Аналитическая химия и физико химические методы анализа. Физико-химические методы анализа: практическое применение. Практическое применение подобных методов


Предмет аналитической химии

Существуют различные определения понятия «аналитическая химия», например:

Аналитическая химия - это наука о принципах, методах и средствах определения химического состава и структуры веществ.

Аналитическая химия - это научная дисциплина, которая развивает и применяет методы, приборы и общие подходы для получения информации о составе и природе вещества в пространстве и времени (определение, принятое Федерацией европейских химических обществ в 1993 году).

Задачей аналитической химии является создание и совершенствование её методов, определение границ их применимости, оценка метрологических и других характеристик, разработка методик анализа конкретных объектов.

Система, которая обеспечивает конкретный анализ определённых объектов с использованием методов, рекомендуемых аналитической химией, называется аналитической службой .

Основной задачей фармацевтической аналитической службы является контроль качества лекарственных средств, выпускаемых химико-фармацевтической промышленностью и приготовленных в аптеках. Такой контроль проводится в аналитических лабораториях химико-фармацевтических заводов, контрольно-аналитических лабораториях и в аптеках.

Принцип, метод и методика анализа

Анализ - совокупность действий, целью которых является получение информации о химическом составе объекта .

Принцип анализа - явление, которое используется для получения аналитической информации .

Метод анализа - краткое изложение принципов, положенных в основу анализа вещества (без указания определяемого компонента и объекта) .

Методика анализа - подробное описание выполнения анализа данного объекта с использованием выбранного метода, которое обеспечивает регламентированные характеристики правильности и воспроизводимости .

Несколько различных методов анализа могут иметь одинаковый принцип. На одном и том же методе анализа может быть основано множество различных методик выполнения анализа.

Методика анализа может включать в себя следующие этапы:

Конкретная методика анализа не обязательно должна включать в себя все из перечисленных этапов. Набор выполняемых операций зависит от сложности состава анализируемого образца, концентрации определяемого вещества, целей выполнения анализа, допустимой погрешности результата анализа и от того, какой метод анализа предполагается использовать.

Виды анализа

В зависимости от цели различают:

В зависимости от того, какие именно компоненты следует обнаружить или определить, анализ может быть:

· изотопный (отдельные изотопы);

· элементный (элементный состав соединения);

· структурно-групповой /функциональный/ (функциональные группы);

· молекулярный (индивидуальные химические соединения, характеризующиеся определённой молекулярной массой);

· фазовый (отдельные фазы в неоднородном объекте).

В зависимости от массы или объёма анализируемой пробы различают:

· макроанализ (> 0,1 г / 10 – 10 3 мл);

· полумикроанализ (0,01 - 0,1 г / 10 -1 – 10 мл),

· микроанализ (< 0,01 г / 10 -2 – 1 мл);

· субмикроанализ (10 -4 – 10 -3 г / < 10 -2 мл);

· ультрамикроанализ (< 10 -4 г / < 10 -3 мл).

Методы аналитической химии

В зависимости от характера измеряемого свойства (природы процесса, лежащего в основе метода) или способа регистрации аналитического сигнала методы определения бывают:

Физические методы анализа, в свою очередь, бывают:

· спектроскопические (основаны на взаимодействии вещества с электромагнитным излучением);

· электрометрические (электрохимические) (основаны на использовании процессов, происходящих в электрохимической ячейке);

· термометрические (основаны на тепловом воздействии на вещество);

· радиометрические (основаны на ядерных реакция).

Физические и физико-химические методы анализа часто объединяют под общим названием «инструментальные методы анализа ».

ГЛАВА 2

2.1. Аналитические реакции

Химические методы обнаружения веществ основаны на проведении аналитических реакций.

Аналитическими называют химические реакции, результат которых несёт определённую аналитическую информацию, например, реакции, сопровождающиеся выпадением осадка, выделением газа, появлением запаха, изменением окраски, образованием характерных кристаллов .

Наиболее важными характеристиками аналитических реакций является избирательность и предел обнаружения. В зависимости от избирательности (числа веществ, вступающих в данную реакцию или взаимодействующих с данным реагентом) аналитические реакции и вызывающие их реагенты бывают:

Предел обнаружения (m min , P или С min , P) - наименьшая масса или концентрация вещества , которую с заданной доверительной вероятностью P можно отличить от сигнала контрольного опыта (более подробно см. главу 10).

2.2. Систематический и дробный анализ

Обнаружение элементов при совместном присутствии можно проводить дробным и систематическим методами анализа.

Систематическим называется метод качественного анализа, основанный на разделении смеси ионов с помощью групповых реагентов на группы и подгруппы и последующем обнаружении ионов в пределах этих подгрупп с помощью селективных реакций .

Название систематических методов определяется применяемыми групповыми реагентами. Известны систематические методы анализа:

· сероводородный ,

· кислотно-основный ,

· аммиачно-фосфатный .

Каждый систематический метод анализа имеет свою групповую аналитическую классификацию. Недостатком всех систематических методов анализа является необходимость проведения большого числа операций, длительность, громоздкость, значительные потери обнаруживаемых ионов и т.д.

Дробным называется метод качественного анализа, предполагающий обнаружение каждого иона в присутствии других с использованием специфических реакций либо проведение реакций в условиях, исключающих влияние других ионов .

Обычно обнаружение ионов дробным методом проводят по следующей схеме – вначале устраняют влияние мешающих ионов, затем обнаруживают искомый ион с помощью селективной реакции.

