Совмещенные и комбинированные технологии в литейном производстве. Технология литейного производства. Общие понятия. Обоснование величины усадки и припусков на механическую обработку, уклонов, галтелей


К атегория:

Литейное производство

Технологий изготовления литейных форм

Изготовляемые в настоящее время отливки характеризуются большим разнообразием, что вызывает необходимость применения различных литейных форм и материалов.

1. Классификация литейных форм

Литейные формы классифицируются в зависимости от материала, из которого они изготовлены, и состояния при заливке.

Разовые формы служат для формообразования только одной отливки, после чего они разрушаются. Формы изготовляются из песчано-глинистых, песчано-смоляных и других смесей.

Разовые формы могут быть сырыми (формовка по сырому), сухими (формовка по сухому), подсушиваемыми, химически отверж-дающимися и собираемыми из сухих или отвержденных стержней.

Сырые формы благодаря их дешевизне, простоте и быстроте изготовления, отсутствию процесса сушки имеют наибольшее применение. Они используются для отливок простой и средней сложности из чугуна, стали и сплавов цветных металлов массой до 1500 кг.

Сухие формы предназначены для изготовления средних и крупных отливок с большим объемом механической обработки. Хорошо просушенная прочная форма, покрытая противопригарной краской, обеспечивает получение высококачественных отливок. Однако длительный цикл сушки (6-36 ч и более), значительный расход топлива, повышенная трудоемкость выбивки отливок из форм делают их неэкономичными. Они заменяются поверхностно подсушиваемыми и химически отверждаемыми формами.

Подсушиваемые формы изготовляют из формовочных смесей, в состав которых вводят связующие СП, СБ, КТ. Эти формы применяют для ответственных отливок из чугуна и стали массой от 1000 до 8000 кг. Длительность сушки таких форм в 10 раз меньше, чем обычных сухих форм.

Химически отверждаемые формы предназначены для изготовления отливок из стали, чугуна и сплавов цветных металлов массой 100 т и более. Существуют две разновидности таких форм: одни отверждаются при продувке или обдувке их углекислым газом, а вторые -самоотверждающиеся - при кратковременной выдержке в атмосфере цеха.

В последнее десятилетие широкое распространение получил процесс химического упрочнения формы, основанный на применении жидких самоотверждающихся формовочных смесей (ЖСС ), содержащих в качестве связующего жидкое стекло и ускоритель его твердения (катализатор) - шлак феррохромового производства.

Многократно используемые (полупостоянные) формы служат для изготовления средних и крупных отливок простой конфигурации массой до 15 т. Эти формы выполняют из высокоогнеупорной смеси, состоящей в основном из шамота, формовочной глины и кварцевого песка. После соответствующей тепловой обработки стойкость форм достигает 25-40 съемов.

К многократно используемым формам относятся также металлические формы-кокили для отливок из различных сплавов простой и средней сложности, мелких и средних по массе и размерам (в серийном и массовом производстве).

Рис. 1. Приспособление для шаблонной формовки.

2. Формовочный инструмент и приспособления

При изготовлении форм и стержней применяют различные инструменты, опоки и приспособления.

Инструмент. Наиболее полный набор инструмента используется при формовке вручную. Технические условия на инструмент регламентированы ГОСТ 11775-74 - 11801-74.

Для засеивания модели облицовочной смесью предназначены прямоугольные сита с металлической сеткой с ячейками 2-6 мм. Прямоугольными совковыми лопатами наполняют смесью опоки, а лопатами с заостренным концом выкапывают ямы при формовке в почве.

Смесь в опоках уплотняют различными трамбовками:
— при работе на верстаках- короткой трамбовкой (длиной 300 мм). Рукоятка такой трамбовки выполнена из алюминиевого сплава, а клиновидный и плоский башмаки - из Ст. 40 либо из маслобензо-стойкой резины марки А повышенной твердости;
— при уплотнении смеси в средних и крупных опоках наиболее производительной является пневматическая трамбовка. Башмаки ее выполняют из чугуна марки СЧ18-36 или, что предпочтитель-нее, из маслобензостойкой резины марки А повышенной твердости.

Трамбовка приводится в движение сжатым воздухом давлением 5-6 кгс/см2.

Гладилки служат для заглаживания форм. В недоступных для гладилок местах для этих целей применяют ланцеты. Отделку вогнутых поверхностей и углублений производят двухконечными ложечками. Выглаживание неглубоких цилиндрических поверхностей, углов галтелей и других криволинейных поверхностей осуществляют фасонными гладилками/ Оставшиеся частицы смеси из глубоких полостей удаляют крючками.

Песок с модели и поверхностей форм сметают волосяной щеткой-косматкой, которая предназначена также для окраски и замывки крупных форм. Лучшее качество окраски получается при пользовании пульверизатором.

Вентилирование форм производят с помощью душников - игл разных диаметров.

Рис. 10.2. Типы опок. делей в форме осущест

Крупные модели расталкивают металлическим молотком, при этом в модель должны быть врезаны специальные стальные пластинки, чтобы предохранить ее от порчи. Из полуформ модели вынимают с помощью остроконечных и винтовых подъемов.

При формовке по шаблону с вертикальной осью вращения применяют приспособление, изображенное на рис. 10.1. Оно состоит из подпятника-башмака, шпинделя, стопорного кольца и рукава, на котором закрепляют шаблон.

Опоки должны обладать высокой прочностью, жесткостью и минимальной массой. Они изготовляются из чугуна марок не ниже СЧ15-32, низкоуглеродистой стали 20Л - ЗОЛ -1, алюминиевых и магниевых сплавов.

Опоки бывают цельнолитыми и сварными. По конфигурации различают прямоугольные, фасонные и круглые опоки.

В зависимости от массы они делятся на ручные, комбинированные и крановые. Ручные опоки без смеси имеют массу до 30 кг, а со смесью - не более 60 кг; комбинированные без смеси - от 31 до 60 кг, а со смесью - более 60 кг; крановые как без смеси, так и со смесью - свыше 60 кг.

Для точной сборки полуформ применяют штыри, изготовляемые из стали марок 40-45 с закалкой и последующим шлифованием. Различают съемные и постоянные штыри. Последние укрепляют в ушках нижней опоки, а в крупных опоках - в полках продольных стенок. Съемные штыри имеют наибольшее применение при машинной формовке.

Для взаимозаменяемости опок центрирующие отверстия в их ушках сверлят по кондуктору. В эти отверстия запрессовывают стальные каленые втулки, что дает возможность заменить их при износе и тем самым обеспечить точность спаривания опок.

