические свойства

Практически все эти элементы представляют собой твердые вещества сероватого цвета (по крайне мере, при нормальных условиях и Кстати, физические свойства немного отличаются — эти вещества хотя и довольно стойкие, но легко поддаются воздействию.

Интересно, что с порядковым номером в таблице растет и такой показатель металла, как плотность. Например, в этой группе наименьшим показателем обладает кальций, в то время как радий по плотности сходен с железом.

Щелочноземельные металлы: химические свойства

Для начала стоит отметить, что химическая активность возрастает согласно порядковому номеру таблицы Менделеева. Например, бериллий является довольно стойким элементом. В реакцию с кислородом и галогенами вступает лишь при сильном нагревании. То же касается и магния. А вот кальций способен медленно окисляться уже при комнатной температуре. Остальные три представителя группы (радий, барий и стронций) быстро реагируют с кислородом воздуха уже при комнатной температуре. Именно поэтому хранят эти элементы, покрывая слоем керосина.

Активность оксидов и гидроксидов этих металлов возрастает по той же схеме. Например, гидроксид бериллия не растворяется в воде и считается амфотерным веществом, а считается довольно сильной щелочью.

Щелочноземельные металлы и их краткая характеристика

Бериллий представляет собой стойкий металл светло-серого цвета, обладающий высокой токсичностью. Впервые элемент был обнаружен еще в 1798 году химиком Вокленом. В природе существует несколько минералов бериллия, из которых самыми известными считаются следующие: берилл, фенакит, даналит и хризоберилл. Кстати, некоторые изотопы бериллия обладают высокой радиоактивностью.

Интересно, что некоторые формы берилла являются ценными ювелирными камнями. Сюда можно отнести изумруд, аквамарин и гелиодор.

Бериллий используют для изготовления некоторых сплавов, В этот элемент применяют для замедления нейтронов.

Кальций является одним из самых известных щелочноземельных металлов. В чистом виде он представляет собой мягкое вещество белого цвета с серебристым оттенком. Впервые чистый кальций был выделен в 1808 году. В природе этот элемент присутствует в форме таких минералов, как мрамор, известняк и гипс. Кальций широко применяется в современных технологиях. Его используют как химический источник топлива, а также в качестве огнеустойчивого материала. Ни для кого не секрет, что соединения кальция используются при производстве строительных материалов и лекарственных средств.

Этот элемент также содержится в каждом живом организме. В основном, он отвечает за работу двигательного аппарата.

Магний представляет собой легкий и достаточно ковкий металл с характерным сероватым цветом. В чистом виде был выделен в 1808 году, но его соли стали известными намного раньше. В магний содержится в таких минералах, как магнезит, доломит, карналлит, кизерит. Кстати, соль магния обеспечивает Огромное количество соединений этого вещества можно найти в морской воде.

НАХОЖДЕНИЕ В ПРИРОДЕ

В земной коре содержится бериллия - 0,00053%, магния - 1,95%, кальция - 3,38%, стронция - 0,014%, бария - 0,026%, радий - искусственный элемент.

Встречаются в природе только в виде соединений - силикатов, алюмосиликатов, карбонатов, фосфатов, сульфатов и т.д.

ПОЛУЧЕНИЕ

1. Бериллий получают восстановлением фторида:

BeF 2 + Mg t ˚ C → Be + MgF 2

2. Барий получают восстановлением оксида:

3BaO + 2Al t ˚ C → 3Ba + Al 2 O 3

3. Остальные металлы получают электролизом расплавов хлоридов:

Т.к. металлы данной подгруппы сильные восстановители, то получение возможно только путем электролиза расплавов солей. В случае Са обычно используют CaCl 2 (c добавкой CaF 2 для снижения температуры плавления)

CaCl 2 =Ca+Cl 2

ФИЗИЧЕСКИЕ СВОЙСТВА

Щелочноземельные металлы (по сравнению со щелочными металлами) обладают более высокими t°пл. и t°кип, плотностями и твердостью.

ПРИМЕНЕНИЕ

Бериллий (Амфотерен) Магний Ca, Sr, Ba, Ra
1. Изготовление теплозащитных конструкций для косм. кораблей (жаропрочность, теплоёмкость бериллия) 2. Бериллиевые бронзы (лёгкость, твёрдость, жаростойкость, антикоррозионность сплавов, прочность на разрыв выше стали, можно прокатывать в ленты толщиной 0,1 мм) 3. В атомных реакторах, рентгенотехнике, радиоэлектронике 4. Сплав Be, Ni, W- в Швейцарии делают пружины для часов Но Be –хрупок, ядовит и очень дорогой 1. Получение металлов – магнийтермия (титан, уран, цирконий и др) 2. Для получения сверхлёгких сплавов (самолётостроение, производство автомобилей) 3. В оргсинтезе 4. Для изготовления осветительных и зажигательных ракет. 1. Изготовление свинцово-кадмиевых сплавов, необходимых при производстве подшипников. 2. Стронций – восстановитель в производстве урана. Люминофоры - соли стронция. 3. Используют в качестве геттеров, веществ для создания вакуума в электроприборах. Кальций Получение редких металлов, входит в состав сплавов. Барий Газопоглотитель в электронно-лучевых трубках. Радий Рентгенодиагностика, исследовательские работы.