Устранение мешающего влияния ионов может быть проведено двумя путями

Например

· комплексообразование

· изменение рН среды

· окислительно-восстановительные реакции

· осаждение

· экстракция

2.3. Общая характеристика, классификация и способы обнаружения катионов

Согласно кислотно-основной классификации катионы в зависимости от их отношения к растворам HCl, H 2 SO 4 , NaOH (или KOH) и NH 3 разделяют на 6 групп. Каждая из групп, за исключением первой, имеет свой групповой реагент.

Первая аналитическая группа катионов

К первой аналитической группе катионов относятся катионы K + , Na + , NH 4 + , Li + . Группового реагента не имеют. Ионы NH 4 + и K + образуют малорастворимые гексанитрокобальтаты, перхлораты, хлорплатинаты, а также малорастворимые соединения с некоторыми крупными органическими анионами, например, дипик­риламином, тетрафенилборатом, гидротартратом. Водные рас­творы солей катионов I группы, за исключением солей, образованных окрашенными анионами, бесцветны.

Гидратированные ионы K + , Na + , Li + являются очень слабыми кислотами, более выражены кислотные свойства у NH 4 + (рК a = 9,24). Несклонны к реакциям комплексообразования. В окислительно-вос­становительных реакциях ионы K + , Na + , Li + не участвуют, так как имеют постоянную и устойчивую степень окисления, ионы NH 4 + об­ладают восстановительными свойствами.

Обнаружение катионов I аналитической группы проводят по следующей схеме

Обнаружению K + , Na + , Li + мешают катионы р- и d-элементов, которые удаляют, осаждая их (NH 4) 2 CO 3 . Обнаружению K + мешает NH 4 + , который удаляют прокаливанием сухого остатка или связыванием с формальдегидом:

4 NH 4 + + 6CHOH + 4ОН - ® (CH 2) 6 N 4 + 10H 2 O


Похожая информация.


Все существующие методы аналитической химии можно разделить на методы пробоотбора, разложения проб, разделение компонентов, обнаружения (идентификация) и определения.

Практически все методы основаны на зависимости между составом вещества и его свойствами. Для обнаружения компонента или его количества измеряют аналитический сигнал .

Аналитический сигнал – это среднее из измерений физической величены на заключительной стадии анализа. Аналитический сигнал функционально связан с содержанием определяемого компонента. Эта может быть сила тока, ЭДС системы, оптическая плотность, интенсивность излучения и т.д.

В случае необходимости обнаружения какого-либо компонента обычно фиксируют появление аналитического сигнала – появление осадка, окраски, линии в спектре и т.д. Появление аналитического сигнала должно быть надежно зафиксировано. При определенном количестве компонента измеряется величина аналитического сигнала: масса осадка, сила тока, интенсивность линий спектра и т.д. Затем рассчитывается содержание компонента с использованием функциональной зависимости аналитический сигнал – содержание: y=f(c), которая устанавливается расчетным или опытным путем и может быть представлена в виде формулы, таблицы или графика.

В аналитической химии различают химические, физические и физико-химические методы анализа.

В химических методах анализа определяемый элемент или ион переводят в какое – либо соединение, обладающее тем или иным характерными свойствами, на основании которых можно установить, что образовалось именно это соединение.

Химические методы анализа имеют определенную область применения. Также и скорость выполнения анализов с помощью химических методов не всегда удовлетворяет нужды производства, где очень важно получить анализы своевременно, пока еще можно регулировать технологический процесс. Поэтому наряду с химическими получают все большее распространение физические и физико-химические методы анализа.

Физические методы анализа основаны на измерении какого-либо

параметра системы, который является функцией состава, например, эмиссионных спектров поглощения, электро- или теплопроводности, потенциала электрода, погруженного в раствор, диэлектрической проницаемости, показателя преломления, ядерного магнитного резонанса и т.д.

Физические методы анализа дают возможность решать вопросы, которые нельзя разрешить методами химического анализа.

Для анализа веществ широко используются физико-химические методы анализа, основанные на химических реакциях, протекание которых сопровождается изменением физических свойств анализируемой системы, например, её цвет, интенсивность окраски, прозрачность, величины тепло- и электропроводимости и т.д.

Физико-химические методы анализа отличаются высокой чувствительностью и экспрессностью выполнения, дают возможность автоматизировать химико-аналитические определения и являются незаменимым при анализе малых количеств веществ.

Следует отметить, что между физическими и физико-химическими методами анализа не всегда можно провести строгую границу. Иногда их объединяют под общим названием «инструментальные» методы, т.к. для выполнения тех или иных измерений требуются приборы, позволяющие с большой точностью измерить значения определённых параметров, характеризующих те или иные свойства вещества.

Количественный анализ выражается последовательностью экспериментальных методов, определяющих в образце исследуемого материала содержание (концентрации) отдельных составляющих и примесей. Его задача - определить количественное соотношение химсоединений, ионов, элементов, составляющих образцы исследуемых веществ.

Задачи

Качественный и количественный анализ являются разделами аналитической химии. В частности, последний решает различные вопросы современной науки и производства. Этой методикой определяют оптимальные условия проведения химико-технологических процессов, контролируют качество сырья, степень чистоты готовой продукции, в том числе и лекарственных препаратов, устанавливают содержание компонентов в смесях, связь между свойствами веществ.