При выборе размеров опок следует исходить из наименьших допустимых толщин формовочной смеси на различных участках формы.

3. Изготовление форм вручную

При формовке вручную литейные формы изготовляют по деревянным цельным и разъемным моделям, модельным плитам, скелетным моделям и шаблонам.

4. Формовка в почве

При формовке в почве наиболее ответственной операцией является подготовка нижней части формы - постели. Различают два вида постели: мягкую и твердую.

Мягкая постель. При изготовлении единичных мелких отливок для каждой из них подготавливают постель в почве. При производстве серии однотипных отливок в полу литейного цеха вырывают яму глубиной на 100-125 мм больше высоты модели и габаритами, превышающими габариты модели на 200-250 мм на сторону. На дне ямы оставляют четыре кучки смеси; на две из них укладывают деревянную рейку, а на другие две - рейку.

На эти рейки кладут линейку и уровнем-ватерпасом проверяют горизонтальность их положения. Затем рейки окучивают смесью, уплотняют ее и вновь проверяют горизонтальность их положения. После этого пространство между рейками засыпают отработанной формовочной смесью, выравнивают ее, а излишек сгребают линейкой. На рейки укладывают бруски высотой 10-12 мм, а на слой отработанной смеси наносят слой просеянной облицовочной смеси.

Сняв бруски, уплотняют ее следующим образом: первый формовщик прижимает линейку к рейке, а второй, приподнимая и опуская другой конец линейки, уплотняет смесь на участке в 300-400 мм. После этого второй формовщик прижимает линейку к рейке, а первый производит уплотнение смеси.

Окончательное выравнивание поверхности и удаление борозд достигается при движении линейки вдоль реек. Выровненную поверхность засеивают тонким слоем облицовочной смеси. На полученную постель лицевой стороной укладывают модель и ударами молотка или трамбовки осаживают ее через промежуточную прокладку.

Твердую постель применяют при изготовлении форм для средних и крупных отливок. В полу цеха выкапывают яму глубиной на 300-400 мм больше высоты модели. Дно ямы плотно утрамбовывают, насыпают на него слой просеянной гари или битого кирпича толщиной 150-200 мм, слегка утрамбовывают его и выравнивают мелкой гарью.

Рис. 3. Схема изготовления мягкой постели.

Рис. 4. Схема изготовления твердой постели: 1 - слой гари; 2- вентиляционные каналы; 3- облицовочный слой смеси; 4 - вентиляционные трубы.

Поверхность слоя выравнивают линейкой и затем душником диаметром 9 мм накалывают вентиляционные каналы до гаревой постели.

Приготовленную таким образом постель засеивают слоем (в 40-50 мм) облицовочной смеси. После уплотнения в нем также накалывают вентиляционные каналы душником диаметром 3-4 мм.

5. Формовка в парных опоках

Наибольшая точность размеров отливок достигается при формовке в опоках. Широкое распространение получила формовка в парных опоках. Формовку сложных по конфигурации отливок осуществляют в трех, четырех и более опоках. Пример изготовления отливки тройника в парных опоках приведен на рис. 5.

Процесс формовки начинают с изготовления нижней полуформы. На подмодельный щиток укладывают нижнюю половину модели и два питателя, а на модель наносят слой облицовочной смеси и обжимают ее руками. В опоку засыпают наполнительную смесь и уплотняют ее. Счистив излишнюю смесь, душником накалывают вентиляционные каналы.

Полученную полуформу скрепляют с подмодельным щитком и кантуют на 180°, устанавливают на разрыхленную площадку формовочного плаца, слегка притирают, после чего открепляют и снимают щиток. Затем проглаживают лад, посыпают его сухим кварцевым песком и сдувают песок с модели. Наложив верхнюю половину модели и шлакоуловитель, устанавливают модели стояка и выпоров.

Рис. 5. Формовка в парных опоках: 1 - нижняя полуформа; 2 - верхняя полуформа; 3 - стержень.

После этого в такой же последовательности изготовляют верхнюю полуформу.

Уплотнение ее должно быть равномерным, без местных слабин и переуплотнений. Степень уплотнения смеси проверяют твердомером. Она зависит от массы и высоты отливки.

Для повышения прочности верхней половины формы ее укрепляют стальными крючками или деревянными колышками - «солдатиками», предварительно смоченными жидкой глиной.

Вынув модели стояка и выпоров, можно раскрыть форму. При формовке мелких моделей после уплотнения смеси половины модели удерживаются в полуформе и не требуют дополнительного крепления. При формовке средних и крупных тяжелых моделей трение между формовочной смесью и моделью недостаточно для удержания ее в верхней полуформе и необходимо дополнительное укрепление ее. Закрепив модель подъемом к верхней опоке, раскрывают форму, удаляют половины моделей и отделывают верхнюю и нижнюю полуформы, затем устанавливают стержень и собирают форму.

6. Формовка по модельным плитам

При этом способе формовки нижнюю и верхнюю полуформы изготовляют раздельно по двум модельным плитам.

Формовку по плитам целесообразно осуществлять в мелкосерийном производстве. На многих ленинградских предприятиях - в объединениях имени Карла Маркса, имени Я. М. Свердлова, «Невский завод» имени В. И. Ленина и др. - она успешно применяется при мелкосерийном производстве сравнительно крупногабаритных отливок (длиной более 3 м и массой до 3 т).

Раздельная формовка по плитам обеспечивает:
— повышение точности отливок;
— увеличение производительности труда на 15-20% за счет сокращения отделочных операций;
— возможность изготовления моделей из отдельных частей с последующей сборкой их на модельной плите;
— повышение съема отливок с формовочной площади в 1,5 раза за счет установки форм в 2-3 этажа со сдвижкой.

При мелкосерийном производстве применяют плиты из прочного деревянного щита, а при серийном - чугунные строганые. Модельные плиты-могут использоваться многократно.

Комплект модельных плит для изготовления отливки корпуса текстильной машины средних размеров (920X420X400 мм) показан на рис. 6.

Формовочные работы осуществляются бригадой из двух формовщиков. Для уменьшения утомляемости рабочих модельные плиты устанавливают на низкие козлы.

Рис. 6. Комплект модельных плит для формовки корпуса: а - плита для нижней полуформы; б - плита для верхней полуформы; 1 - плита; 2 - центрирующие втулки; 3- модель.