ХИМИЧЕСКИЕ СВОЙСТВА

1. Очень реакционноспособны, сильные восстановители. Активность металлов и их восстановительная способность увеличивается в ряду: Be–Mg–Ca–Sr–Ba

2. Обладают степенью окисления +2.

3. Реагируют с водой при комнатной температуре (кроме Be) с выделением водорода.

4. С водородом образуют солеобразные гидриды ЭH 2 .

5. Оксиды имеют общую формулу ЭО. Тенденция к образованию пероксидов выражена слабее, чем для щелочных металлов.

Реакция с водой.

В обычных условиях поверхность Be и Mg покрыты инертной оксидной пленкой, поэтому они устойчивы по отношению к воде, но с горячей водой магний образует основание Mg(OH) 2.

В отличие от них Ca, Sr и Ba растворяются в воде с образованием гидроксидов, которые являются сильными основаниями:

Ве + H 2 O → ВеO+ H 2 ­

Ca + 2H 2 O → Ca(OH) 2 + H 2 ­

Реакция с кислородом.

Все металлы образуют оксиды RO, барий образует пероксид – BaO 2:

2Mg + O 2 → 2MgO

Ba + O 2 → BaO 2

3. С другими неметаллами образуются бинарные соединения:

Be + Cl 2 → BeCl 2 (галогениды)

Ba + S → BaS (сульфиды)

3Mg + N 2 → Mg 3 N 2 (нитриды)

Ca + H 2 → CaH 2 (гидриды)

Ca + 2C → CaC 2 (карбиды)

3Ba + 2P → Ba 3 P 2 (фосфиды)

Бериллий и магний сравнительно медленно реагируют с неметаллами.

4. Все металлы растворяются в кислотах:

Ca + 2HCl → CaCl 2 + H 2 ­

Mg + H 2 SO 4 (разб.) → MgSO 4 + H 2 ­

Бериллий также растворяется в водных растворах щелочей:

Be + 2NaOH + 2H 2 O → Na 2 + H 2 ­

5. Качественная реакция на катионы щелочноземельных металлов – окрашивание пламени в следующие цвета:

Ca 2+ - темно-оранжевый

Sr 2+ - темно-красный

Ba 2+ - светло-зеленый

Катион Ba 2+ обычно открывают обменной реакцией с серной кислотой или ее солями:

BaCl 2 + H 2 SO 4 → BaSO 4 ↓ + 2HCl

Ba 2+ + SO 4 2- → BaSO 4 ↓

Сульфат бария – белый осадок, нерастворимый в минеральных кислотах.

Оксиды щелочноземельных металлов

Получение

1) Окисление металлов (кроме Ba, который образует пероксид)

2) Термическое разложение нитратов или карбонатов

CaCO 3 t ˚ C → CaO + CO 2 ­

2Mg(NO 3) 2 t˚C → 2MgO + 4NO 2 ­ + O 2 ­

Химические свойства

Типичные основные оксиды. Реагируют с водой (кроме BeO и MgO), кислотными оксидами и кислотами

СаO + H 2 O → Са(OH) 2

3CaO + P 2 O 5 → Ca 3 (PO 4) 2

BeO + 2HNO 3 → Be(NO 3) 2 + H 2 O

BeO - амфотерный оксид, растворяется в щелочах:

BeO + 2NaOH + H 2 O → Na 2

Гидроксиды щелочноземельных металлов R(OH) 2

Получение

Реакции щелочноземельных металлов или их оксидов с водой:

Ba + 2H 2 O → Ba(OH) 2 + H 2 ­

CaO (негашеная известь) + H 2 O → Ca(OH) 2 (гашеная известь)

Химические свойства

Гидроксиды R(OH) 2 - белые кристаллические вещества, в воде растворимы хуже, чем гидроксиды щелочных металлов (растворимость гидроксидов уменьшается с уменьшением порядкового номера; Be(OH) 2 – нерастворим в воде, растворяется в щелочах ). Основность R(OH) 2 увеличивается с увеличением атомного номера:

Be(OH) 2 – амфотерный гидроксид

Mg(OH) 2 – слабое основание

Са(OH) 2 - щелочь

остальные гидроксиды - сильные основания (щелочи).

1) Реакции с кислотными оксидами:

Ca(OH) 2 + СO 2 → CaСO 3 ↓ + H 2 O ! Качественная реакция на углекислый газ

Ba(OH) 2 + SO 2 → BaSO 3 ↓ + H 2 O

2) Реакции с кислотами:

Ba(OH) 2 + 2HNO 3 → Ba(NO 3) 2 + 2H 2 O

3) Реакции обмена с солями:

Ba(OH) 2 + K 2 SO 4 → BaSO 4 ↓+ 2KOH

4) Реакция гидроксида бериллия со щелочами:

Be(OH) 2 + 2NaOH → Na 2

Жесткость воды

Природная вода, содержащая ионы Ca 2+ и Mg 2+ , называется жесткой. Жесткая вода при кипячении образует накипь, в ней не развариваются пищевые продукты; моющие средства не дают пены.