Классификация

Методы количественного анализа подразделяют на:

  • физические;
  • химические (классические);
  • физико-химические.

Химический метод

Базируется на применении различных видов реакций, количественно происходящих в растворах, газах, телах и т. д. Количественный химический анализ подразделяют на:

  • Гравиметрический (весовой). Заключается в точном (строгом) определении массы анализируемого компонента в исследуемом веществе.
  • Титриметрический (объемный). Количественный состав исследуемой пробы определяют путем строгих измерений объема реагента известной концентрации (титранта), который взаимодействует в эквивалентных количествах с определяемым веществом.
  • Газовый анализ. Базируется на измерении объема газа, который образуется или поглощается в результате химической реакции.

Химический количественный анализ веществ считается классическим. Это наиболее разработанный метод анализа, который продолжает развиваться. Он точен, прост в исполнении, не требует спецаппаратуры. Но применение его иногда сопряжено с некоторыми трудностями при исследовании сложных смесей и сравнительно небольшой чертой чувствительности.

Физический метод

Это количественный анализ, базирующийся на измерении величин физических параметров исследуемых веществ или растворов, которые являются функцией их количественного состава. Подразделяется на:

  • Рефрактометрию (измерение величин показателя преломления).
  • Поляриметрию (измерение величин оптического вращения).
  • Флуориметрию (определение интенсивности флуоресценции) и другие

Физическим методам присущи экспрессность, низкий предел определения, объективность результатов, возможность автоматизации процесса. Но они не всегда специфичны, так как на физическую величину влияет не только концентрация исследуемого вещества, но и присутствие других веществ и примесей. Их применение часто требует использования сложной аппаратуры.

Физико-химические методы

Задачи количественного анализа - измерение величин физических параметров исследуемой системы, которые появляются или изменяются в результате проведения химических реакций. Эти методы характеризуются низким пределом обнаружения и скоростью исполнения, требуют применения определенных приборов.

Гравиметрический метод

Это старейшая и наиболее разработанная технология количественного анализа. По сути, аналитическая химия началась с гравиметрии. Комплекс действий позволяет точно измерять массу определяемого компонента, отделенного от других компонентов проверяемой системы в постоянной форме химического элемента.

Гравиметрия является фармакопейным методом, который отличается высокой точностью и воспроизводимостью результатов, простотой исполнения, однако трудоемок. Включает приемы:

  • осаждения;
  • отгонки;
  • выделения;
  • электрогравиметрию;
  • термогравиметрические методы.

Метод осаждения

Количественный анализ осаждения основан на химической реакции определяемого компонента с реагентом-осадителем с образованием малорастворимого соединения, которое отделяют, затем промывают и прокаливают (высушивают). На финише выделенный компонент взвешивают.

Например, при гравиметрическом определении ионов Ва 2+ в растворах солей как осадитель используют серную кислоту. В результате реакции образуется белый кристаллический осадок BaSO 4 (осажденная форма). После прожарки этого осадка формируется так называемая гравиметрическая форма, полностью совпадающая с осажденной формой.

При определении ионов Са 2+ осадителем может быть оксалатная кислота. После аналитической обработки осадка осажденная форма (СаС 2 О 4) превращается в гравиметрическую форму (СаО). Таким образом, осажденная форма может как совпадать, так и отличаться от гравиметрической формы по химической формуле.

Весы

Аналитическая химия требует высокоточных измерений. В гравиметрическом методе анализа используют особо точные весы как основной прибор.

  • Взвешивания при требуемой точности ±0,01 г проводят на аптечных (ручных) или технохимических весах.
  • Взвешивания при требуемой точности ±0,0001 г осуществляют на аналитических весах.
  • При точности ±0,00001 г - на микротерезах.

Техника взвешивания

Осуществляя количественный анализ, определение массы вещества на технохимических или технических весах проводят следующим образом: исследуемый предмет помещают на левую чашу весов, а уравновешивающие грузики - на правую. Процесс взвешивания заканчивают при установлении стрелки весов в среднем положении.

В процессе взвешивания на аптечных весах центральное кольцо удерживают левой рукой, локтем опираясь на лабораторный стол. Затухание коромысла во время взвешивания может быть ускорено легким прикосновением дна чаши весов к поверхности стола.

Аналитические весы монтируют в отдельных отведенных лабораторных помещениях (весовых комнатах) на специальных монолитных полках-подставках. Для предотвращения влияния колебаний воздуха, пыли и влаги весы защищают специальными стеклянными футлярами. Во время работы с аналитическими весами следует придерживаться следующих требований и правил:

  • перед каждым взвешиванием проверяют состояние весов и устанавливают нулевую точку;
  • взвешиваемые вещества помещают в тару (бюкс, часовое стекло, тигель, пробирку);
  • температуру веществ, подлежащих взвешиванию, доводят до температуры весов в весовой комнате в течение 20 минут;
  • весы не следует нагружать сверх установленных предельных нагрузок.

Этапы гравиметрии по методу осаждения

Гравиметрический качественный и количественный анализ включают следующие этапы:

  • расчета масс навески анализируемой пробы и объема осадителя;
  • взвешивания и растворения навески;
  • осаждения (получение осажденной формы определяемого компонента);
  • удаления осадков из маточного раствора;
  • промывания осадка;
  • высушивания или прокаливания осадка до постоянной массы;
  • взвешивания гравиметрической формы;
  • вычисления результатов анализа.