Работа ведется в следующей последовательности:
— очистка модели и плиты и нанесение разделительного состава;
— установка на плиты опок низа и верха;
— нанесение на модели облицовочной смеси, установка крючков (в верхней полуформе) и обжатие смеси;
— заполнение опок наполнительной смесью, уплотнение ее, удаление излишков и накол вентиляционных каналов;
— скрепление модельных плит с опоками и их кантовка; установка нижней полуформы на подготовленный плац, открепление модельной плиты, съем ее и отделка (при надобности)
— полуформы;
— установка стержней;
— открепление и съем верхней плиты, отделка (при надобности) полуформы;
— сборка формы.

На собранную полуформу укладывают чугунную плиту (иногда деревянную), на которую устанавливают вторую форму со сдвижкой для установки литниковой чаши.

7. Химически отверждающиеся и крупные оболочковые формы

При изготовлении форм по С02-процессу в формовочную смесь в качестве связующего вводят жидкое стекло. Облицовочный слой жидкостекольной смеси наносят на модель слоем в 20-40 мм, а остальной объем опоки заполняют наполнительной смесью. Все операции изготовления формы выполняют в той же последовательности, как и при формовке с применением песчано-глинистых смесей. После удаления модели и отделки формы ее продувают углекислым газом, при этом она быстро отверждается. Затем форму собирают.

Химически отверждающиеся смеси используются и при изготовлении крупных оболочковых форм, которые применяют при производстве средних и крупных отливок. Форма для стальной отливки подушки прокатного стана массой 10 т показана на рис. 7.

Оболочки изготовляют по тщательно обработанной разъемной деревянной модели, натертой графитом.

Процесс состоит из следующих операций:
— на строганый подмодельный щиток укладывают нижнюю половину модели;
— на него же устанавливают разборный деревянный жакет, в стенках которого высверлены отверстия диаметром 9-10 мм. Расстояние между стенками жакета и модели должно составлять примерно 120-150 мм;
— в зазор между моделью и жакетом устанавливают сварной каркас для упрочнения оболочки;
— слоями высотой 80-100 мм засыпают жидкостекольную смесь, уплотняют ее, между отдельными слоями смеси закладывают стальные прутки диаметром 8 мм для образования продувочных каналов, которые не должны доходить до модели на 20-25 мм; – с горизонтальной поверхности счищают излишки смеси, и накалывают продувочные каналы;
— удаляют стальные прутки и через продувочные каналы продувают полученную оболочку углекислым газом;
— отвержденнуго оболочку вместе с моделью и жакетом кантуют на 180°;
— извлекают модель, раскрывают деревянный жакет и удаляют его.

В такой же последовательности изготовляют верхнюю оболочку.

Сборку полуформ производят в рамке, состоящей из двух опок без ребер. Нижнюю опоку укладывают на выровненную площадку и засеивают наполнительной смесью, которую затем уплотняют. На полученную постель устанавливают нижнюю оболочку и зазоры между ней и опокой засыпают сухой смесью. В знаки оболочки устанавливают оболочковый стержень, накладывают верхнюю оболочку и вторую опоку и засыпают ее сухой смесью слоем в 150 мм.

Рис. 7. Комбинированная форма с оболочковыми вставками: а - нижняя оболочка; б - верхняя оболочка; в - оболочковый стержень; г - собранная форма; д - отливка.

Остальную часть опоки заполняют металлическими шарами диаметром 40 мм. Перед заливкой форму дополнительно нагружают грузами.

Применение оболочковых форм, отвержденных до извлечения из них моделей, дает возможность получать оболочки с размерами рабочих поверхностей, соответствующих размерам модели. Кроме того, модели таких форм выполняют разборными, что позволяет ликвидировать на них формовочные уклоны, требующие дополнительного расхода металла.

8. Формовка по шаблону

Формовка по шаблону осуществляется при производстве единичных средних и крупных отливок, имеющих наружную форму тел вращения простой конфигурации (чаши, маховики, патрубки, трубы с фланцами в т. п.),

Различают следующие виды шаблонной формовки: с вертикальным шпинделем, с горизонтальным шпинделем и по протяжка блонам Наибольшее распространение получила формовка вертикальным шпинделем. Рассмотрим ее на примере формообразования отливки чаши размалывающих бегунов.

Дня шаблонной формовки чаши (рис. 8, а) требуются: станок с вертикальной осью, шаблонная мерка (рис. 8, б), шаблоны для заточки болвана с телом (рис. 8, в) и болвана чаши (рис. 8, г), модели ребер (рис. 8, д) и ступицы с центровым отверстием (рис. 8, е). Формовка производится в почве (с твердой постелью) под верхней опокой.

Рис. 8. Приспособления для шаблонной формовки чаши бегунов.

Процесс состоит из ряда этапов. На первом затачивают болван с телом, который будет служить моделью для изготовления верхней полуформы; на втором осуществляют операции по изготовлению верхней полуформы; на третьем затачивают нижнюю полуформу; на четвертом отделывают и собирают форму; на пятом нагружают форму, заливают и выбивают отливки.

9. Формовка по скелетной модели

При единичном производстве крупных отливок с целью снижения затрат на изготовление моделей применяют скелетные модели, толщина ребер которых принимается равной толщине стенок отливки.

Скелетная модель для изготовления отливки крупной ванны показана на рис. 9, а, а схема формовки - на рис. 9, б. Модель заформовывают в опоке или в почве. Внутреннюю полость заглаживают на уровне брусков и полученную поверхность обкла дывают бумагой. Затем изготовляют верхнюю полуформу с болваном. После разъема верхнюю полуформу отделывают, а в нижней снимают разделительную бумагу, уплотненную между ребрами смесь слегка разрыхляют и шаблоном-сгребалкой снимают слой смеси на толщину ребер. После этого модель извлекают, и изготовление формы заканчивают обычным способом.

Рис. 9. Схема формовки по скелетной модели.

10. Формовка в глине по кирпичу

Формовку в глине по кирпичу осуществляют при производстве таких крупных отливок, как изложницы, ковши, котлы, трубы больших диаметров и т. а Формовку ведут по модели, каркасной модели или по шаблону.

Последовательность изготовления формы и стержня для отливки крупного патрубка приведена на рис. 10. В твердой постели устанавливают подпятник, шпиндель и рукав, на котором укрепляют шаблон. Правильность установки шпинделя проверяют ватерпасом. На чугунный поддон наносят слой глины и выкладывают первый ряд кладки из красного кирпича. На него наносят слой глины толщиной 15-20 мм и выкладывают второй ряд с перекрытием швов в первом ряду.

