Сверхтвердые режущие материалы. Сверхтвердые инструментальные материалы (СТМ). Смотреть что такое "Сверхтвердые материалы" в других словарях

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение среднего профессионального образования Ленинградской области

Тихвинский промышленно-технологический техникум

имени Лебедева

Специальность: «Технология машиностроения»

Реферат

Твердые и сверхтвердые сплавы

Петров Сергей Игоревич

Тихвин 2010 г.

1. Типы твёрдых и сверхтвердых сплавов

2. Свойства твёрдых сплавов

3. Спечённые твёрдые сплавы

4. Литые твёрдые сплавы

5. Применение и разработки

Список литературы

Типы твёрдых и сверхтвердых сплавов

Твёрдые сплавы - твёрдые и износостойкие металлические материалы, способные сохранять эти свойства при 900-1150°С. Твердые сплавы известны человеку уже около 100 лет. В основном изготовляются на основе карбидов вольфрама, титана, тантала, хрома при различном содержании кобальта или никеля. Различают спечённые и литые твёрдые сплавы. Основой всех твёрдых сплавов являются прочные карбиды металлов, не разлагающиеся и не растворяющиеся при высоких температурах. Особенно важны для твёрдых сплавов карбиды вольфрама, титана, хрома, частично марганца. Карбиды металлов слишком хрупки и часто тугоплавки, поэтому для образования твёрдого сплава зёрна карбидов связываются подходящим металлом; в качестве связки используются железо, никель, кобальт.

Спечённые твёрдые сплавы

Композиционные материалы, состоящие из металлоподобного соединения, цементированного металлом или сплавом. Их основой чаще всего являются карбиды вольфрама или титана, сложные карбиды вольфрама и титана (часто также и тантала), карбонитрид титана, реже - другие карбиды, бориды и т. п. В качестве матрицы для удержания зерен твердого материала в изделии применяют так называемую «связку» - металл или сплав. Обычно в качестве «связки» используют кобальт (кобальт является нейтральным элементом по отношению к углероду, он не образует карбиды и не разрушает карбиды других элементов), реже - никель, его сплав с молибденом (никель-молибденовая связка).

Главной особенностью спеченных твердых сплавов является то, что изделия из них получают методами порошковой металлургии и они поддаются только обработке шлифованием или физико-химическим методам обработки (лазер, ультразвук, травление в кислотах и др), а литые твердые сплавы предназначены для наплавки на оснащаемый инструмент и проходят не только механическую, но часто и термическую обработку (закалка, отжиг, старение и др). Порошковые твердые сплавы закрепляются на оснащаемом инструменте методами пайки или механическим закреплением.

Литые твёрдые сплавы

Литые твёрдые сплавы получают методом плавки и литья.

Инструменты, оснащенные твердым сплавом, хорошо сопротивляются истиранию сходящей стружкой и материалом заготовки и не теряют своих режущих свойств при температуре нагрева до 750-1100 °С.

Установлено что твердосплавным инструментом, имеющим в своем составе килограмм вольфрама, можно обработать в 5 раз больше материала, чем инструментом из быстрорежущей стали с тем же содержанием вольфрама.

Недостатком твердых сплавов, по сравнению с быстрорежущей сталью, является их повышенная хрупкость, которая возрастает с уменьшением содержания кобальта в сплаве. Скорости резания инструментами, оснащенными твердыми сплавами, в 3-4 раза превосходят скорости резания инструментами из быстрорежущей стали. Твердосплавные инструменты пригодны для обработки закаленных сталей и таких неметаллических материалов, как стекло, фарфор и т. п.

Сверхтвёрдые материалы - группа веществ, обладающих высочайшей твердостью, к которой относят материалы, твёрдость и износоустойчивость которых превышает твёрдость и износоустойчивость твёрдых сплавов на основе карбидов вольфрама и титана с кобальтовой связкой карбидотитановых сплавов на никель-молибденовой связке. Широко применяемые сверхтвердые материалы: электрокорунд, оксид циркония, карбид кремния, карбид бора, боразон, диборид рения, алмаз. Сверхтвёрдые материалы часто применяются в качестве материалов для абразивной обработки.

В последние годы пристальное внимание современной промышленности направлено к изысканию новых типов сверхтвёрдых материалов и ассимиляции таких материалов, как нитрид углерода, сплав бор-углерод-кремний, нитрид кремния, сплав карбид титана-карбид скандия, сплавы боридов и карбидов подгруппы титана с карбидами и боридами лантаноидов.

Свойства твёрдых сплавов

Металлокерамические сплавы в зависимости от содержания в них карбидов вольфрама, титана, тантала и кобальта приобретают различные физико-механические свойства. По этой причине твердые сплавы представлены в трех группах: вольфрамовой, титановольфрамовой и титанотанталовольфрамовой. В обозначении марок сплавов используются буквы: В - карбид вольфрама, К - кобальт, первая буква Т - карбид титана, вторая буква Т - карбид тантала. Цифры после букв указывают примерное содержание компонентов в процентах. Остальное в сплаве (до 100%) - карбид вольфрама. Буквы в конце марки означают: В - крупнозернистую структуру, М - мелкозернистую, ОМ - особомелкозернистую. Промышленностью выпускаются три группы твердых сплавов: вольфрамовые - ВК, титановольфрамовые - ТК и титанотанталовольфрамовые - ТТК.

Твердые сплавы состава WC-Co (WC-Ni) характеризуются сочетанием высоких значений прочности, модуля упругости, остаточной деформации с высокой тепло- и электропроводностью (стойкость этих сплавов к окислению и коррозии незначительна); твердые сплавы состава TiC-WC-Co в сравнении с первой группой сплавов обладают меньшей прочностью и модулем упругости, однако превосходят их по стойкости к окислению, твердости и жаропрочности; твердые сплавы состава TiC-TaC-WC-Co характеризуются высокой прочностью, вязкостью и твердостью; безвольфрамовые твердые сплавы обладают наибольшим коэффициентом термического расширения, наименьшей плотностью и теплопроводностью.