Карбонатная (временная) жесткость обусловлена присутствием в воде гидрокарбонатов кальция и магния, некарбонатная (постоянная) жесткость – хлоридов и сульфатов.

Общая жесткость воды рассматривается как сумма карбонатной и некарбонатной.

Удаление жесткости воды осуществляется путем осаждения из раствора ионов Ca 2+ и Mg 2+

Это элементы I группы периодической системы: литий (Li), натрий (Na), калий (K), рубидий (Rb), цезий (Cs), франций (Fr); очень мягкие, пластичные, легкоплавкие и легкие, как правило, серебристо-белого цвета; химически очень активны; бурно реагируют с водой, образуя щёлочи (откуда название).

Все щелочные металлы чрезвычайно активны, во всех химических реакциях проявляют восстановительные свойства, отдают свой единственный валентный электрон, превращаясь в положительно заряженный катион, проявляют единственную степень окисления +1.

Восстановительная способность увеличивается в ряду ––Li–Na–K–Rb–Cs.

Все соединения щелочных металлов имеют ионный характер.

Практически все соли растворимы в воде.

Низкие температуры плавления,

Малые значения плотностей,

Мягкие, режутся ножом

Вследствие своей активности щелочные металлы хранят под слоем керосина, чтобы преградить доступ воздуха и влаги. Литий очень легкий и в керосине всплывает на поверхность, поэтому его хранят под слоем вазелином.

Химические свойства щелочных металлов

1. Щелочные металлы активно взаимодействуют с водой:

2Na + 2H 2 O → 2NaOH + H 2 ­

2Li + 2H 2 O → 2LiOH + H 2 ­

2. Реакция щелочных металлов с кислородом:

4Li + O 2 → 2Li 2 O (оксид лития)

2Na + O 2 → Na 2 O 2 (пероксид натрия)

K + O 2 → KO 2 (надпероксид калия)

На воздухе щелочные металлы мгновенно окисляются. Поэтому их хранят под слоем органических растворителей (керосин и др.).

3. В реакциях щелочных металлов с другими неметаллами образуются бинарные соединения:

2Li + Cl 2 → 2LiCl (галогениды)

2Na + S → Na 2 S (сульфиды)

2Na + H 2 → 2NaH (гидриды)

6Li + N 2 → 2Li 3 N (нитриды)

2Li + 2C → Li 2 C 2 (карбиды)

4. Реакция щелочных металлов с кислотами

(проводят редко, идет конкурирующая реакция с водой):

2Na + 2HCl → 2NaCl + H 2 ­

5. Взаимодействие щелочных металлов с аммиаком

(образуется амид натрия):

2Li + 2NH 3 = 2LiNH 2 + H 2

6. Взаимодействие щелочных металлов со спиртами и фенолами, которые проявляют в данном случае кислотные свойства:

2Na + 2C 2 H 5 OH = 2C 2 H 5 ONa + H 2 ;

2K + 2C 6 H 5 OH = 2C 6 H 5 OK + H 2 ;

7. Качественная реакция на катионы щелочных металлов — окрашивание пламени в следующие цвета:

Li + – карминово-красный

Na + – желтый

K + , Rb + и Cs + – фиолетовый

Получение щелочных металлов

Металлические литий, натрий и калий получают электролизом расплава солей (хлоридов), а рубидий и цезий – восстановлением в вакууме при нагревании их хлоридов кальцием: 2CsCl+Ca=2Cs+CaCl 2
В небольших масштабах используется также вакуум-термическое получение натрия и калия:

2NaCl+CaC 2 =2Na+CaCl 2 +2C;
4KCl+4CaO+Si=4K+2CaCl 2 +Ca 2 SiO 4 .

Активные щелочные металлы выделяются в вакуум-термических процессах благодаря своей высокой летучести (их пары удаляются из зоны реакции).


Особенности химических свойств s-элементов I группы и их физиологическое действие

Электронная конфигурация атома лития 1s 2 2s 1 . У него самый большой во 2-м периоде атомный радиус, что облегчает отрыв валентного электрона и возникновение иона Li + со стабильной конфигурацией инертного газа (гелия). Следовательно, его соединения образуются с передачей электрона от лития к другому атому и возникновением ионной связи с небольшой долей ковалентности. Литий ‑ типичный металлический элемент. В виде вещества это щелочной металл. От других членов I группы он отличается малыми размерами и наименьшей, по сравнению с ними, активностью. В этом отношении он напоминает расположенный по диагонали от Li элемент II группы ‑ магний. В растворах ион Li + сильно сольватирован; его окружают несколько десятков молекул воды. Литий по величине энергии сольватации - присоединения молекул растворителя, стоит ближе к протону, чем к катионам щелочных металлов.