Выбор осадителя

При выборе осадителя - основы количественного анализа - учитывают возможное содержание анализируемого компонента в пробе. Для увеличения полноты удаления осадка используют умеренный избыток осадителя. Используемый осадитель должен обладать:

  • специфичностью, селективностью относительно определяемого иона;
  • летучестью, легко удаляться при высушивании или прокаливании гравиметрической формы.

Среди неорганических осадителей наиболее распространены растворы: HCL; Н 2 SO 4 ; H 3 PO 4 ; NaOH; AgNO 3 ; BaCL 2 и другие. Среди органических осадителей предпочтение отдается растворам диацетилдиоксима, 8-гидроксихинолина, оксалатной кислоте и другим, образующим с ионами металлов внутрикомплексные устойчивые соединения, обладающие преимуществами:

  • Комплексные соединения с металлами, как правило, имеют незначительную растворимость в воде, обеспечивая полноту осаждения ионов металла.
  • Адсорбционная способность внутрикомплексных осадков (молекулярная кристаллическая решетка) ниже адсорбционной способности неорганических осадков с ионным строением, что дает возможность получить чистый осадок.
  • Возможность селективного или специфического осаждения ионов металла в присутствии других катионов.
  • Благодаря относительно большой молекулярной массе гравиметрических форм уменьшается относительная ошибка определения (в противовес использованию неорганических осадителей с небольшой молярной массой).

Процесс осаждения

Это важнейший этап характеристики количественного анализа. При получении осажденной формы необходимо минимизировать расходы за счет растворимости осадка в маточном растворе, уменьшить процессы адсорбции, окклюзии, соосаждения. Требуется получить достаточно крупные частицы осадка, не проходящие через фильтрационные поры.

Требования к осажденной форме:

  • Компонент, который определяют, должен количественно переходить в осадок и соответствовать значению Ks≥10 -8 .
  • Осадок не должен содержать посторонних примесей и быть устойчивым относительно внешней среды.
  • Осажденная форма должна как можно полнее превращаться в гравиметрическую при высушивании или прокаливании исследуемого вещества.
  • Агрегатное состояние осадка должно соответствовать условиям его фильтрации и промывки.
  • Предпочтение отдают кристаллическим осадком, содержащим крупные частицы, имеющим меньшую абсорбционную способность. Они легче фильтруются, не забивая поры фильтра.

Получение кристаллического осадка

Условия получения оптимального кристаллического осадка:

  • Осаждения проводят в разбавленном растворе исследуемого вещества разведенным раствором осадителя.
  • Добавляют раствор осадителя медленно, каплями, при осторожном перемешивании.
  • Осаждения проводят в горячем растворе исследуемого вещества горячим растворителем.
  • Иногда осаждения проводят при наличии соединений (например, небольшого количества кислоты), которые незначительно повышают растворимость осадка, но не образуют с ним растворимых комплексных соединений.
  • Осадок оставляют в исходном растворе на некоторое время, в течение которого происходит «вызревание осадка».
  • В случаях, когда осажденная форма образуется в виде аморфного осадка, его пытаются получить гуще для упрощения фильтрации.

Получение аморфного осадка

Условия получения оптимального аморфного осадка:

  • К горячему концентрированному раствору исследуемого вещества добавляют концентрированный горячий раствор осадителя, что способствует коагуляции частиц. Осадок становится гуще.
  • Добавляют осадитель быстро.
  • При необходимости в исследуемый раствор вводят коагулянт - электролит.

Фильтрация

Методы количественного анализа включают такой важный этап, как фильтрация. Фильтрование и промывание осадков проводят, используя или стеклянные фильтры, или бумажные, не содержащие золы. Бумажные фильтры различны по плотности и размерам пор. Плотные фильтры маркируются голубой лентой, менее плотные - черной и красной. Диаметр бумажных фильтров, не содержащих золы, 6-11 см. Перед фильтрацией сливают прозрачный раствор, находящийся над осадком.

Электрогравиметрия

Количественный анализ может осуществляться методом электрогравиметрии. Исследуемый препарат удаляют (чаще всего из растворов) в процессе электролиза на одном из электродов. После окончания реакции электрод промывают, высушивают и взвешивают. По увеличению массы электрода определяют массу вещества, образовавшегося на электроде. Так анализируют сплав золота и меди. После отделения золота в растворе определяют ионы меди, скапливаемые на электроде.

Термогравиметрический метод

Осуществляется измерением массы вещества во время его непрерывного нагрева в определенном интервале температур. Изменения фиксируются специальным устройством - дериватографом. Оно оборудовано термотерезами непрерывного взвешивания, электрической печью для нагрева исследуемого образца, термопарой для измерения температур, эталоном и самописцем непрерывного действия. Изменение массы образца автоматически фиксируется в виде термогравиграмы (дериватограмы) - кривой изменения массы, построенной в координатах:

  • время (или температура);
  • потеря массы.

Вывод

Результаты количественного анализа должны быть точными, правильными и воспроизводимыми. С этой целью используют соответствующие аналитические реакции или физические свойства вещества, правильно выполняют все аналитические операции и применяют надежные способы измерения результатов анализа. Во время выполнения любого количественного определения обязательно должна проводиться оценка достоверности результатов.

ХИМИЧЕСКИЙ АНАЛИЗ

Аналитическая химия. Задачи и этапы химического ана­лиза. Аналитический сигнал. Классификации методов анали­ за. Идентификация веществ. Дробный анализ. Системати­ческий анализ.