Для повышения газопроницаемости между рядами кирпичей прокладывают мелкую гарь, гранулированный ваграночный шлак, пучки соломы и душником выполняют вентиляционные каналы в подсохшей глине. Для увеличения прочности кладки через каждые 5-6 рядов укладывают чугунные плиты, соединяемые с нижним поддоном и между собой стяжками.

Правильность кладки проверяют шаблоном. Между рабочей кромкой шаблона и поверхностью кладки должен быть зазор в 20-25 мм. Внутреннюю поверхность кладки облицовывают глиной и шаблоном затачивают рабочую поверхность. После кратковременного провяливания на воздухе удаляют шаблон и шпиндель и сушат форму переносным сушилом. Затем заделывают трещины форму окрашивают и сушат вторично.

Рис. 10. Изготовление кирпичной формы и стержня по шаблону: а - изготовление формы; б - изготовление стержня; в - собранная форма; г-отливка; 1 - подпятник; 2- шпиндель; 3- поддон; 4 - опоры; 5 - кирпичная кладка; 6 -- шаблон для заточки формы; 7 - литниковая система; 8 - облицовочная глина.

Процесс изготовления стержня аналогичен процессу выполнения формы. Сушат стержень в сушиле.

Кирпичную кладку выполняют в специальных кессонах или опоках с заполнением промежутков между кладкой и стенкой опоки формовочной смесью. Такие формы могут использоваться многократно при небольших промежуточных ремонтах.

Современные способы изготовления крупных форм вручную

Непрерывный рост производства крупных отливок требует совершенствования технологических процессов и условий труда снижения трудоемкости изготовления отливок при ручной формовке рассмотрим некоторые рациональные процессы формообразования отливок, разработанные литейщиками ленинградских объединений имени Я. М. Свердлова, «Невский завод» имени В И Ленина и других предприятий.

Металлические постели. При формовке крупных отливок применяют твердые песчано-глинистые постели, а при изготовлении особо крупных отливок постель выполняют кирпичной кладкой. При извлечении отливки из формы постель частично разрушается, и перед каждой формовкой приходится затрачивать много времени на ее ремонт.

Рис. 11. Схема приготовления твердой металлической постели: 1 - слой гари; 2 - металлическая плита; 3 - газоотводные трубы; 4 - кессон; 5 -верхняя полуформа.

Форма с металлической постелью, выполненная в кессоне, показана на рис. 11. Зазоры между стенками кессона и моделью определяются удобством набивки формы. Дно кессона покрывают ровным слоем гари, поверх которого кладут чугунную плиту, образующую металлическую жесткую постель.

Замена верхней полуформы стержнями

Во избежание протечки металла при заливке обычно приме няют прокладочную глину, в результате чего на отливке образуются заливы, на удаление которых затрачивается труд обрубщиков и бесцельно расходуется металл. При замене верхней полуформы перекрывающими стержнями вместо прокладочной глины стали использовать песчаные подушки. Для этого в горизонтальных знаках стержней, через которые выводятся газы, выполнены углубления в 20-25 мм, заполняемые сырым песком с некоторым завышением. При установке перекрывающих стержней песок уплотняется, при этом создаются надежная изоляция вентиляционных каналов и плотный контакт между стержнями, исключающий возможность образования заливов.

Рис. 12. Технология изготовления крупных форм: а - старая технология; б - новая технология: 1 - нижние почвенные полуформы; 2- верхняя полуформа; 3 - прокладочная глина; 4 - пригрузочная плита; 5 - стержень, заменяющий верхнюю опочную полуформу; 6 - вентиляционные стояки; 7 - песчаные подушки.

В результате внедрения новой технологии повысилась размерная точность отливок, сократился расход металла, ликвидированы парк опок и потребность в сушке громоздких полуформ, уменьшилась трудоемкость обрубных работ. Формовка по блок-модели. При изготовлении мелких серии средних и крупных отливок целесообразно объединение в один блок двух однотипных моделей, связанных между собой разделительным стержнем.

Изготовление форм из жидких самоотверждающихся смесей. Чти смеси широко используются при изготовлении крупных стержней Так в литейных цехах объединения имени Я. М. Свердлова все стержни для отливок массой более 3 т выполняют из ЖСС .

Практика показала, что эти смеси могут успешно применяться и при изготовлении форм для крупных отливок. Схема формовки в ЖСС представлена на рис. 14. Модель устанавливают на кирпичи или на укрепленные на ней специальные упоры либо фиксируют в кессоне с помощью планок. Между моделью и стенками кессона должен быть зазор в 100-150 мм. В модели имеются люки для заливки ЖСС . Для улучшения заполняемости формы смесь выдавливают из люков толкателями. После заполнения смесью пространства под моделью ее заливают по периметру кессона в зазоры между его стенками и моделью. Через 35-40 мин после заливки ЖСС модель можно извлечь и приступить к отделке формы.

Рабочая поверхность формы имеет значительную пористость. Для ее устранения на поверхность наносят специальную краску и просушивают- горелкой в течение 2-4 ч при температуре 200- 220 °С.

Технология изготовления сложной формы для отливки чугунной модели лопасти массой 35 т приведена на рис. 15. Эта модель предназначена для формообразования крупных отливок стальных лопастей. Формовка ведется по деревянной модели, снабженной упорами, по которым модель устанавливают на постель, в кессоне. На модели размещают съемную раму, оформляющую контуры болвана. Во избежание всплывания модель и рама нагружаются.

Заливку ЖСС осуществляют через люки, имеющиеся в модели и съемной раме, и в зазоры между стенками кессона и съемной рамы. Затем производят подпрессовку смеси толкателями. После кратковременной выдержки извлекают съемную раму, удаляют смесь из люков, подрезают ее вокруг модели, поверхность полуформы покрывают разделительной бумагой и закрепляют ее шпильками, после чего переходят к оформлению верхней полуформы (болвана-стержня).

Рис. 13. Технология изготовления форм по блок-модели а - почвенная форма; б - стержневая форма.

Рис. 14. Схема изготовления формы из ЖСС .

Рис. 15. Технология изготовления крупной формы с применением

12. Машинная формовка

Механизированное извлечен И модели без предварительной расколотки обеспечивает получени форм высокого качества, повышает точность отливок и снижает брак. Внедрение координатных и наборных плит-рамок делает табельным применение машинной формовки не только при серий” ном и массовом, но и при мелкосерийном и единичном производстве.