Малый размер иона Li + , высокий заряд ядра и всего два электрона создают условия для возникновения вокруг этой частицы довольно значительного поля положительного заряда, поэтому в растворах к нему притягивается значительное число молекул полярных растворителей и его координационное число велико, металл способен образовывать значительное число литийорганических соединений.

Натрием начинается 3-й период, поэтому у него на внешнем уровне всего 1е — , занимающий 3s-орбиталь. Радиус атома Na - наибольший в 3-м периоде. Эти две особенности определяют характер элемента. Его электронная конфигурация 1s 2 2s 2 2p 6 3s 1 . Единственная степень окисления натрия +1. Электроотрицательность его очень мала, поэтому в соединениях натрий присутствует только в виде положительно заряженного иона и придает химической связи ионный характер. По размеру ион Na + значительно больше, чем Li + , и сольватация его не так велика. Однако в растворе в свободном виде он не существует.

Физиологическое значение ионов К + и Na + связано с их различной адсорбируемостью на поверхности компонентов, входящих в состав земной коры. Соединения натрия лишь незначительно подвержены адсорбции, в то время как соединения калия прочно удерживаются глиной и другими веществами. Мембраны клеток, являясь поверхностью раздела клетка ‑ среда, проницаемы для ионов К + , вследствие чего внутриклеточная концентрация К + значительно выше, чем ионов Na + . В то же время в плазме крови концентрация Na + превышает содержание в ней калия. С этим обстоятельством связывают возникновение мембранного потенциала клеток. Ионы К + и Na + ‑ одни из основных компонентов жидкой фазы организма. Их соотношение с ионами Са 2+ строго определенно, а его нарушение приводит к патологии. Введение ионов Na+ в организм не оказывает заметного вредного влияния. Повышение же содержания ионов К + вредно, но в обычных условиях рост его концентрации никогда не достигает опасных величин. Влияние ионов Rb + , Cs + , Li + еще недостаточно изучено.

Из различных поражений, связанных с применением соединений щелочных металлов, чаще всего встречаются ожоги растворами гидроксидов. Действие щелочей связано с растворением в них белков кожи и образованием щелочных альбуминатов. Щелочь вновь выделяется в результате их гидролиза и действует на более глубокие слои организма, вызывая появление язв. Ногти под влиянием щелочей становятся тусклыми и ломкими. Поражение глаз, даже очень разбавленными растворами щелочей, сопровождается не только поверхностными разрушениями, но нарушениями более глубоких участков глаза (радужной оболочки) и приводит к слепоте. При гидролизе амидов щелочных металлов одновременно образуется щелочь и аммиак, вызывающие трахеобронхит фибринозного типа и воспаление легких.

Калий был получен Г. Дэви практически одновременно с натрием в 1807 г. при электролизе влажного гидроксида калия. От названия этого соединения ‑ «едкое кали» и получил свое наименование элемент. Свойства калия заметно отличаются от свойств натрия, что обусловлено различием величин радиусов их атомов и ионов. В соединениях калия связь более ионная, а в виде иона К + он обладает меньшим поляризующим действием, чем натрий, из-за больших размеров. Природная смесь состоит из трех изотопов 39 К, 40 К, 41 К. Один из них 40 Крадиоактивен и определенная доля радиоактивности минералов и почвы связана с присутствием этого изотопа. Его период полураспада велик ‑ 1,32 млрд. лет. Определить присутствие калия в образце довольно легко: пары металла и его соединения окрашивают пламя в фиолетово-красный цвет. Спектр элемента довольно прост и доказывает наличие 1е — на 4s-орбитали. Изучение его послужило одним из оснований для нахождения общих закономерностей в строении спектров.

В 1861 г. при исследовании соли минеральных источников спектральным анализом Роберт Бунзен обнаружил новый элемент. Его наличие доказывалось темно-красными линиями в спектре, которых не давали другие элементы. По цвету этих линий элемент и был назван рубидием (rubidus-темно-красный). В 1863 г. Р. Бунзен получил этот металл и в чистом виде восстановлением тартрата рубидия (виннокислой соли) сажей. Особенностью элемента является легкая возбудимость его атомов. Электронная эмиссия у него появляется под действием красных лучей видимого спектра. Это связано с небольшой разницей в энергиях атомных 4d и 5s-орбиталей. Из всех щелочных элементов, имеющих стабильные изотопы, рубидию (как и цезию) принадлежит один из самых больших атомных радиусов и маленький потенциал ионизации. Такие параметры определяют характер элемента: высокую электроположительность, чрезвычайную химическую активность, низкую температуру плавления (39 0 C) и малую устойчивость к внешним воздействиям.