Основные задачи аналитической химии

Одной из задач при проведении природоохранных меро­приятий является познание закономерностей причинно-след­ственных связей между различными видами человеческой деятельности и изменениями, происходящими в природной среде. Анализ - это главное средство контроля за загрязнен­ностью окружающей среды. Научной основой химического ана­лиза является аналитическая химия. Аналитическая химия - наука о методах и средствах определения химического состава веществ и материалов. Метод - это достаточно универсаль­ный и теоретически обоснованный способ определения состава.

Основные требования к методам и методикам аналити­ческой химии:

1) правильность и хорошая воспроизводимость;

2) низкий предел обнаружения - это наименьшее содержа­ние, при котором по данной методике можно обнаружить присутствие определяемого компонента с заданной дове­рительной вероятностью;

3) избирательность (селективность) - характеризует ме­шающее влияние различных факторов;

4) диапазон измеряемых содержаний (концентраций) с по­мощью данного метода по данной методике;

5)экспрессность;

6) простота в анализе, возможность автоматизации, экономичность определения.

Химический анализ - это сложный многостадийный про цесс, представляющий собой совокупность готовых приемов и соответствующих служб.

Задачи анализа

1. Идентификация объекта, т.е. установление природы объекта (проверка присутствия тех или иных основных компонентов, примесей).

2. Количественное определение содержания того или иногокомпонента в анализируемом объекте.

Этапы анализа любого объекта

1. Постановка задачи и выбор метода и схемы анализа.

2. Отбор проб (грамотный отбор части пробы позволяет сделать правильный вывод о составе всей пробы). Проба - эточасть анализируемого материала, представительно отра жающая его химический состав. В отдельных случаях в качестве пробы используют весь аналитический материал. Время хранения отобранных проб должно быть минималь ным. Условия и способы хранения должны исключать не контролируемые потери легколетучих соединений и любые другие физические и химические изменения в составе анализируемого образца.

3. Подготовка проб к анализу: переведение пробы в нужное состояние (раствор, пар); разделение компонентов или от­деление мешающих; концентрирование компонентов;

4. Получение аналитического сигнала. Аналитический сиг­нал - это изменение любого физического или физико-химического свойства определяемого компонента, функци­онально связанное с его содержанием (формула, таблица, график).

5. Обработка аналитического сигнала, т.е. разделение сигнала и шумов. Шумы - побочные сигналы, возникающие в из­мерительных приборах, усилителях и других аппаратах.

6. Применение результатов анализа. В зависимости от свой­ства вещества, положенного в основу определения, методы анализа подразделяются:

На химические методы анализа, основанные на хими­ческой аналитической реакции, которая сопровожда­ется ярко выраженным эффектом. К ним относятся гравиметрический и титриметрический методы;

- физико-химические методы, основанные на измере­нии каких-либо физических параметров химической системы, зависящих от природы компонентов системы и изменяющихся в процессе химической реакции (на­пример, фотометрия основана на изменении оптиче­ской плотности раствора в результате реакции);

- физические методы анализа, не связанные с исполь­зованием химических реакций. Состав веществ уста­навливается по измерению характерных физических свойств объекта (например, плотность, вязкость).

В зависимости от измеряемой величины все методы делятся на следующие виды.

Методы измерения физических величин

Измеряемая физическая величина

Название метода

Гравиметрия

Титриметрия

Равновесный потенциал электрода

Потенциометрия

Поляризационное сопротивление электрода

Полярография

Количество электричества

Кулонометрия

Электропроводность раствора

Кондуктометрия

Поглощение фотонов

Фотометрия

Испускание фотонов

Эмиссионный спектральный анализ

Идентификация веществ основывается на методах качественного распознавания элементарных объектов (атомом, молекул, ионов и др.), из которых состоят вещества и материалы.

Очень часто анализируемую пробу вещества переводят в форму, удобную для анализа, путем растворения в подходящем растворителе (обычно это вода или водные растворы кислот) или сплавления с каким-либо химическим соединением с последующим растворением.

Химические методы качественного анализа основаны на использовании реакций идентифицируемых ионов с опреде­ленными веществами - аналитическими реагентами. Такие реакции должны сопровождаться выпадением или растворением осадка; возникновением, изменением или исчезновением окраски раствора; выделением газа с характерным запахом; образованием кристаллов определенной формы.

Реакции, протекающие в растворах, по способу выполнения классифицируются на пробирочные, микрокристаллоскопичсеские и капельные. Микрокристаллоскопические реакции проводят на предметном стекле. Наблюдают образование кристаллов характерной формы. Капельные реакции выполняют на фильтровальной бумаге.

Аналитические реакции, применяемые в качественном анализе, по области применения делятся:

1.) на групповые реакции - это реакции для осаждения целой группы ионов (применяется один реагент, который называется групповым);

2;) характерные реакции:

а) селективные (избирательные) - дают одинаковые или сходные аналитические реакции с ограниченным числом ионов (2~5 шт.);

б) специфичные (высокоселективные) - избирательны по отношению к одному компоненту.

Селективных и специфичных реакций немного, поэтому их применяют в сочетании с групповыми реакциями и со специальными приемами для устранения мешающего влиянии компонентов, присутствующих в системе наряду с определяемым веществом.