Характерными признаками, определяющими режущие свойства твердых сплавов, являются высокая твердость, износостойкость и красностойкость до 1000°C. Вместе с тем эти сплавы обладают меньшей вязкостью и теплопроводностью по сравнению с быстрорежущей сталью, что следует учитывать при их эксплуатации.

При выборе твердых сплавов необходимо руководствоваться следующими рекомендациями.

Вольфрамовые сплавы (ВК), по сравнению с титановольфрамовыми (ТК), обладают при резании меньшей температурой свариваемости со сталью, поэтому их применяют преимущественно для обработки чугуна, цветных металлов и неметаллических материалов.

Сплавы группы ТК предназначены для обработки сталей.

Титанотанталовольфрамовые сплавы, обладая повышенной точностью и вязкостью, применяются для обработки стальных поковок, отливок при неблагоприятных условиях работы.

Для тонкого и чистового точения с малым сечением стружки следует выбирать сплавы с меньшим количеством кобальта и мелкозернистой структурой.

Черновая и чистовая обработки при непрерывном резании выполняются основном сплавами со средним содержанием кобальта.

При тяжелых условиях резания и черновой обработке с ударной нагрузкой следует применять сплавы с большим содержанием кобальта и крупнозернистой структурой.

В последнее время появилась новая безвольфрамовая группа твердых сплавов, в которой карбид вольфрама заменен карбидом титана, а в качестве связки используются никель и молибден (ТН-20, ТН-30). Эти сплавы имеют несколько сниженную прочность против вольфрамовых, но обеспечивают получение положительных результатов при получистовой обработке вязких металлов, меди, никеля и др.

Различают два вида порошкообразных продуктов для наплавки: вольфрамовые и не содержащие вольфрама. Вольфрамовый продукт представляет собой смесь порошкообразного технического вольфрама или высокопроцентного ферровольфрама с науглероживающими материалами. Советский сплав этого типа носит название вокар. Изготовляются подобные сплавы следующим образом: порошкообразный технический вольфрам или высокопроцентный ферровольфрам смешивается с такими материалами, как сажа, молотый кокс и т. п., полученная смесь замешивается в густую пасту на смоле или сахарной патоке. Из смеси прессуют брикеты и слегка их обжигают до удаления летучих веществ. После обжига брикеты размалывают и просеивают. Готовый продукт имеет вид чёрных хрупких крупинок величиной 1-3 мм. Характерным признаком вольфрамовых продуктов является их высокий насыпной вес.

В Советском Союзе изобретен порошкообразный сплав, не содержащий вольфрама и потому весьма дешёвый. Сплав носит название сталинит и имеет весьма широкое распространение в нашей промышленности. Многолетняя практика показала, что, несмотря на отсутствие вольфрама, сталинит обладает высокими механическими показателями, во многих случаях удовлетворяющими техническим требованиям. Кроме того, благодаря низкой температуре плавления 1300-1350° сталинит обладает существенным преимуществом перед вольфрамовым продуктом, который расплавляется лишь при температуре около 2700°. Низкая температура плавления сталинита облегчает наплавку, повышает производительность наплавки и является существенным техническим преимуществом сталинита.

Основой сталинита является смесь порошкообразных дешёвых ферросплавов, феррохрома и ферромарганца. Процесс изготовления сталинита такой же, как и вольфрамовых продуктов. Сталинит содержит от 16 до 20% хрома и от 13 до 17% марганца. Твёрдость наплавки по Роквеллу для вокара 80-82, для сталинита 76-78.

Наплавка сталинита производится угольной дугой по способу Бенардоса. Газовая горелка мало пригодна для наплавки, так как газовое пламя сдувает порошок с Места наплавки. Деталь, подлежащая наплавке, подогревается до начала красного каления, после чего на поверхность детали насыпается сталинит равномерным слоем толщиной 2-3 мм. Для получения правильных краёв и граней наплавки применяются специальные шаблоны и ограничители из красной меди, графита или угля. На насыпанном слое зажигается угольная дуга постоянного тока нормальной полярности при силе тока 150-200 а. Наплавку ведут непрерывно без обрывов дуги и по возможности без повторного расплавления наплавленного слоя.

Значительным резервом повышения производительности обработки резанием является применение инструмента, оснащенного пластинами из СТМ на основе поликристаллических алмазов, кубического и гексагонального нитрида бора.

СТМ принято называть материалы, имеющие твердость по Виккерсу при 20°С свыше 35 гПа. Субмикромелкая зернистость СТМ (некоторых типов) позволяет обеспечить при заточке инструмента радиус скругления кромок 0,3-3 мкм, а благодаря исключительно высоким «горячей твердости» (измеряется на образцах, нагретых до соответствующей температуры в вакууме) и износостойкости инструмент из СТМ может быть использован на высоких и сверхвысоких скоростях резания. Например, инструмент из СТМ при резании на скоростях 900-1200 м/мин позволяет получить параметры шероховатости обработанной поверхности Ra<0,8-0,1 мкм. Это значительно меньшая шероховатость, чем шероховатость, полученная при шлифовании, и соизмерима с шероховатостью после притирки, суперфиниширования или алмазного выглаживания.

В настоящее время выпускают большое число марок СТМ на основе плотных модификаций нитрида бора и алмаза (табл.2.5).