Открытие цезия, как и рубидия, связано со спектральным анализом. В 1860 г. Р.Бунзен обнаружил две яркие голубые линии в спектре, не принадлежащие ни одному известному к тому времени элементу. Отсюда произошло и название «цезиус» (caesius), что значит небесно-голубой. Это последний элемент подгруппы щелочных металлов, который ещё встречается в измеримых количествах. Наибольший атомный радиус и наименьшие первые потенциалы ионизации определяют характер и поведение этого элемента. Он обладает ярко выраженной электроположительностью и ярко выраженными металлическими качествами. Стремление отдать внешний 6s-электрон приводит к тому, что все его реакции протекают исключительно бурно. Небольшая разница в энергиях атомных 5d- и 6s-орбиталей обусловливает легкую возбудимость атомов. Электронная эмиссия у цезия наблюдается под действием невидимых инфракрасных лучей (тепловых). Указанная особенность структуры атома определяет хорошую электрическую проводимость тока. Все это делает цезий незаменимым в электронных приборах. В последнее время все больше внимания уделяется цезиевой плазме как топливу будущего и в связи с решением проблемы термоядерного синтеза.

На воздухе литий активно реагирует не только с кислородом, но и с азотом и покрывается пленкой, состоящей из Li 3 N (до 75%) и Li 2 O. Остальные щелочные металлы образуют пероксиды (Na 2 O 2) и надпероксиды (K 2 O 4 или KO 2).

Перечисленные вещества реагируют с водой:

Li 3 N + 3 H 2 O = 3 LiOH + NH 3 ;

Na 2 O 2 + 2 H 2 O = 2 NaOH + H 2 O 2 ;

K 2 O 4 + 2 H 2 O = 2 KOH + H 2 O 2 + O 2 .

Для регенерации воздуха на подводных лодках и космических кораблях, в изолирующих противогазах и дыхательных аппаратах боевых пловцов (подводных диверсантов) использовалась смесь «оксон»:

Na 2 O 2 +CO 2 =Na 2 CO 3 +0,5O 2 ;

K 2 O 4 + CO 2 = K 2 CO 3 + 1,5 O 2 .

В настоящее время это стандартная начинка регенерирующих патронов изолирующих противогазов для пожарных.
Щелочные металлы реагируют при нагревании с водородом, образуя гидриды:

Гидрид лития используется как сильный восстановитель.

Гидроксиды щелочных металлов разъедают стеклянную и фарфоровую посуду, их нельзя нагревать и в кварцевой посуде:

SiO 2 +2NaOH=Na 2 SiO 3 +H 2 O.

Гидроксиды натрия и калия не отщепляют воду при нагревании вплоть до температур их кипения (более 1300 0 С). Некоторые соединения натрия называют содами :

а) кальцинированная сода, безводная сода, бельевая сода или просто сода – карбонат натрия Na 2 CO 3 ;
б) кристаллическая сода – кристаллогидрат карбоната натрия Na 2 CO 3 . 10H 2 O;
в) двууглекислая или питьевая – гидрокарбонат натрия NaHCO 3 ;
г) гидроксид натрия NaOH называют каустической содой или каустиком.

Свойства щелочноземельных металлов

Физические свойства

Щелочноземельные металлы (по сравнению со щелочными металлами) обладают более высокими t╟пл. и t╟кип., потенциалами ионизации, плотностями и твердостью.

Химические свойства

1. Очень реакционноспособны.

2. Обладают положительной валентностью +2.

3. Реагируют с водой при комнатной температуре (кроме Be) с выделением водорода.

4. Обладают большим сродством к кислороду (восстановители).

5. С водородом образуют солеобразные гидриды ЭH 2 .

6. Оксиды имеют общую формулу ЭО. Тенденция к образованию пероксидов выражена слабее, чем для щелочных металлов.

Нахождение в природе

3BeO ∙ Al 2 O 3 ∙ 6SiO 2 берилл

Mg

MgCO 3 магнезит

CaCO 3 ∙ MgCO 3 доломит

KCl ∙ MgSO 4 ∙ 3H 2 O каинит

KCl ∙ MgCl 2 ∙ 6H 2 O карналлит

CaCO 3 кальцит (известняк, мрамор и др.)

Ca 3 (PO 4) 2 апатит, фосфорит

CaSO 4 ∙ 2H 2 O гипс

CaSO 4 ангидрит

CaF 2 плавиковый шпат (флюорит)

SrSO 4 целестин

SrCO 3 стронцианит

BaSO 4 барит

BaCO 3 витерит

Получение

Бериллий получают восстановлением фторида:

BeF 2 + Mg═ t ═ Be + MgF 2

Барий получают восстановлением оксида:

3BaO + 2Al═ t ═ 3Ba + Al 2 O 3

Остальные металлы получают электролизом расплавов хлоридов:

CaCl 2 = Ca + Cl 2 ╜

катод: Ca 2+ + 2ē = Ca 0

анод: 2Cl - - 2ē = Cl 0 2

MgO + C = Mg + CO

Металлы главной подгруппы II группы - сильные восстановители; в соединениях проявляют только степень окисления +2. Активность металлов и их восстановительная способность увеличивается в ряду: Be Mg Ca Sr Ba╝

1. Реакция с водой.