Несложные смеси ионов анализируют дробным методом, без предварительного отделения мешающих ионов с помощью характерных реакций определяют отдельные ионы. Мешающий ион - это ион, который в условиях обнаружения искомого дает сходный аналитический эффект с тем же реак­тивом либо аналитический эффект, маскирующий нужную ре­акцию. Обнаружение разных ионов в дробном анализе проводят в отдельных порциях раствора. При необходимости устранения мешающих ионов пользуются следующими способами отделе­ния и маскировки.

1. Перевод мешающих ионов в осадок. В основе лежит раз­личие в величине произведения растворимости получаю­щихся осадков. При этом ПР соединения определяемого иона с реагентом должно быть больше, чем ПР соединения мешающего иона.

2. Связывание мешающих ионов в прочное комплексное соединение. Получаемый комплекс должен обладать необ­ходимой устойчивостью, чтобы осуществить полное связы­вание мешающего иона, а искомый ион - совсем не реаги­ровать с вводимым реагентом либо его комплекс должен быть непрочным.

3. Изменение степени окисления мешающих ионов.

4. Использование экстракции. Метод основан на извлечении из водных растворов мешающих ионов органическими растворителями и разделении системы на составные части (фазы), чтобы мешающий и определяемый компоненты были в разных фазах.

Преимущества дробного анализа:

Быстрота выполнения, так как сокращается время на дли­тельные операции последовательного отделения одних ионов от других;

Дробные реакции легко воспроизводимы, т.е. их можно повторять несколько раз. Однако в случае трудности под­бора селективных (специфических) реакций обнаружения ионов, маскирующих реагентов, расчета полноты

удаления ионов и других причин (сложность смеси) прибегают к выполнению систематического анализа.

Систематический анализ - это полный (подробный) анализ исследуемого объекта, который проводится путем разделения всех компонентов в пробе на несколько групп в определенной последовательности. Деление на группы идет на основе сходства (внутри группы) и различия (между группами) аналитических свойств компонентов. В выделенной группе анализа применяется ряд последовательных реакций разделения, пока в одной фазе останутся лишь компоненты, дающие характер­ные реакции с селективными реагентами (рис. 23.1).

Разработано несколько аналитических классификаций ка тионов и анионов на аналитические группы, в основе которых лежит применение групповых реагентов (т.е. реагентов для выделения в конкретных условиях целой группы ионов). Группповые реагенты в анализе катионов служат как для обнаружения, так и для разделения, а в анализе анионов - только для обнаружения (рис. 23.2).

Анализ смесей катионов

Групповыми реагентами в качественном анализе катионов являются кислоты, сильные основания, аммиак, карбонаты, фосфаты, сульфаты щелочных металлов, окислители и восстановители. Объединение веществ в аналитические группы осно­вано на использовании сходства и различий в их химических свойствах. К наиболее важным аналитическим свойствам отно­сятся способность элемента образовывать различные типы ионов, цвет и растворимость соединений, способность вступать в те или иные реакции.

Групповые реагенты выбирают из общих реактивов, по­скольку необходимо, чтобы групповой реагент выделял относи­тельно большое число ионов. Основной способ разделения - осаждение, т.е. деление на группы, основано на различной раст­воримости осадков катионов в определенных средах. При рас­смотрении действия групповых реагентов можно выделить следующие группы (табл. 23.2).

Кроме того, остаются три катиона (Na + , К + , NH4), не обра­зующие осадков с указанными групповыми реагентами. Их так­же можно выделить в отдельную группу.

Группы катионов

Помимо указанного общего подхода, при выборе групповых реагентов исходят из значений произведений растворимости осадков, так как, варьируя условия осаждения, можно разделить вещества из группы действием одного и того же реагента.

Наибольшее распространение получила кислотно-ocновная классификация катионов. Достоинства кислотно-основного метода систематического анализа:

а) используются основные свойства элементов - их отношение к кислотам, щелочам;

б) аналитические группы катионов в большей степени со ответствуют группам периодической системы элементов Д.И. Менделеева;

в) значительно сокращается время проведения анализа посравнению с сероводородным методом. Исследование начинают с предварительных испытаний, в которых устанавливают рН раствора по универсальному индикатору и обнаруживают ионы NH 4 , Fe 3+ , Fe 2+ специфическими и селективными реакциями.

Разделение на группы. Общая схема деления на группы дана в табл. 23.3. В анализируемом растворе прежде всего отделяют катионы I и II групп. Для этого 10-15 капель раствора помещают в пробирку и добавляют по каплям смесь 2М HCl и 1М H 2 S0 4 . Оставляют осадок на 10 мин, затем его центрифугируют и промывают водой, подкисленной НС1. В осадке остается смесь хлоридов и сульфатов Ag + , Pb 2+ , Ва 2+ , Са 2+ . Возможно присутствие основных солей сурьмы. В растворе - катионы III-vi групп.

Из раствора отделяют III группу прибавлением несколь­ких капель 3%-ного Н 2 0 2 и избытка NaOH при нагревании и пе­ремешивании. Избыток пероксида водорода удаляют кипяче­нием. В осадке - гидроксиды катионов IV-V групп, в раство­ре - катионы III и VI групп и частично Са 2+ , который может неполностью осадиться в виде CaS0 4 при отделении I и II групп.

Из осадка отделяют катионы V группы. Осадок обрабаты­вают 2н Na 2 CO 3 и затем избытком NH 3 при нагревании. КатионыV группы переходят в раствор в виде аммиакатов, в осадке - карбонаты и основные соли катионов IV группы.