Обычно литейную форму изготовляют на двух машинах: одной - нижнюю полуформу, а на другой - верхнюю. При массовом и серийном производстве металлические модели и элементы литниковой системы монтируют на односторонних чугунных плитах, а при мелкосерийном и единичном деревянные модели

укрепляют на координатных плитах или в наборных плитах-рамках. Замену модели на координатной плите и в плите-рамке производят на рабочем месте в течение 20-30 мин.

По способу уплотнения смеси в опоке различают прессовые машины с нижним и верхним прессованием, встряхивающие машины, встряхивающие с подпрессовкой и пескометные.

Уплотнение смеси на машинах с нижним прессованием. Схема работы такой машины приведена на рис. 17. На прессовом поршне, помещенном в цилиндре, закреплен стол. На нем расположена модельная плита, перемещающаяся в неподвижной раме. Опоку устанавливают на штыри неподвижной рамы и заполняют смесью, разравнивая ее по всей Поверхности, После этого опоку со смесью помещают под неподвижную траверсу. При подаче в цилиндр сжатого воздуха прессовый поршень поднимается вверх, модель внедряется в смесь и уплотняет ее. Когда поступление воздуха прекращается, поршень опускается, и производится извлечение модели.

При нижнем прессовании наибольшая плотность смеси создается у модели и понижается к верху,опоки, несколько возрастая у траверсы, что является достоинством этого способа.

Большой расход мощности на преодоление силы трения смеси о стенки опоки ограничивает область применения этих машин. Они могут использоваться при опоках с размерами в свету до 1100X800 мм и высотой до 150 мм.

Уплотнение смеси на машинах с верхним прессованием. Схема работы этой машины показана на рис. 18. На прессовом поршне, помещенном в цилиндре, закреплен стол, на котором расположена плита с моделью. После установки опоки с наполнительной рамкой и заполнения их формовочной смесью в цилиндр подают сжатый воздух под давлением 6 кгс/см2. Под действием воздуха поршень вместе со столом и смонтированной на нем модельной оснасткой поднимается вверх, при этом прессовая колодка, закрепленная на траверсе, внедряется в наполнительную рамку и уплотняет смесь в опоке.

После прекращения поступления в цилиндр сжатого воздуха стол опускается под действием собственной тяжести.

Уплотнение смеси на встряхивающих машинах. Этот способ уплотнения смеси, несмотря на некоторые присущие ему недостат ки, - самый распространенный, так как дает возможность изготовлять формы для сложных крупных отливок в опоках, с размерами в свету 3000 X 2000 мм при высоте до 750 мм.

Рис. 16. Типы модельных плит: а - односторонняя; б - координатная: в -наборная плита-рамка; 1 - основная плита; г - вкладная модельная плита; 3 - модель, 4 - шлакоуловитель; 5 - стояк; 6 - упорные винты.

Рис. 17. Схема работы машины с нижним прессованием.

На рис. 19 показана схема работы встряхивающей машины с подпрессовкой. Она имеет два цилиндра: прессовый и встряхивающий, причем последний служит поршнем для первого Внутри цилиндра имеется встряхивающий поршень, на котором укреплен стол. На столе монтируется модельная плита с моделью.

По штырям на модельную плиту устанавливают опоку с рамкой. После заполнения опоки и рамки смесью в полость встряхивающего цилиндра подают сжатый воздух, под давлением которого встряхивающий поршень поднимается вверх. При этом впускное отверстие перекрывается боковой поверхностью поршня, а выхлопное открывается, и воздух выходит в атмосферу.

Стол с модельной плитой и опокой под действием собственной силы тяжести падает на торец цилиндра, поэтому при ударе формовочная смесь в опоке уплотняется. При опускании поршня впускное отверстие вновь открывается, и цикл повторяется. Обычно стол поднимается на высоту 30-80 мм и совершает 30-120 ударов в минуту. Для уплотнения смеси достаточно 20-40 ударов.

После окончания процесса встряхивания сжатый воздух поступает в полость прессового цилиндра, а модельная плита и оснастка приходят в контакт с прессовой колодкой, закрепленной на траверсе. Колодка входит в полость наполнительной рамки и производит доугоготнение верхних слоев смеси (рис. 19, г и д).

Уплотнение смеси многоплунжерной головкой. При уплотнении смеси жесткой прессовой колодкой (рис. 19), особенно в формах крупных габаритов, трудно достичь равномерности уплотнения. В таких случаях рекомендуется применять многоплунжерную головку (рис. 20), при этом формовочная смесь прессуется большим количеством прессующих башмаков, снабженных поршневыми гидравлическими приводами. Каждый башмак под действием масла на поршень прессует находящийся под ним участок формы независимо от соседних участков.

Уплотнение смеси пескометами широко применяется для механизации наполнения и уплотнения смеси в крупных опоках и стержневых ящиках. Производительность пескометов - от 12 Д° 80 м3/ч уплотненной смеси.

Основным рабочим органом пескомета является головка (рис. 21). В стальном кожухе вращается ротор, на котором с помощью муфты закреплена лопатка-ковш. Через окно в кожухе ленточный транспортер непрерывно подает формовочную смесь, которая при быстром вращении ротора захватывается лопаткой, несколько уплотняется и в виде небольших пакетов выбрасывается в опоку через окно. При большой скорости истечени смеси из окна и непрерывном перемещении головки пескомета л площади опоки создается равномерное уплотнение всех слоев смес независимо от высоты опоки.

СССР успешно эксплуатируются автоматизированные формовочные линии как отечественного производства - конструкции ВНИИ лит-маш, НИИ тракторсельхозмаш, Гипросантехпром и др., так и зарубежных фирм.

Процесс формовки, сборки и выбивки на этих линиях полностью автоматизирован, рабочий-оператор при этом только, управляет механизмами с помощью кнопок.

Вручную выполняются операции установки стержней и заливки, а на некоторых линиях процесс заливки также автоматизирован.

На рис. 23 показана схема автоматизированной линии фирмы «Гизаг» (ГДР ). Она состоит из двух прессовых формообразующих полуавтоматов для изготовления нижней (поз. IV) и верхней (поз. II) полуформ и литейного конвейера (поз. VII ). Собранная на поз X форма поступает на поз. XI - к грузовому конвейеру, где она нагружается, и на поз. XII , где заливается металлом. При дальнейшем движении залитая форма поступает в охладительную камеру (поз. XIII ), снабженную мощной вентиляционной системой. На поз. XIV с охлажденной формы снимается груз.