Таблица 2.5

Характеристики физико-механических свойств сверхтвердых материалов на основе нитрида бора и алмаза (20°С)

СТМ r, г/см 3 d сж, гПа d и, гПа HV, гПа Е , гПа К 1С, мПа/м 2
Композит 01* (эльбор-РМ) 3,4 2,7 - 4,2
Композит 02* (бельбор) 6,5 - - - - -
Композит 05* 4,3 2,2 0,47 18,8 6,7
Композит 09* (ПТНБ) - 3,4-4,9 1,0 - - -
Композит 10* (гексанит) 3,4 2,6 1,0-1,2 - 3,8
Боразон* 3,48 - - - -
Амборит* - - 0,57 40,5 -
АСБ** 3,5-3,9 0,21-0,4 0,5-1,0 50-114 - -
АСПК** 3,5-4,0 - 0,5-1,0 92-150 - -
СВБН** 3,34-3,46 8-10 - 70-100 - -

Окончание табл. 2.5

Карбонит** 3,2-3,4 4,42-5,88 - 39-44 - -
Компакс** - - - - -
Мегадаймонд** 3,1-3,48 - - - - -

* СTM на основе нитрида бора

**СТМ на основе алмаза

Свойства кубического нитрида бора (КНБ) обусловлены чисто кова-лентным характером связи атомов с высокой локализацией валентных электронов у атомов. Для КНБ характерна высокая химическая устойчивость, твердость, термостабильность при температуре 1450°С. Это делает возможным применение сверхвысоких скоростей резания (до 1200 м/мин) для инструмента из КНБ. Однако сравнительно низкая прочность (s и »0,47-0,7 гПа) и повышенная хрупкость КНБ позволяют использовать инструмент только для чистовой обработки заготовок из хрупких, твердых материалов при ограниченном сечении срезаемого материала и повышенной жесткости технологической системы. Применение инструмента из КНБ для обработки высокопрочных чугунов, закаленных сталей (HRCэ > 40) и некоторых сплавов позволяет в 10-20 раз превысить скорость резания этих материалов твердосплавным инструментом.

Лезвийный инструмент, оснащенный природными монокристаллами и синтетическими поликристаллами алмазов, а также кубическим нитридом бора, обеспечивает высококачественную обработку деталей из цветных металлов и сплавов, закаленных сталей и чугуна, неметаллических материалов, твердого сплава и минералокерамики в условиях серийного, массового и автоматизированного производства. Этот инструмент обладает высокой стойкостью, позволяет получать изделия высокой точности без переналадки в течение длительного времени, что определяет эффективность его применения на автоматических линиях и станках с ЧПУ. В ряде случаев применение подобного инструмента позволяет заменять операции шлифования лезвийной обработкой.

Применяемые для изготовления режущих инструментов природные алмазы (А) относятся к группе ограненных, т.е. алмазов, которым придается требуемая геометрическая форма и размеры. Алмаз и графит по химическому составу представляют собой чистый углерод и являются лишь его разными модификациями, отличающимися расположением атомов в структурной решетке. Графит имеет гексагональную (шестигранную) структурную решетку с расстоянием между слоями 3,35 А. Атомы углерода расположены в слое по вершинам правильных шестиугольников. Расстояние между атомами в слое равно 1,42 А; центры шестиугольников остаются пустыми. Взаимная ориентация слоев такова, что три вершины шестиугольника одного слоя расположены над центрами шестиугольников следующего слоя. В результате такого строения графита связи между атомами углерода в слое очень прочные, а между слоями, в виду большого расстояния между ними, очень слабые, что приводит к легкому расслоению графита в этом направлении.

Алмаз имеет кубическую кристаллическую решетку, содержащую 18 атомов углерода, из которых 8 расположены в вершинах куба, 6 - в центрах граней куба и 4 - в центрах 4-х из 8 кубов, образованных делением элементарной кубической ячейки тремя взаимно перпендикулярными плоскостями. Постоянная кристаллической решетки алмаза равна 3,57 А, а кратчайшее расстояние между атомами составляет 1,54 А. Каждый атом углерода в решетке алмаза связан общими электронами с четырьмя эквивалентными атомами. Атомы углерода в алмазе обладают чрезвычайно прочными ковалентными связями, которые и обуславливают ее исключительно высокую твердость и другие особенности.

Алмаз анизотропен по твердости, что обусловлено неодинаковым расстоянием между атомами в различных направлениях и неодинаковым количеством атомов, содержащихся в различных плоскостях. Свойство анизотропности алмаза по твердости учитывают при изготовлении однокристального алмазного инструмента.

Условно различают «твердые» и «мягкие» направления в кристаллах алмаза. По мягким направлениям алмаз обрабатывается легче, но больше изнашивается, чем по твердым. При изготовлении инструментов алмаз необходимо обрабатывать в «мягком» направлении, а в процессе работы ориентировать кристалл так, чтобы износ происходил в «твердом» направлении. Направления в кристаллах определяют по их внешней форме и на специальных установках с помощью рентгеновских лучей или звуковых колебаний. Лабораторными испытаниями установлено, что точность ориентации главной режущей кромки инструмента, относительно кристаллографических осей оказывает более существенное влияние на стойкость алмазного инструмента, чем другие параметры процесса резания, включая и элементы режима резания. Производительность шлифования монокристалла алмаза, в «твердом» и «мягком» направлениях может отличаться почти в 100 раз.

Алмаз обладает самой высокой твердостью из всех известных в природе минералов; по шкале Моса алмаз занимает наивысшее, десятое место. Микротвердость алмаза по Виккерсу (измеряется алмазной пирамидкой с углом между противоположными гранями 136°) равна примерно 100 гПа. Наряду с высокой твердостью алмаз облает высокой износостойкостью и абразивной способностью.

Алмаз обладает исключительно высокой теплопроводностью. Коэффициент линейного расширения алмаза во много раз меньше коэффициента линейного расширения твердых сплавов. Поэтому инструменты с кристаллами алмаза обладают малыми температурными деформациями. Модуль упругости алмаза превышает модуль упругости всех известных в природе твердых веществ.

Одним из важных свойств алмаза является низкий коэффициент трения. Недостатком алмаза как инструментального материала является его сравнительно низкая теплостойкость. На воздухе алмаз сгорает при температуре 850-1000°С.

Ограниченные запасы природных алмазов, а также их высокая стоимость вызвали необходимость разработки технологий искусственных алмазов. Условия получения искусственных алмазов заключаются в воздействии на алмазообразующий материал, содержащий углерод (графит, сажа, древесный уголь), давлением 60 тыс. атмосфер при температуре 2000-3000°С, что обеспечивает подвижность атомов углерода и возможность перестройки структуры графита в структуру алмаза. Синтез осуществляется в высокопрочных сосудах - автоклавах в присутствии химических катализаторов (железо, никель, хром и др.). При получении алмазов без катализаторов требуется давление 215 тыс. атмосфер и температура свыше 3770°С.