Достоинство систематического анализа - получение достаточно полной информации о составе объекта. Недостаток - громоздкость, длительность, трудоемкость. Полностью схемы систематического качественного анализа осуществляются редко. Обычно их используют частично, если есть сведения о происхождении, приблизительном составе образца, a так же в учебных курсах аналитической химии.

Гидроксид магния растворяется в смеси NH 3 + NH 4 C1. Таким образом, по­сле разделения катионов на группы получили четыре пробирки, содержа­щие а) осадок хлоридов и сульфатов катионов I-П групп; б) раствор смеси катионов III и VI групп; в) раствор аммиакатов катионов V группы; г) осадок карбонатов и основных солей катионов IV группы. Каждый из этих объек­тов анализируют отдельно.

Анализ смесей анионов

Общая характеристика изучаемых анионов. Aнионы образуются в основном элементами групп IV, V, VI и VII периодической системы. Один и тот же элемент может образовывать несколько анионов, отличающихся своими свойствами. Haпример, сера образует анионы S 2 -, S0 3 2 ~, S0 4 2 ~, S 2 0 3 2 ~ и др.

Все анионы является составной частью кислот и соот ветствующих солей. В зависимости от того, в состав какого вещества входит анион, свойства его существенно меняются. Например, для иона SO 4 2 " в составе концентрированной cepной кислоты свойственны реакции окисления-восстановления, а в составе солей - реакции осаждения.

Состояние анионов в растворе зависит от среды раствора. Некоторые анионы разлагаются при действии концентрированных кислот с выделением соответствующих газов: С0 2 (анион СО 2- 3), H 2 S (анион S 2 "), N0 2 (анион N0 3) и др. При действии разбавленных кислот анионы МоО 4 2- , W0 4 2 ~, SiO 3 2 " образуют не растворимые в воде кислоты (H 2 Mo0 4 , H 2 W0 4 * H 2 0, H 2 Si О 3 ). Анионы слабых кислот (С0 3 2 ~, Р0 4 ", Si0 3 2 ~, S 2 ") в водных растворах частично или полностью гидролизуются, например:

S 2 " + H 2 0 →HS" + OH _ .

Большинство элементов, образующих анионы, обладают переменной валентностью и при действии окислителей или восстановителей изменяют степень окисления, при этом меняется состав аниона. Хлорид-ион, например, можно окислить до С1 2 , СlО", СlO 3 , СlO 4 . Иодид-ионы, например, окисляются до I 2 , IO 4 ; сульфид-ион S 2 ~ - до S0 2 , SO 4 2- ; анионы N0 3 можно восстано-вить до N0 2 , NO, N 2 , NH 3 .

Анионы-восстановители (S 2 ~, I - , CI -) восстанавливают в кислой среде ионы Мп0 4 - , вызывая их обесцвечивание. Ионы-окислители (NO 3 , CrO 4 2 ", V0 3 - , Mn0 4 ~) окисляют иодид-ионы в кислой среде до свободного иона, окрашивают дифениламин в синий цвет.Эти свойства используются для качественного анализа, окислительно-восстановительные свойства хромат-, нитрат-, йодид-, ванадат-, молибдат-, вольфрамат-ионов лежат в основе их характерных реакций.

Групповые реакции анионов. Реагенты по своему действию па анионы разделяют на следующие группы:

1) реактивы, разлагающие вещества с выделением газов. К таким реактивам относятся разбавленные минеральные кислоты (НС1, H 2 S0 4);

2) реактивы, выделяющие анионы из растворов в виде мало-растворенных осадков (табл. 23.4):

а) ВаС1 2 в нейтральной среде или в присутствии Ва(ОН) 2 осаждает: SO 2- , SO, 2 ", S 2 0 3 2 ~, СО 3 2 ", РО 4 2 ", В 4 0 7 2 ~, As0 3 4 ", SiO 3 2 ";

б) AgNO 3 в 2н HNO 3 осаждает: СГ, Br - , I - , S 2- (SO 4 2 только в концентрированных растворах);

3) реактивы-восстановители (KI) (табл. 23.5);

4) реактивы-окислители (КМп0 4 , раствор I 2 в KI, НNО 3(конц) , H 2 S0 4).

Анионы при анализе в основном не мешают обнаружению друг друга, поэтому групповые реакции применяют не для раз­деления, а для предварительной проверки наличия или отсут­ствия той или иной группы анионов.

Систематические методы анализа смеси анионов, основан­ные на делении их на группы, используются редко, главным обра­зом для исследования несложных смесей. Чем сложнее смесь анионов, тем более громоздкими становятся схемы анализа.

Дробный анализ позволяет обнаружить анионы, не мешаю­щие друг другу, в отдельных порциях раствора.

В полусистематических методах имеет место разделение анионов на группы с помощью групповых реактивов и последующее дробное обнаружение анионов. Это приводит к сокра­щению числа необходимых последовательных аналитических операций и в конечном итоге упрощает схему анализа смеси анионов.

Современное состояние качественного анализа не ограни­чивается классической схемой. В анализе как неорганических, так и органических веществ часто используются инструмен­тальные методы, такие как люминесцентный, абсорбционно-спектроскопический, различные электрохимические методы, «которые варианты хроматографии и т.д. Однако в ряде слу­чаев (полевые, заводские экспресс-лаборатории и др.) класси­ческий анализ ввиду простоты, доступности, дешевизны не утратил своего значения.