Верхняя опока протяжным устройством стягивается на поз. I и передается на машину для изготовления верхних полуформ (поз. II). Нижняя полуформа с отливкой и комом смеси продвигается к поз. III , где нижняя опока протягивается, кантуется и передается на машину для изготовления нижних полуформ (поз. IV).

При подходе к толкателю ком смеси с отливкой передается на поз. V- охладительную решетку (накопитель). После кратковременного охлаждения он поступает на поз. VI - выбивную решетку, где разрушается и освобождает отливку.

Формообразующая машина имеет два пресса, между которыми расположены подъемный механизм и дозатор смеси. При поступлении опоки она спаривается с модельной плитой и поджимается к бункеру-дозатору, при этом в опоку выдается определенная порция смеси. Затем опока передается под левый или правый пресс, имеющий многоплунжерную головку.

После процесса прессования ниясняя полуформа возвращается на среднюю позицию, где после протяжки модели она выталкивается поступающей опокой и передается на поз. VIII . Здесь нижняя полуформа кантуется и устанавливается на платформу конвейера. На поз. IX в эту полуформу устанавливаются стержни.

При подходе к поз. X нижняя полуформа накрывается верхней, и форма поступает на заливку. Верхняя полуформа изготовляется аналогично нижней.

Производительность линии в зависимости от типа формовочного автомата и размеров опок составляет 200-280 форм в час.

Рис. 23. Схема автоматизированной формовочной линии.


Контрольная работа

Технология литейного производства

2.Основные дефекты отливок

6. Литье в кокиль

7. Центробежное литье

Литература

1. Технологические понятия в литейном производстве

Литейное производство – отрасль машиностроения, изготовляющая заготовки заливкой расплавленного металла заданного химического состава в литейную форму, полость которой имеет конфигурацию отливки. При охлаждении залитый металл затвердевает и воспринимает конфигурацию полости формы.

Полученная после затвердевания металла заготовка называется отливкой. Отливка может быть или вполне законченным изделием, или подвергаться в дальнейшем механической обработке.

Литейные формы, используемые только один раз и разрушаемые при извлечении из них отливок (песчано-глинистые, оболочковые со смоляным связующим, неразъемные керамические и др.), называются разовыми. Полупостоянные формы, изготавливаемые из высокоогнеупорных материалов (гипса, цемента, графита и д.), выдерживают 3…100 и более заливок металла.

Разовые и полупостоянные литейные формы изготавливают по приспособлениям, называемым моделями. Процесс изготовления таких форм называется формовкой.

Модель по своей внешней конфигурации соответствует получаемой отливке и отличается большими размерами, учитывающими усадку металла и припуски на механическую обработку. В модели возможно наличие стержневых знаков.

Конфигурация модели должна обеспечивать легкость выемки ее из формы ; поверхность моделей тщательно обрабатывают, чтобы обеспечить получение чистых поверхностей формы. Модель должна быть прочной, не изменяться в размерах. Модели изготовляют из металлов и сплавов, дерева, гипса, пластмассы, из легкоплавких органических материалов.

Стержнем называют часть литейной формы, предназначенную для получения внутренних полостей в отливке.

Стержневыми знаками называют выступающие по модели части, не образующие конфигурацию отливки, а служащие для образования углублений в форме, в которые устанавливают стержни при сборке формы.

Литниковая система служит для запивки металла в полость формы с определенной последовательностью и скоростью заполнения, а также для питания отливки в процессе ее затвердевания.

Подготовка металла . В литейном производстве применяют жидкий сплав (расплав) и для подготовки его используют различные плавильные агрегаты.

Для получения отливок ответственного назначения используют в основном электропечи различного типа. Большое применение находят печи индукционные, электродуговые и печи сопротивления. Широко используются плавка и разливка в условиях вакуума (например, при получении отливок из титановых сплавов).

2.Основные дефекты отливок

Усадочные раковины – закрытые полости, большей частью окисленные, в отливках с шероховатой поверхностью (Рис. 1). Образуются усадочные раковины вследствие недостаточного питания отливки в местах скопления металла, неправильной конструкции отливки и литниковой системы. Устраняются усадочные раковины с помощью прибылей, которые затвердевают в последнюю очередь, в результате чего усадочные раковины выводятся в прибыль Затем он удаляется.

Рис. 1. Усадочная раковина в отливке и способ ее устранения

Горячие трещины – сквозные и несквозные разрывы в теле отливки. Они возникают обычно в местах перехода от тонкого сечения к толстому, в местах резких переходов сечения под прямым или острым углом (Рис. 2, а ), а также в том случае, если форма или стержень препятствуют усадке отливки (Рис. 2, б ).

Газовые раковины – полости в отливке округлой формы с гладкой поверхностью, размером от 1 до 10 мм, возникают при низкой газопроницаемости формы, при неправильно построенной литниковой системе.

Недоливы и спай (Рис. 3) образуются от неслившихся потоков металла, потерявших жидкотекучесть и затвердевших до заполнения формы.

Пригар – взаимодействие литейной формы и залитого металла при недостаточной ее огнеупорности и высокой химической активности.

Перекос (Рис. 4) в отливке образуется при небрежной сборке формы.

3. Технология получения отливок в песчано-глинистых формах

Способ литья в песчано-глинистые формы – один из древнейших способов, В модернизированном виде, за счет совершенствования составов формовочных смесей, этот способ находит применение в авиа- и кораблестроении.

Песчано-глинистые формы имеют разовое назначение.

Литейная песчано-глинистая форма представляет собой систему элементов, образующих рабочую полость (Рис. 4, а ) заливаемую расплавленным металлом. Для образования отверстий и других сложных очертаний в отливке применяют литейные стержни, которые фиксируются в литейной форме при помощи знаков, входящих в соответствующие впадины в полости формы. Литейные стержни изготовляют в стержневых ящиках (рис 4, б ) из специальных песчаных стержневых смесей с помощью машин, которые выполняют основные операции в процессе изготовления стержня: уплотнение смеси и извлечение стержня из ящика. Для подвода расплавленного металла в полость литейной формы и обеспечения ее заполнения и питания отливок при затвердевании изготавливают литниковую систему. Процесс изготовления литейных форм с помощью модели называют формовкой.

б в

Рис. 5. Общий вид песчано-глинистой формы (а), стержня (б) и модели (в)

Модели делают металлические или деревянные, с плоскостью разъема (рис 5, в ) Разъем модели совпадает с плоскостью разъема формы. При этом способе литейная форма в основном получается разъемной. (рис 5, а ).