Для обработки закаленных сталей и высокопрочных чугунов эффективен кубический нитрид бора (КНБ).

Существует три варианта техпроцессов получения СТМ:

Синтез из гексагонального нитрида, бора;

Синтез из вюртцитоподобного нитрида бора;

Спекание из порошков кубического нитрида бора с легирующими добавками.

По первому варианту технологического процесса изготовляются Композит 01(Эльбор-Р)* и Композит 02 (Бельбор). Синтез Композита 01 происходит с катализатором, а Композита 02 - без катализатора. Конечный продукт в обоих случаях - кубический нитрид бора.

По второму варианту техпроцесса получают Композит 10 (Гексанит-Р) и Композит 09 (ПТНБ). Композит 10 получают путем синтеза и спекания. Исходный материал - вюрцитоподобный нитрид бора, конечный - смесь вюрцитоподобного и кубического нитрида бора. Композит 09 является результатом синтеза из смеси вюрцитоподобного и кубического нитрида бора, конечный продукт - кубический нитрид бора.

По третьему варианту технологического процесса изготовляется Композит 05 (спекание из порошков КНБ и Аl 2 О 3) и его модификация - композит 05 И.

Поликристаллы всех этих марок отличаются размерами и физико-механическими свойствами.

Композиты 01 и 02 имеют максимальную микротвердость (»75 гПа), но небольшую прочность (s и »0,4-0,5 гПа); диаметр и высота заготовок в этом случае около 4 мм, масса 0,8 карат. Наличие вюрцита в исходном и конечном материалах повышает прочность, но снижает твердость получаемого поликристалла

Композит 10 имеет микротвердость 40-50 гПа, но прочность его выше, чем у Композитов 01 и 02 (s и »0,7-1 гПа). Диаметр поликристаллов Композита 10 равен 4-6 мм, высота 4-5 мм, масса »1,5 карата.

Кубический нитрид бора превосходит по твердости все материалы, кроме алмаза; меньшая твердость объясняется в основном тем, что параметры решетки кубического нитрида бора несколько больше, чем у решетки алмаза. Теплостойкость КНБ выше теплостойкости алмаза; КНБ не теряет своих режущих свойств до температуры »1200°С. Именно эти уникальные свойства, наряду с химической инертностью к железосодержащим сплавам и высокой износостойкостью, предопределили возможность применения КНБ при обработке закаленных и высокопрочных сталей, а также чугунов с высокими скоростями резания.

Одним из направлений совершенствования режущих свойств инструментов, позволяющим повысить производительность труда при механической обработке, является повышение твердости и теплостойкости инструментальных материалов. Наиболее перспективными в этом отношении являются алмаз и синтетические сверхтвердые материалы на основе нитрида бора.

Алмазы и алмазные инструменты широко используются при обработке деталей из различных материалов. Для алмазов характерны исключительно высокая твердость и износостойкость. По абсолютной твердости алмаз в 4 - 5 раз тверже твердых сплавов и в десятки и сотни раз превышает износостойкость других инструментальных материалов при обработке цветных сплавов и пластмасс. Кроме того, вследствие высокой теплопроводности алмазы лучше отводят теплоту из зоны резания, что способствует гарантированному получению деталей с бесприжоговой поверхностью. Однако алмазы весьма хрупки, что сильно сужает область их применения.

Для изготовления режущих инструментов основное применение получили искусственные алмазы , которые по своим свойствам близки к естественным. При больших давлениях и температурах в искусственных алмазах удается получить такое же расположение атомов углерода, как и в естественных. Масса одного искусственного алмаза обычно составляет 1/8-1/10 карата (1 карат - 0,2 г). Вследствие малости размеров искусственных кристаллов они непригодны для изготовления таких инструментов, как сверла, резцы и другие, а поэтому применяются при изготовлении порошков для алмазных шлифовальных кругов и притирочных паст.

Лезвийные алмазные инструменты выпускаются на основе поликристаллических материалов типа «карбонадо» или «баллас». Эти инструменты имеют длительные размерные периоды стойкости и обеспечивают высокое качество обработанной поверхности. Применяются они при обработке титановых, высококремнистых алюминиевых сплавов, стеклопластиков и пластмасс, твердых сплавов и других материалов.

Алмаз как инструментальный материал имеет существенный недостаток - при повышенной температуре он вступает в химическую реакцию с железом и теряет работоспособность.

Для того чтобы обрабатывать стали, чугуны и другие материалы на основе железа, были созданы сверхтвердые материалы , химически инертные к нему. Такие материалы получены по технологии, близкой к технологии получения алмазов, но в качестве исходного вещества используется не графит, а нитрид бора.

Поликристаллы плотных модификаций нитрида бора превосходят по теплостойкости все материалы, применяемые для лезвийного инструмента: алмаз в 1,9 раза, быстрорежущую сталь в 2,3 раза, твердый сплав в 1,7 раза, минералокерамику в 1,2 раза.

Эти материалы изотропны (одинаковая прочность в различных направлениях), обладают микротвердостью меньшей, но близкой к твердости алмаза, повышенной теплостойкостью, высокой теплопроводностью и химической инертностью по отношению к углероду и железу.

Характеристики отдельных из рассматриваемых материалов, которые в настоящее время получили название «композит», приведены в таблице.