Инженеры-экологи должны знать химический состав сырья, продуктов и отходов производства и окружающей среды - воздуха, воды и почвы; важно выявить вредные вещества и определить их концентрацию. Эту задачу решает аналитическая химия - наука об определении химического состава веществ.

Задачи аналитической химии решаются главным образом физико-химическими методами анализа, которые, называют также инструментальными. Они используют измерение какого-либо физического или физико-химического свойства вещества для определения его состава. Он включает также разделы, посвящённые методам разделения и очистки веществ.

Цель данного курса лекций - ознакомление с принципами инструментальных методов анализа, чтобы ориентироваться в их возможностях и на этой основе ставить конкретные задачи специалистам - химикам и понимать смысл полученных результатов анализа.

Литература

    Алесковский В.Б. и др. Физико-химические методы анализа. Л-д, "Химия", 1988 г.

    Ю.С.Ляликов. Физико-химические методы анализа. М.,изд-во "Химия", 1974 г.

    Васильев В.П. Теоретические основы физико-химических методов анализа.М., Высшая школа, 1979 г.

    А.Д.Зимон, Н.Ф.Лещенко. Коллоидная химия. М., "Агар", 2001 г.

    А.И.Мишустин, К.Ф.Белоусова. Коллоидная химия (Методическое пособие). Изд-во МИХМ, 1990 г.

Первые две книги являются учебниками для студентов-химиков и поэтому достаточно сложные для вас. Это делает данные лекции весьма полезными. Однако можно читать отдельные главы.

К сожалению, для данного курса администрация пока не выделила отдельного зачёта, поэтому материал входит в общий экзамен, вместе с курсом физической химии.

2. Классификация методов анализа

Различают качественный и количественный анализ. Первый определяет наличие тех или иных компонентов, второй - их количественное содержание. Методы анализа подразделяются на химические и физико-химические. В данной лекции рассмотрим только химические методы, которые основаны на превращении анализируемого вещества в соединения, обладающие определенными свойствами.

При качественном анализе неорганических соединений исследуемый образец переводят в жидкое состояние растворением в воде или растворе кислоты или щёлочи, что позволяет обнаруживать элементы в форме катионов и анионов. Например, ионы Cu 2+ можно определить по образованию комплексного иона 2+ ярко-синего цвета.

Качественный анализ подразделяют на дробный и систематический. Дробный анализ- обнаружение нескольких ионов в смеси с приблизительно известным составом.

Систематический анализ - это полный анализ по определенной методике последовательного обнаружения индивидуальных ионов. Выделяют отдельные группы ионов со сходными свойствами посредством групповых реагентов, затем группы ионов подразделяют на подгруппы, а те, в свою очередь, - на отдельные ионы, которые и обнаруживают при помощи т.н. аналитических реакций. Это реакции с внешним эффектом - выпадением осадка, выделением газа, изменением цвета раствора.

Свойства аналитических реакций - специфичность, избирательность и чувствительность .

Специфичность позволяет обнаружить данный ион в присутствии других ионов по характерному признаку (цвет, запах и т.п.). Таких реакций сравнительно немного (например, реакция обнаружения иона NH 4 + действием на вещество щелочи при нагревании). Количественно специфичность реакции оценивается величиной предельного отношения, равного отношению концентраций определяемого иона и мешающих ионов. Например, капельная реакция на ион Ni 2+ действием диметилглиоксима в присутствии ионов Co 2+ удается при предельном отношении Ni 2+ к Co 2+ , равном 1:5000.

Избирательность (или селективность) реакции определяется тем, что сходный внешний эффект дают лишь несколько ионов. Bзбирательность тем больше, чем меньше число ионов, дающих сходный эффект.

Чувствительность реакции характеризуется пределом обнаружения или пределом разбавления. Например, предел обнаружения в микрокристаллоскопической реакции на ион Ca 2+ действием серной кислоты равен 0,04 мкг Ca 2+ в капле раствора.

Более сложная задача - анализ органических соединений. Углерод и водород определяют после сжигания пробы, регистрируя выделившийся углекислый газ и воду. Существуют ряд приемов для обнаружения других элементов.

Классификация методов анализа по количеству.

Компоненты подразделяют на основные (1 - 100% по массе), неосновные (0,01 - 1% по массе) и примесные или следовые (менее 0,01% по массе).

    В зависимости от массы и объема анализируемого образца различают макроанализ (0,5 - 1 г или 20 - 50 мл),

    полумикроанализ (0,1 - 0,01 г или 1,0 - 0,1 мл),

    микроанализ (10 -3 - 10 -6 г или 10 -1 - 10 -4 мл),

    ультрамикроанализ (10 -6 - 10 -9 г, или 10 -4 - 10 -6 мл),

    субмикроанализ (10 -9 - 10 -12 г или 10 -7 - 10 -10 мл).

Классификация по природе определяемых частиц:

1.изотопный (физический) - определяются изотопы

2. элементный или атомный - определяется набор химических элементов

3. молекулярный - определяется набор молекул, из которых состоит образец

4. структурно-групповой (промежуточный между атомным и молекулярным) - определяются функциональных группы в молекулах органических соединений.

5. фазовый - анализируются компоненты неоднородных объектов (например минералов).

Другие виды классификации анализа:

Валовой и локальный.

Деструктивный и не деструктивный.

Контактный и дистанционный.

Дискретный и непрерывный.

Важные характеристики аналитической процедуры - экспрессность метода (быстрота проведения анализа), стоимость анализа, возможность его автоматизации.