Литейная форма должна обладать:

а) прочностью – способностью выдерживать силовые нагрузки, возникающие при заливке расплавленного металла;

б) газопроницаемостью – способностью пропускать газы, пар, находящиеся и образующиеся в литейной форме при заливке расплавленного металла;

в) податливостью – способностью уменьшаться в объеме под действием усадок отливки при ее охлаждении;

г) огнеупорностью – способностью не расплавляться под действием тепла расплавленного металла.

Для изготовления литейных форм применяют формовочные смеси.

Формовочные смеси при изготовлении формы примыкают к модели и образуют соприкасающийся с жидким металлом рабочий слой формы. Свойства формовочных смесей зависят от их состава. В состав формовочных смесей входят огнеупорные материалы – кварцевые Si О 2 , или цирконовые ZrO 2 Si О 2 , пески, являющиеся основой формы, глина как связующее и специальные добавки, улучшающие характеристики смесей.

Формы можно изготовлять ручным способом для получения очень сложных единичных отливок. На современных машиностроительных заводах массового и крупносерийного производства песчано-глинистые формы изготовляют на формовочных машинах в опоках на специальных модельных плитах (рис 5, оформляющих разъем литейной формы, несущих на себе различные части модели (модель отливки 1 и модели литниковой системы 2, 3) и служащих для набивки оной из парных опок. Современные формовочные машины обычно механизируют по двум основным операциям в процессе изготовления форм: уплотнение формовочной смеси в опоке и извлечение модели из формы. По методу уплотнения смеси формовочные машины подразделяются на встряхивающие, прессовые, встряхивающие с подпрессовкой и пескометы. По способу удаления модели из формы они подразделяются на машины с поворотной плитой, со штифтовым подъемом с перекидным стоном и с протяжной плитой.

Изготовление форм на прессовых машинах (Рис. 7) осуществляется в такой последовательности: на модельную плиту 4 , прикрепленную к столу машины, устанавливают опоку 5, а на опоку – наполнительную рамку 6 . Опока с наполнительной рамкой заполняется формовочной смесью. Над наполнительной рамкой на траверсе устанавливается прессовая колодка 7. В прессовый цилиндр 1 подается под давлением сжатый воздух. Прессовый поршень 2 поднимается вверх навстречу прессовой колодке 7, которая входит внутрь наполнительной рамки в опоку, После снятия давления поршень вместе со столом и опокой опускается вниз. Затем опока с помощью съемного механизма 3 поднимается вверх с модельной плиты.

Рис. 6. Специальная модельная плита

Рис. 7. Прессовая машина для изготовления песчано-глинистых форм

На прессовых машинах изготовляют полуформы высотой не более 200 мм, так как при больших высотах не обеспечивается равномерная
плотность формы. Полученные формовкой полуформы спариваются, предварительно устанавливаются стержни, если они необходимы. Собранные формы заливают жидким металлом. Для заливки сплава применяют литниковую систему. В литейных цехах индивидуального я мелкосерийного производства формы заливают на формовочном плацу, располагая их в ряд. В крупносерийном и массовом производстве формы заливают на рольганговых транспортерах. В последнее время для изготовления форм и заливки металла применяют автоматизированные линии. Приготовление литейных сплавов связано с процессом плавления различных шихтовых материалов. Для выплавки стали нашли широкое применение индукционные высокочастотные печи, позволяющие нагревать металл до высоких температур, создавать вакуум, получать металл высокого качества. В песчано-глинистые формы практически возможно заливать широкую гамму сплавов и получать отливки неограниченной массы и любых размеров.

Для плавки алюминиевых сплавов широко применяют тигельные печи сопротивления, которые могут быть поворотными и стационарными, а также высокопроизводительные индукционные двухканальные печи с металлическим сердечником (металлическим сердечником является сам расплав), в которых металл получается более высокого качества, чем при плавке печах другого типа. Плавка алюминиевых сплавов имеет ряд трудностей из-за сильного окисления их и насыщения газами. Существует несколько способов подготовки металла, обеспечивающих получение качественных отливок из алюминиевых сплавов: плавка под слоем флюса, рафинирование жидкого расплава нейтральными газами либо солями. При газовом рафинировании после расплавления алюминиевого сплава при температуре 660…680°С его рафинируют хлором. Рафинирование осуществляют продуванием через сплав хлора в течение 5…15 минут.

Кроме хлора для газового рафинирования можно применять азот, аргон.

Отрафинированный металл заливают в подготовленную литейную форму. После заливки и охлаждения металла отливку извлекают (выбивают), при этом форма разрушается. Отливка извлекается из формы либо вручную, либо механически, либо автоматически в зависимости от характера производства.

В дальнейшем отливку очищают в очистных барабанах или дробеметных устройствах камерного или барабанного типа. Обрубку и зачистку отливок от остатков питателей, заусенцев, заливок производят абразивными кругами на абразивных прессах.

4. Структура литниковой системы

Литниковой системой называют совокупность каналов и резервуаров, по которым жидкий металл из ковша поступает в полость формы (Рис. 8).

Рис. 8. Схема литниковой системы

Литниковая чаша (2) – резервуар, предназначенный для приема жидкого металла и передачи его в стояк 3.

Стояк (3) – вертикальный (иногда наклонный) канал круглого, овального или иного сечения, предназначенный для передачи металла из чаши к другим элементам литниковой системы.

Шлакоуловитель (1) – канал, в котором задерживается шлак и неметаллические включения, увлекаемые жидким металлом в форму. Для предупреждения попадания шлака в полость формы во время заливки ее чаша должна быть постоянно заполнена до краев. Это способствует всплыванию шлака и препятствует его попаданию в полость формы. Однако часть шлака все же может увлекаться жидким металлом. Для предотвращения попадания его в форму служит шлакоуловитель. Шлак, имея значительно меньшую полость, чем металл, всплывает в верхнюю часть шлакоуловителя и задерживается в нем, а чистый металл из нижней части шлакоуловителя через питатель поступает в полость формы. Чтобы шлак хорошо задержался, питатели обычно располагают ниже шлакоуловителя.

Шлакоуловитель применяется при тяжелых металлах, для которых характерна высокая скорость всплывания шлаков. Для легких сплавов необходим коллектор – распределитель, так как плотность заливаемого металла близка к плотности шлаков и скорость всплывания шлаков незначительна.