Сравнительные характеристики СТМ на основе нитрида бора

Марка Первоначальное название Твердость HV, ГПа Теплостойкость, o С
Композит 01 Эльбор-Р 60...80 1100...1300
Композит 02 Белбор 60...90 900...1000
Композит 03 Исмит 60 1000
Композит 05 Композит 70 1000
Композит 09 ПКНБ 60...90 1500
Композит 10 Гексанит-Р 50...60 750...850

Эффективность применения лезвийных инструментов из различных марок композитов связана с совершенствованием конструкции инструментов и технологии их изготовления и с определением рациональной области их использования:

    композиты 01(эльбор-Р) и 02 (белбор) используют для тонкого и чистового точения и фрезерования без ударов деталей из закаленных сталей твердостью 55...70 НRС, чугунов и твердых сплавов ВК15, ВК20 и ВК25 с подачами до 0,20 мм/об и глубиной резания до 0,8
    композит 05 применяют для чистового и получистового точения без ударов деталей из закаленных сталей твердостью 40...58 HRC, чугунов твердостью до 300 НВ с подачами до 0,25 мм/об и глубиной до 2,5 мм
    композит 10 (гексанит-Р) используют для тонкого, чистового и получистового точения и фрезерования с ударами деталей из закаленных сталей твердостью не выше 58 HRC, чугунов любой твердости, сплавов ВК15, ВК20, ВК25 с подачей до 0,15 мм/об и глубиной резания до 0,6 мм

При этом период стойкости инструментов возрастает в десятки раз по сравнению с другими инструментальными материалами.

Твердые сплавы и режущую керамику получают с помощью методов порошковой металлургии. Порошковая металлургия – область техники, охватывающая совокупность методов изготовления металлических порошков из металлоподобных соединений, полуфабрикатов и изделий из них, а также из их смесей с неметаллическими порошками без расплавления основного компонента. Исходные материалы для твердых сплавов и металлокерамики – порошки – получают химическими или механическими способами. Формообразование заготовок (изделий) осуществляют в холодном состоянии либо при нагревании. Холодное формообразование происходит при осевом прессовании на механических и гидравлических прессах или при давлении жидкости на эластичную оболочку, в которую помещают порошки (гидростатический метод). Горячим прессованием в штампах под молотом (динамическое прессование) или газостатическим методом в специальных контейнерах за счет давления (15-400 тыс. Па) горячих газов получают изделия из плохо спекающихся материалов – тугоплавких соединений, которые применяются для изготовления твердых сплавов и металлокерамики. В состав таких спеченных тугоплавких соединений (псевдосплавов) включаются неметаллические компоненты – графит, глинозем, карбиды, придающие им особые свойства.

В инструментальном производстве получили широкое распространение твердые спеченные сплавы и режущая металлокерамика (металлы + неметаллические компоненты) По содержанию основных компонентов порошков в смеси твердые спеченные сплавы подразделяются на три группы вольфрамовые, титановольфрамовые и титанотанталоволь-фрамовые, по области применения – на сплавы для обработки материалов резанием, оснащения горного инструмента, для наплавки быстро изнашивающихся деталей машин, приборов и приспособлений.

Физико-механические свойства твердых сплавов: предел прочности при изгибе – 1176–2156 МПа (120–220 КГС/мм 2), плотность – 9,5-15,3 г/см 3 , твердость – 79–92 HRA.

Твердые сплавы для бесстружковой обработки металлов, наплавки быстро изнашивающихся деталей машин, приборов и приспособлений: ВК3, ВК3–М, ВК4, ВК10–КС, ВК20–КС, ВК20К. В обозначении марок твердых сплавов буква «К» означает – кобальт, «В» – карбид вольфрама, «Т» – карбиды титана и тантала; цифры соответствуют процентному содержанию порошков компонентов, входящих в сплав. Например, сплав ВК3 содержит 3 % кобальта, остальное – карбид вольфрама.

Дефицит вольфрама обусловил необходимость разработки безвольфрамовых твердых сплавов, не уступающих по основным свойствам спеченным сплавам на основе карбидов вольфрама.

Безвольфрамовые и карбидохромовые твердые металлокера-мические сплавы применяются в машиностроении для изготовления волок, вытяжных матриц, для распыления различных, в том числе абразивных, материалов, деталей трения, работающих при температурах до 900 °C, режущего инструмента для обработки цветных металлов.

2. Сверхтвердые материалы

Для изготовления различного режущего инструмента в настоящее время в различных отраслях промышленности, в том числе в машиностроительной, применяются три вида сверхтвердых материалов (СТМ): природные алмазы, поликристаллические синтетические алмазы и композиты на основе нитрита бора (эльбора).

Природные и синтетические алмазы обладают такими уникальными свойствами, как самая высокая твердость (HV 10 000 кгс/мм 2), у них весьма малые: коэффициент линейного расширения и коэффициент трения; высокие: теплопроводность, адгезионная стойкость и износостойкость. Недостатками алмазов являются невысокая прочность на изгиб, хрупкость и растворимость в железе при относительно низких температурах (+750 °C), что препятствует использованию их для обработки железоуглеродистых сталей и сплавов на высоких скоростях резания, а также при прерывистом резании и вибрациях. Природные алмазы используются в виде кристаллов, закрепляемых в металлическом корпусе резца Синтетические алмазы марок АСБ (балас) и АСПК (карбонадо) сходны по своей структуре с природными алмазами Они имеют поликристаллическое строение и обладают более высокими прочностными характеристиками.

Природные и синтетические алмазы применяются широко при обработке медных, алюминиевых и магниевых сплавов, благородных металлов (золота, серебра), титана и его сплавов, неметаллических материалов (пластмасс, текстолита, стеклотекстолита), а также твердых сплавов и керамики.

Синтетические алмазы по сравнению с природными имеют ряд преимуществ, обусловленных их более высокими прочностными и динамическими характеристиками. Их можно использовать не только для точения, но также и для фрезерования.

Композит представляет собой сверхтвердый материал на основе кубического нитрида бора, применяемый для изготовления лезвийного режущего инструмента. По твердости композит приближается к алмазу, значительно превосходит его по теплостойкости, более инертен к черным металлам Это определяет главную область его применения – обработка закаленных сталей и чугунов. Промышленность выпускает следующие основные марки СТМ: композит 01 (эльбор – Р), композит 02 (белбор), композит 05 и 05И и композит 09 (ПТНБ – НК).