В обычных условиях поверхность Be и Mg покрыты инертной оксидной пленкой, поэтому они устойчивы по отношению к воде. В отличие от них Ca, Sr и Ba растворяются в воде с образованием гидроксидов, которые являются сильными основаниями:

Mg + 2H 2 O═ t ═ Mg(OH) 2 + H 2

Ca + 2H 2 O = Ca(OH) 2 + H 2 ╜

2. Реакция с кислородом.

Все металлы образуют оксиды RO, барий-пероксид BaO 2:

2Mg + O 2 = 2MgO

Ba + O 2 = BaO 2

3. С другими неметаллами образуются бинарные соединения:

Be + Cl 2 = BeCl 2 (галогениды)

Ba + S = BaS (сульфиды)

3Mg + N 2 = Mg 3 N 2 (нитриды)

Ca + H 2 = CaH 2 (гидриды)

Ca + 2C = CaC 2 (карбиды)

3Ba + 2P = Ba 3 P 2 (фосфиды)

Бериллий и магний сравнительно медленно реагируют с неметаллами.

4. Все металлы растворяются в кислотах:

Ca + 2HCl = CaCl 2 + H 2 ╜

Mg + H 2 SO 4 (разб.) = MgSO 4 + H 2 ╜

Бериллий также растворяется в водных растворах щелочей:

Be + 2NaOH + 2H 2 O = Na 2 + H 2 ╜

5. Качественная реакция на катионы щелочноземельных металлов - окрашивание пламени в следующие цвета:

Ca 2+ - темно-оранжевый

Sr 2+ - темно-красный

Ba 2+ - светло-зеленый

Катион Ba 2+ обычно открывают обменной реакцией с серной кислотой или ее солями:

Сульфат бария - белый осадок, нерастворимый в минеральных кислотах.

Оксиды щелочноземельных металлов

Получение

1) Окисление металлов (кроме Ba, который образует пероксид)

2) Термическое разложение нитратов или карбонатов

CaCO 3 ═ t ═ CaO + CO 2 ╜

2Mg(NO 3) 2 ═ t ═ 2MgO + 4NO 2 ╜ + O 2 ╜

Химические свойства

Типичные основные оксиды. Реагируют с водой (кроме BeO), кислотными оксидами и кислотами

MgO + H 2 O = Mg(OH) 2

3CaO + P 2 O 5 = Ca 3 (PO 4) 2

BeO + 2HNO 3 = Be(NO 3) 2 + H 2 O

BeO - амфотерный оксид, растворяется в щелочах:

BeO + 2NaOH + H 2 O = Na 2

Гидроксиды щелочноземельных металлов R(OH) 2

Получение

Реакции щелочноземельных металлов или их оксидов с водой: Ba + 2H 2 O = Ba(OH) 2 + H 2

CaO(негашеная известь) + H 2 O = Ca(OH) 2 (гашеная известь)

Химические свойства

Гидроксиды R(OH) 2 - белые кристаллические вещества, в воде растворимы хуже, чем гидроксиды щелочных металлов (растворимость гидроксидов уменьшается с уменьшением порядкового номера; Be(OH) 2 - нерастворим в воде, растворяется в щелочах). Основность R(OH) 2 увеличивается с увеличением атомного номера:

Be(OH) 2 - амфотерный гидроксид

Mg(OH) 2 - слабое основание

остальные гидроксиды - сильные основания (щелочи).

1) Реакции с кислотными оксидами:

Ca(OH) 2 + SO 2 = CaSO 3 ¯ + H 2 O

Ba(OH) 2 + CO 2 = BaCO 3 ¯ + H 2 O

2) Реакции с кислотами:

Mg(OH) 2 + 2CH 3 COOH = (CH 3 COO) 2 Mg + 2H 2 O

Ba(OH) 2 + 2HNO 3 = Ba(NO 3) 2 + 2H 2 O

3) Реакции обмена с солями:

Ba(OH) 2 + K 2 SO 4 = BaSO 4 ¯+ 2KOH

4) Реакция гидроксида бериллия со щелочами:

Be(OH) 2 + 2NaOH = Na 2

Жесткость воды

Природная вода, содержащая ионы Ca 2+ и Mg 2+ , называется жесткой. Жесткая вода при кипячении образует накипь, в ней не развариваются пищевые продукты; моющие средства не дают пены.

Карбонатная (временная) жесткость обусловлена присутствием в воде гидрокарбонатов кальция и магния, некарбонатная (постоянная) жесткость - хлоридов и сульфатов.

Общая жесткость воды рассматривается как сумма карбонатной и некарбонатной.