Композиты 01 и 02 обладают высокой твердостью (HV 750 кгс/мм 2), но небольшой прочностью на изгиб (40–50 кг/мм 2). Основная область их применения – тонкое и чистовое безударное точение деталей из закаленных сталей твердостью HRC 55–70, чугунов любой твердости и твердых сплавов марок ВК 15, ВК 20 и ВК 25 (HP^ 88–90), с подачей до 0,15 мм/об и глубиной резания 0,05-0,5 мм. Композиты 01 и 02 могут быть использованы также для фрезерования закаленных сталей и чугунов, несмотря на наличие ударных нагрузок, что объясняется более благоприятной динамикой фрезерной обработки. Композит 05 по твердости занимает среднее положение между композитом 01 и композитом 10, а его прочность примерно такая же, как и композита 01. Композиты 09 и 10 имеют примерно одинаковую прочность на изгиб (70-100 кгс/мм 2).

3. Материалы абразивных инструментов

Абразивные материалы делятся на естественные и искусственные. К первым относятся кварц, наждак, корунд и алмаз, а ко вторым – электрокорунд, карбид кремния, карбид бора, кубический нитрид бора и синтетические алмазы.

Кварц (П) – это материал, состоящий в основном из кристаллического кремнезема (98,5…99,5 % SiO2). Применяется для изготовления шлифовальных шкурок на бумажной и тканевой основе в виде шлифовальных зерен в свободном состоянии.

Наждак (Н) – мелкокристаллическая окись алюминия (25…60 % A l2 O 3) темно-серого и черного цветов с примесью окиси железа и силикатов. Предназначен для изготовления наждачного полотна и брусков.

Корунд (Е и ЕСБ) – минерал, состоящий в основном из кристаллической окиси алюминия (80.95 % A l2 O 3) и незначительного количества других минералов, в том числе химически связанных с A l2 O 3 . Зерна корунда тверды и при разрушении образуют раковистый излом с острыми гранями. Естественный корунд имеет ограниченное применение и используется главным образом в виде порошков и паст для доводочных операций (полирования).

Алмаз (А) – минерал, представляющий собой чистый углерод. Он имеет наиболее высокую твердость из всех известных в природе веществ. Из кристаллов и их осколков изготовляют однолезвийные режущие инструменты и алмазно-металлические карандаши для правки шлифовальных кругов.

Электрокорунды бывают четырех видов:

1) нормальный электрокорунд 1А, выплавляемый из бокситов, его разновидности – 12А, 13А, 14А, 15А, 16А;

2) белый, выплавляемый из глинозема, его разновидности – 22А, 23А, 24А, 25А;

3) легированные электрокорунды, выплавляемые из глинозема с различными добавками: хромистый 3А с разновидностями 32А, 33А, 34А и титанистый 3А с разновидностью 37А;

4) монокорунд А4, выплавляемый из боксита с сернистым железом и восстановителем с последующим выделением монокристаллов корунда.

Электрокорунды состоят из окиси алюминия Al 2 O 3 и некоторого количества примесей.

Карбид кремния химическое соединение кремния с углеродом (SiC). Обладает большей твердостью и хрупкостью. чем электрокорунды. В зависимости от процентного содержания карбида кремния этот материал бывает зеленого (6С) и черного (5С) цветов. Первый содержит не менее 97 % кремния. Второй вид (черный) выпускают следующие разновидности: 52С, 53С, 54С и 55С. Из зерен зеленого карбида кремния изготавливают различные абразивные инструменты (например, шлифовальные круги) для обработки твердых сплавов и неметаллических материалов, а из зерен черного карбида кремния – инструменты (шлифовальные круги) для обработки изделий из чугуна, цветных металлов и для заточки режущих инструментов (резцов, сверл и т. д.).

Кубический нитрид бора (КНБ) – соединение бора, кремния и углерода. КНБ обладает твердостью и абразивной способностью, близкими к алмазу.

Синтетический алмаз (АС) имеет то же строение, что и природный. Физико-механические свойства синтетических алмазов хороших сортов аналогичны свойствам природных алмазов. Синтетические алмазы выпускают пяти марок АСО, АСР, АСК, АСВ, АСС.

Анализ особенностей и режущие свойства ПСТМ. Сверхтвердыми при­нято считать инструментальные материалы, имеющие твердость по Виккерсу при комнатной температуре свыше 35 ГПа.

Природный алмаз — самый твердый материал на Земле, который издавна применяется в качестве режущего инструмента. Принципиальное отличие мо — нокристаллического природного алмаза от всех других инструментальных ма­териалов, имеющих поликристаллическое строение, с точки зрения инстру­ментальщика состоит в возможности получения практически идеально острой и прямолинейной режущей кромки. Поэтому в конце XX века с развитием элек­троники, прецизионного машиностроения и приборостроения применение резцов из природных алмазов для микроточения зеркально чистых поверхно­стей оптических деталей, дисков памяти, барабанов копировальной техники и т. п. возрастает. Однако из-за дороговизны и хрупкости природные алмазы не применяются в общем машиностроении, где требования к обработке деталей не столь высоки.

Потребность в сверхтвердых материалах привела к тому, что в 1953 — 1957 годах в США и в 1959 году в СССР методом каталитического синтеза при вы­соких статических давлениях из гексагональных фаз графита (С) и нитрида бора (BN) были получены мелкие частицы кубических фаз синтетического алмаза и нитрида бора. Крупные поликристаллы, предназначенные для лез­вийных инструментов, были получены в промышленных условиях в начале 70-х годов.

Диаграмма состояния углерода и нитрида бора представлена на рис. 11.9.

В основе технологии изготовления поликристаллов диаметром 4-40 мм лежат два различных процесса: фазовый переход вещества из одного со­стояния в другое (собственно синтез) или спекание мелких частиц заранее синтезированного порошка ПСТМ. В нашей стране первым способом получают поликристаллический кубический нитрид бора (ПКНБ) марок композит 01 (эль — бор РМ) и композит 02 (бельбор), а также поликристаллический алмаз (ПКА) марок АСПК (карбонадо) и АСЕ (баллас). За рубежом изготовителями ПСТМ по технологии спекания являются три крупнейшие фирмы «General Electric» (США), «De Beers» (ЮАР) и «Sumitomo Electric» (Япония). Режущие инс­трументы из поликристаллов этих трех поставщиков производят сотни фирм во всем мире.

ПСТМ — принципиально новые, как по технологии изготовления, так и по условиям эксплуатации инструментальные материалы. Ими можно обрабаты­
вать изделия при скоростях резания на порядок выше скоростей, допускае­мых при использовании твердосплавного инструмента. Кроме того, инструмент из ПКА имеет в десятки раз более высокую скорость, чем инструмент из твер­дых сплавов.

* Коэффициент стойкости к термоудару R = ,

** Эмпирическая характеристика износостойкости И/4 Е ‘ Н:

Поликристаллические сверхтвердые материалы (ПСТМ) систематизируются по таким определяющим признакам, как состав основы поликристаллов, спосо­бы получения, характеристика исходного материала. Вся гамма поликристал­лов разделяется на пять основных групп: ПСТМ на основе алмаза (СПА),

ПСТМ на основе плотных модификаций нитрида бора (СПНБ), композиционные сверхтвердые материалы (КСТМ), двухслойные сверхтвердые композиционные материалы (ДСКМ) .

ПСТМ на основе алмазов. Поликристаллы на основе синтетического алмаза можно разделить на четыре разновидности :

1. Поликристаллы, получаемые спеканием мелких алмазных порошков в чистом виде или после специальной предварительной обработки для актива­ции процесса спекания. Изготовленные по такой схеме поликристаллы пред­ставляют собой, как правило, однофазный продукт. Примером могут служить мегадаймонд, карбонит.

2. Поликристаллы алмаза типа СВ. Они представляют собой гетерогенный композит, состоящий из частиц алмаза, скрепленных связкой — второй фазой, которая располагается в виде тонких прослоек между кристаллами алмаза.

3. Синтетические карбонады типа АСПК. Их получают путем воздействия на углеродосодержащее вещество со значительным количеством катализатора одновременно высокого давления и высокой температуры. Плотность таких поликристаллов изменяется в широких пределах, а содержание примесей со­ставляет от 2 до 20% по массе. Поэтому поликристаллы типа АСПК обладают меньшей твердостью и прочностью, чем поликристаллы первых двух разно­видностей.

4. Поликристаллы алмаза, получаемые пропиткой алмазного порошка ме­таллическим связующим при высоких давлениях и температурах. В качестве связки используются никель, кобальт, железо, хром. Алмазные поликристаллы, получаемые по указанному способу, имеют высокие механические свойства.

Физико-механические свойства ПСТМ на основе алмазов представлены в табл. 11.20.

Таблица 11.20

Физико-механические свойства ПСТМ на основе алмазов

Твердость, ГПа

Природный алмаз

Мегадаймонд

Карбонит

Синдит 025

Сумидиа ДА-150

Сумидиа ДА-200

Микротвердость поликристаллических алмазов в среднем такая же, как природных монокристаллов, но диапазон изменения ее у синтетических алма­зов шире. Отношение максимального значения к минимальному для различных типов поликристаллов находится в пределах 1,2 -2,28.

Микротвердость на периферии в 1,25 раза больше, чем в центре образца на участках, прилегающих к катализатору.

Плотность синтетических балласа и карбонадо выше, чем плотность при­родных монокристаллов алмаза, что объясняется наличием определенного количества металлических включений. С увеличением концентрации метал­лической фазы практически пропорционально возрастает и плотность.

Теплопроводность поликристаллов алмаза превышает теплопроводность меди и серебра, а в ряде случаев достигает значений теплопроводности моно­кристаллов алмаза. Теплопроводность поликристаллов зависит от температу­ры. Причем для одних материалов с увеличением температуры до 450°С теп­лопроводность возрастает, достигая максимума, а затем снижается. Для дру­гих, типа АСБ и СКМ, — монотонно снижается до 900°С.

ПСТМ на основе кубического нитрида бора. Существует несколько разновидностей ПСТМ на основе нитрида бора.

1. Поликристаллы, синтезируемые из гексагонального нитрида бора (ГНБ) в присутствии растворителя ВМгВМсф (типичным представителем является ком­позит 01);

2. Поликристаллы, получаемые в результате прямого перехода гексаго­нальной модификации в кубическую BNrBN (композит 02);

3. Поликристаллы, получаемые в результате превращения вюрцитопо — добной модификации в кубическую BNg ВМдф. Поскольку полнота перехода регулируется параметрами спекания, то к этой группе относятся материалы с заметно отличающимися свойствами (композит 10, композит 09);

4. Поликристаллы, получаемые спеканием порошков кубического нитрида бора (КНБ) с активирующими добавками (композит 05-ИТ, киборит и др.).

Основные физико-механические характеристики различных марок ПСТМ на основе плотных модификаций нитрида бора приведены в табл. 11.21.

Таблица 11.21

Основные физико-механические характеристики ПСТМ на основе плотных модификаций нитрида бора

Окончание табл. 11.21

Сумиборон

Сумиборон

ПСТМ на основе плотных модификаций нитрида бора, незначительно усту­пая алмазу по твердости, отличаются высокой термостойкостью, стойкостью к циклическому воздействию высоких температур и, что особенно важно, более слабым химическим взаимодействием с железом, являющимся основным ком­понентом большинства материалов, подвергаемых в настоящее время обра­ботке резанием.

Поликристаллы типа композит 01 имеют мелкозернистую структуру, доми­нирующей фазой которой являются мелкие зерна КНБ, сросшиеся и взаимно проросшие с образованием прочного агрегата. Примеси равномерно распреде­лены по объему образца. Наряду с основной кубической модификацией в них возможно частичное содержание непрореагировавшего гексагонального нитри­да бора.

Размеры зерен и включений сопутствующих фаз примерно равны 30 мкм, пористость равномерная, составляет 10%.

Композиционные сверхтвердые материалы (КСТМ). Однородные по объему КСТМ получают спеканием смеси порошков синтетического алмаза и кубического или вюрцитного нитрида бора. Сюда относят материалы типа ПКНБ — АС, СВАБ (СНГ), компакт (Япония). Эти материалы следует рас­сматривать как перспективные.