Удаление жесткости воды осуществляется путем осаждения из раствора ионов Ca 2+ и Mg 2+ :

1) кипячением:

Сa(HCO 3) 2 ═ t ═ CaCO 3 ¯ + CO 2 + H 2 O

Mg(HCO 3) 2 ═ t═ MgCO 3 ¯ + CO 2 + H 2 O

2) добавлением известкового молока:

Ca(HCO 3) 2 + Ca(OH) 2 = 2CaCO 3 ¯ + 2H 2 O

3) добавлением соды:

Ca(HCO 3) 2 + Na 2 CO 3 = CaCO 3 ¯+ 2NaHCO 3

CaSO 4 + Na 2 CO 3 = CaCO 3 ¯ + Na 2 SO 4

MgCl 2 + Na 2 CO 3 = MgCO 3 ¯ + 2NaCl

Для удаления временной жесткости используют все четыре способа, а для постоянной - только два последних.

Термическое разложение нитратов.

Э(NO3)2 =t= ЭO + 2NO2 + 1/2O2

Особенности химиии берилия.

Be(OH)2 + 2NaOH (изб) = Na2

Al(OH)3 + 3NaOH (изб) = Na3

Be + 2NaOH + 2H2O = Na2 + H2

Al + 3NaOH + 3H2O = Na3 + 3/2H2

Be, Al + HNO3 (Конц) = пассивация

К семейству щёлочноземельных эле­ментов относят кальций, стронций, барий и радий. Д. И. Менделеев включал в это семей­ство и магний. Щёлочноземельными элементы именуются по той причине, что их гидроксиды, подобно гидро­ксидам щелочных металлов, раство­римы в воде, т. е. являются щелочами. «…Земельными же они названы пото­му, что в природе они встречаются в состоянии соединений, образующих нерастворимую массу земли, и сами в виде окисей RO имеют землистый вид», - пояснял Менделеев в «Основах химии».

Общая характеристика элементов II а группы

Металлы главной подгруппы II группы имеют электронную конфигурацию внешнего энергетического уровня ns², и являются s-элементами.

Легко отдают два валентных электрона, и во всех соединениях имеют степень окисления +2

Сильные восстановители

Активность металлов и их восстановительная способность увеличивается в ряду: Be–Mg–Ca–Sr–Ba

К щёлочноземельным металлам относят только кальций, стронций, барий и радий, реже магний

Бериллий по большинству свойств ближе к алюминию

Физические свойства простых веществ


Щелочноземельные металлы (по сравнению со щелочными металлами) обладают более высокими t°пл. и t°кип., потенциалами ионизации, плотностями и твердостью.

Химические свойства щелочноземельных металлов + Be

1. Реакция с водой.

В обычных условиях поверхность Be и Mg покрыты инертной оксидной пленкой, поэтому они устойчивы по отношению к воде. В отличие от них Ca, Sr и Ba растворяются в воде с образованием щелочей:

Mg + 2H 2 O – t° → Mg(OH) 2 + H 2 ­

Ca + 2H 2 O → Ca(OH) 2 + H 2 ­

2. Реакция с кислородом.

Все металлы образуют оксиды RO, барий-пероксид – BaO 2:

2Mg + O 2 → 2MgO

Ba + O 2 → BaO 2

3. С другими неметаллами образуют бинарные соединения:

Be + Cl 2 → BeCl 2 (галогениды)

Ba + S → BaS (сульфиды)

3Mg + N 2 → Mg 3 N 2 (нитриды)

Ca + H 2 → CaH 2 (гидриды)

Ca + 2C → CaC 2 (карбиды)

3Ba + 2P → Ba 3 P 2 (фосфиды)

Бериллий и магний сравнительно медленно реагируют с неметаллами.

4. Все щелочноземельные металлы растворяются в кислотах:

Ca + 2HCl → CaCl 2 + H 2 ­

Mg + H 2 SO 4 (разб.) → MgSO 4 + H 2 ­

5. Бериллий растворяется в водных растворах щелочей:

Be + 2NaOH + 2H 2 O → Na 2 + H 2 ­

6. Летучие соединения щёлочноземельных металлов придают пламени характерный цвет:

соединения кальция - кирпично-красный, стронция - карминово-красный, а бария - желтовато-зелёный.

Бериллий, также как и литий, относится к числу s-элементов. Четвертый электрон, появляющийся в атоме Be, помещается на 2s-орбитали. Энергия ионизации бериллия выше, чем у лития, из-за большего заряда ядра. В сильных основаниях он образует ион-бериллат ВеО 2- 2 . Следовательно, бериллий ‑ металл, но его соединения обладают амфотерностью. Бериллий, хотя и металл, но значительно менее электроположительный, по сравнению с литием.

Высокой энергией ионизации атома бериллий заметно отличается от остальных элементов ПА-подгруппы (магния и щелочноземельных металлов). Его химия во многом сходна с химией алюминия (диагональное сходство). Таким образом, это элемент с наличием у его соединений амфотерных качеств, среди которых преобладают все же основные.

Электронная конфигурация Mg: 1s 2 2s 2 2p 6 3s 2 по сравнению с натрием имеет одну существенную особенность: двенадцатый электрон помещается на 2s-орбитали, где уже имеется 1е — .