Из материалов этого класса наибольшей микротвердостью обладают мате­риалы СВ-1 и СВ-40, а наименьшей — СВ-14, СВАБ. Невосстановленная мик­ротвердость изменяется от 47,0 до 66,0 ГПа, а модуль упругости — от 640 до 810 ГПа.

К классу композиционных относят также алмазосодержащие материалы на основе твердых сплавов. Из материалов этой группы, хорошо зарекомендо­вавших себя в эксплуатации, следует отметить «Славутич» (из природных ал­мазов) и твесалы (из синтетических алмазов).

Двухслойные композиционные поликристаллические материалы (ДСКМ). Принципиальной особенностью ДСКМ является то, что спекание по­рошков сверхтвердых материалов производится при высоких температурах и давлениях на подложке из твердых сплавов на основе карбидов вольфрама, титана, тантала, в результате чего образуется слой ПСТМ толщиной 0,5-1 мм, прочно связанный с материалом подложки. Алмазоносный слой может со­держать компоненты подложки.

Двухслойные материалы имеют некоторые преимущества по сравнению с однородными по объему СТМ. Упрощается технология крепления режущего инструмента в корпусе державки путем пайки к твердосплавной подложке. Наличие подложки, прочно соединенной с рабочим слоем из СТМ, придает материалам повышенную ударную прочность, а использование слоя СТМ ма­лой толщины (0,5-2 мм) делает их более экономичными, поскольку при затачи­вании и перетачивании инструмента значительно уменьшаются безвозврат­ные потери дорогостоящих сверхтвердых материалов.

К наиболее известным отечественным двухслойным сверхтвердым компо­зиционным материалам из кубического нитрида бора относятся композит 05- ИТ-2С, композит 10Д, ВПК , на основе алмаза — ДАП, диамет, АМК-25, АМК-27, БПА, АТП. За рубежом двухслойные поликристаллические сверх­твердые материалы на основе алмаза выпускает фирма «De Beers» (ЮАР) с торговой маркой синдит РКД010 и РКД 025 . Синдит РКД025 рекоменду­ется главным образом для грубой обработки, а более мелкозернистый синдит марки РКД010 — для окончательной обработки.

Области применения инструмента из ПСТМ. Основная область эффек­тивного применения лезвийного режущего инструмента из ПСТМ — автоматизи­рованное производство на базе станков с ЧПУ, многоцелевых станков, авто­матических линий, специальных скоростных станков.

В табл. 11.22 приведены скорости резания, рекомендуемые для обработки различных материалов инструментом из ПСТМ.

Выбор конкретной скорости резания определяется величиной снимаемого припуска, возможностями оборудования, подачей, наличием ударных нагрузок в процессе резания и многими другими факторами.

Разработана и выпускается широкая номенклатура инструментов из ПСТМ . Это токарные проходные, подрезные, расточные, канавочные, резьбо­вые резцы, в том числе ступенчатой конструкции для снятия повышенных при­пусков с деталей типа прокатных валков, торцовые хвостовые и насадные фрезы, в том числе регулируемые и переналаживаемые, которые могут осна­щаться пластинами из различных инструментальных материалов с опти­мальной для каждого геометрией, гамма расточных напайных и сборных резцов, зенковки, расточные головки и т. д. Для обработки древесностружечных плит на автоматических линиях созданы пилы, оснащенные ПСТМ. Инструмен­ты могут оснащаться как напайными режущими элементами (цилиндрические и прямоугольные вставки, твердосплавные многогранные пластины с напа­янными в одной из вершин ПСТМ), так и сменными круглыми и многогранными пластинами цельной или двухслойной конструкции.

Таблица 11.22

Скорости резания инструментом из ПСТМ

Обрабатываемый материал

Скорость резания, м/мин при

фрезеровании

Конструкционные и инструментальные стали, термически не обработанные (HRC < 30)

Закаленные стали (HRC 35-55) Закаленные стали (HRC 55-70)

Серые и высокопрочные чугуны (НВ 150-300)

Отбеленные и закаленные чугуны (НВ 400-650)

Алюминий и алюминиевые сплавы

Алюминиевокремниевые сплавы (Si < 20%)

Медь и медные сплавы

Композиционные неметаллические мате­риалы и пластмассы

Древесностружечные материалы

Спеченные WC-Co твердые сплавы

Отметим, что для точения с ударом и фрезерования закаленных быстроре­жущих сталей и сталей с высоким содержанием хрома (типа Х12) инструмент из ПСТМ не рекомендуется.

Расчеты показали, что необходимым условием эффективности вне­дрения инструмента из ПСТМ на станках с ЧПУ и обрабатывающих центрах взамен твердосплавных резцов и фрез является увеличение интенсивности съема припуска (объем металла в единицу времени) в 1,5-2,5 раза. Однако практика внедрения высокоскоростного резания указывает на возможность повышения производительности обработки в 3-6 и более раз. Так, при соз­дании автоматизированного завода «Красный пролетарий» для чистовой обработки чугунных корпусных деталей с шероховатостью поверхности Ra 1,25 мкм на многоцелевых станках типа ИР 500 предложено использовать кас­сетные торцовые фрезы d = 125 мм новой конструкции с осевым и ради­альным регулированием положения зачистных радиусных режущих кромок (с точностью не хуже 0,005 мм) квадратных пластин из ПКНБ. Режим резания п = 3000 об/мин; v = 1177 м/мин; SM = 2000 мм/мин; t = 0,3-0,4 мм. При исполь­зовании высокоскоростных станков с п = 6000 об/мин скорость резания воз­растает до 2350 м/мин, подача до 4000 мм/мин, а производительность процес­са резания станет в 10 раз выше по сравнению с существующим уровнем.

Тенденции развития процессов механической обработки резанием позво­ляют утверждать, что в ближайшие годы высокоскоростное резание с широким применением новых инструментальных материалов станет вполне заурядным явлением на предприятиях, оснащенных передовым автоматизированным обо­рудованием.