Ионы магния и кальция ‑ незаменимые элементы жизнедеятельности любой клетки. Их соотношение в организме должно быть строго определённым. Ионы магния участвуют в деятельности ферментов (например, карбоксилазы), кальция – в построении скелета и обмена веществ. Повышение содержания кальция улучшает усвоение пищи. Кальций возбуждает и регулирует работу сердца. Его избыток резко усиливает деятельность сердца. Магний играет отчасти роль антагониста кальция. Введение ионов Mg 2+ под кожу вызывает наркоз без периода возбуждения, паралич мышц, нервов и сердца. Попадая в рану в форме металла, он вызывает долго незаживающие гнойные процессы. Оксид магния в лёгких вызывает так называемую литейную лихорадку. Частый контакт поверхности кожи с его соединениями приводит к дерматитам. Самые широко используемые в медицине соли кальция: сульфат СаSO 4 и хлорид CaCL 2 . Первый используется для гипсовых повязок, а второй применяется для внутривенных вливаний и как внутреннее средство. Он помогает бороться с отёками, воспалениями, аллергией, снимает спазмы сердечно-сосудистой системы, улучшает свертываемость крови.

Все соединения бария, кроме BaSO 4 , ядовиты. Вызывают менегоэнцефалит с поражением мозжечка, поражение гладких сердечных мышц, паралич, а в больших дозах – дегенеративные изменения печени. В малых же дозах соединения бария стимулируют деятельность костного мозга.

При введении в желудок соединений стронция наступает его расстройство, паралич, рвота; поражения по признакам сходны с поражениями от солей бария, но соли стронция менее токсичны. Особую тревогу вызывает появление в организме радиоактивного изотопа стронция 90 Sr. Он исключительно медленно выводится из организма, а его большой период полураспада и, следовательно, длительность действия могут служить причиной лучевой болезни.

Радий опасен для организма своим излучением и огромным периодом полураспада (Т 1/2 = 1617 лет). Первоначально после открытия и получения солей радия в более или менее чистом виде его стали использовать довольно широко для рентгеноскопии, лечения опухолей и некоторых тяжёлых заболеваний. Теперь с появлением других более доступных и дешевых материалов применение радия в медицине практически прекратилось. В некоторых случаях его используют для получения радона и как добавку в минеральные удобрения.

В атоме кальция завершается заполнение 4s-орбитали. Вместе с калием он образует пару s-элементов четвертого периода. Гидроксид кальция ‑ довольно сильное основание. У кальция - наименее активного из всех щелочноземельных металлов - характер связи в соединениях ионный.

По своим характеристикам стронций занимает промежуточное положение между кальцием и барием.

Свойства бария наиболее близки к свойствам щелочных металлов.

Бериллий и магний широко используют в сплавах. Бериллиевые бронзы – упругие сплавы меди с 0,5-3% бериллия; в авиационных сплавах (плотность 1,8) содержится 85-90% магния («электрон»). Бериллий отличается от остальных металлов IIА группы – не реагирует с водородом и водой, зато растворяется в щелочах, поскольку образует амфотерный гидроксид:

Be+H 2 O+2NaOH=Na 2 +H 2 .

Магний активно реагирует с азотом:

3 Mg + N 2 = Mg 3 N 2 .

В таблице приведена растворимость гидроксидов элементов II группы.

Традиционная техническая проблемажесткость воды , связанная с наличием в ней ионов Mg 2+ и Ca 2+ . Из гидрокарбонатов и сульфатов на стенках нагревательных котлов и труб с горячей водой оседают карбонаты магния и кальция и сульфат кальция. Особенно мешают они работе лабораторных дистилляторов.

S-элементы в живом организме выполняют важную биологическую функцию. В таблице приведено их содержание.

Во внеклеточной жидкости содержится в 5 раз больше ионов натрия, чем внутри клеток. Изотонический раствор («физиологическая жидкость») содержит 0,9% хлорида натрия, его применяют для инъекций, промывания ран и глаз и т. п. Гипертонические растворы (3-10% хлорида натрия) используют как примочки при лечении гнойных ран («вытягивание» гноя). 98% ионов калия в организме находится внутри клеток и только 2% во внеклеточной жидкости. В день человеку нужно 2,5-5 г калия. В 100 г кураги содержится до 2 г калия. В 100 г жареной картошки – до 0,5 г калия. Во внутриклеточных ферментативных реакциях АТФ и АДФ участвуют в виде магниевых комплексов.

Ежедневно человеку требуется 300-400 мг магния. Он попадает в организм с хлебом (90 мг магния на 100 г хлеба), крупой (в 100 г овсяной крупы до 115 мг магния), орехами (до 230 мг магния на 100 г орехов). Кроме построения костей и зубов на основе гидроксилапатита Ca 10 (PO 4) 6 (OH) 2 , катионы кальция активно участвуют в свертывании крови, передаче нервных импульсов, сокращении мышц. В сутки взрослому человеку нужно потреблять около 1 г кальция. В 100 г твердых сыров содержится 750 мг кальция; в 100 г молока – 120 мг кальция; в 100 г капусты – до 50 мг.