Питатели (литники) (4) – каналы, предназначенные для передачи металла непосредственно в полость формы.

Литниковые системы делят на следующие наиболее распространенные типы (обозначения на Рис. 9 соответствуют Рис. 8):

Рис. 9. Наиболее распространенные типы литниковых систем

1) верхняя (Рис. 9, а ) – питатели подводят металл в верхнюю часть отливки;

2) нижняя или сифонная – питатели подводят металл в нижнюю часть отливки (Рис. 9, б );

3) щелевая – питатели подводят металл по высоте отливки (Рис. 9, в );

4) ярусная – питатели подводят металл на нескольких уровнях
(Рис. 9, г ).

Тип литниковой системы выбирают в зависимости от вида металла, конструкции отливки, положения ее при заливке и т.д.

Помимо выбора типа литниковой системы большое значение имеет выбор места подвода питателей к отливке. В зависимости от свойств сплава, конструкции отливки (габаритных размеров, толщины стенки) при подводе металла стремятся обеспечить либо направленное затвердевание, либо одновременное, равномерное охлаждение различных частей отливки.

Литниковые системы рассчитываются. Расчет сводится к определению площади наименьшего сечения литниковой системы (стояка или питателя) с последующим определением по соотношениям площадей сечения остальных элементов системы.

Площадь наименьшего сечения F нс находят по формуле

, (1)

где G – масса металла, прошедшего через минимальное сечение;

τ – продолжительность заливки, с: ;

γ – плотность жидкого металла, г/см 3 ;

μ – коэффициент расхода литниковой системы, учитывающий потери скорости, трение повороты;

Н р – расчетный напор, см; δ – преобладающая толщина стенки отливки, мм;

S – коэффициент, зависящий от толщины стенки и конфигурации отливки: для титановых и магниевых сплавов и стали – 0,91…1,7; алюминиевых сплавов – 1,7…3,0.

Напор Н р зависит от способа заливки, типа литниковой системы, положения отливки в форме и других факторов. Для случая подвода металла по разъему формы, очень распространенного в литейном производстве, Н р можно рассчитывать по формуле

, (2)

где Н 0 – первоначальный максимальный напор заливаемого металла;

р – расстояние от самой верхней точки отливки до уровня подвода металла;

с – высота отливки (по положению при заливке металла).

При расчетах площадей литниковых каналов пользуются отношениями

Или 1: 3: 6

5. Литье в оболочковые (корковые, скорлупчатые) формы

Литье в оболочковые формы – процесс получения отливок путем свободной заливки расплавленного металла в оболочковые песчано-смоляные формы, изготовленные формовкой по горячей модели.

Разновидностей данного способа литья много, наиболее распространенные следующие.

Оболочковые формы изготовляют из неплакированной песчано-смоляной смеси (кварцевый песок – основа, 3…8% феноло-формальдегидной смолы, 0,8% нефтеполимера) (Рис. 10, а ) или плакированной (Рис. 10, б ), для которой феноло-фармальдегидную смолу предварительно растворяют в ацетоне или спирте, а затем смешивают с кварцем. Плакированные смеси содержат смолу в виде тонкой пленки, покрывающей поверхность зерен кварца (Рис. 10, б ). Оболочковые формы из плакированной смеси имеют более высокую прочность при минимальном расходе смеси. Смола обладает способностью при нагревании до 160…200°С оплавляться, переходить в термопластическое состояние, что способствует получению четкого отпечатка модели.

При нагревании до 290…350°С смола переходит в стойкое термореактивное (необратимое) состояние.

На Рис. 11 показана схема процесса получения оболочковой полуформы. На бункере 1 (рис 17, а ), в котором находится формовочная смесь, закрепляют металлическую модельную плиту З с моделью 4, нагретые до 160…200°С. После этого бункер опрокидывается, формовочная смесь 2 покрывает горячую модельную плиту 3 и модель 4 (рис 17, б ). Далее бункер поворачивается на 180°. Слой формовочной смеси остается на модели 4 (рис, 17, в ), а модельная плита 3 отделяется от бункера 1 (ряс. 17, г ) и помещается в электрическую печь для окончательного затвердевания оболочки. Затем с модельной плиты 3 удаляют готовую полуформу (Рис. 11, д ). Технологический процесс повторяется для получения второй полуформы. Полученные таким образом две полуформы соединяют скобами.

а б

Рис. 10. Неплакированная (а ) и плакированная (б ) песчано-смоляная смесь

А б в г д

Рис. 11. Последовательность получения обыкновенной полуформы

В собранную и остывшую до комнатной температуры форму заливают жидкий металл. После крнсталлизацнн н остывания отливки связующее литейной формы почти полностью выгорает, в связи с чем облегчается выбивка отливки из формы.

При получении крупных отливок, ввиду опасности прорыва металла, во время заливки оболочковые формы помешают в опоку и засыпают чугунной дробью.

Оболочковая форма обладает в 10 – 30 раз большей газопроницаемостью, чем песчано-глинистая. Податливость оболочковой формы также повышена, что уменьшает появление внутренних напряжений в отливках. У таких форм меньшая, чем у песчано-глинистых форм, осыпаемость корки и выделение слабо восстановительных газов в момент заливки металлов, что улучшает чистоту поверхности отливки и уменьшает количество песчаных засоров.

Литье в оболочковые формы позволяет повысить точность геометрических размеров отливок, в два раза снизить припуски на механическую обработку; в 5 – 10 раз снижается расход формовочных материалов; упрощаются процессы механизации и автоматизации производства отливок.

Этим способом изготовляют отливки массой до 25...30 кг, а Иногда до 100...150 кг с отверстиями 6 мм и минимальной толщиной стенок 3...4 мм.

Литьем в оболочковые формы изготовляют коленчатые и кулачковые валы, выхлопные клапаны, шестерни, фланцы выхлопных трубопроводов, гильзы блока цилиндров, картер блока цилиндра, ребристые цилиндры, кронштейны, стойки, крышки и др.

Ограничительными факторами литья в оболочковые формы являются:

1. Формы разъемные, что существенно влияет на точность размеров отливки в направлениях, перпендикулярных плоскостям разъема форм.

При изготовлении массивных отливок наблюдаются значительные коробления форм.

6. Литье в кокиль

Литье в кокиль – процесс получения фасонных отливок путем свободной заливки расплавленного металла в металлические формы – кокили.

Литье в кокиль широко применяется в серийном и массовом производстве отливок для самых разнообразных изделий с толщиной стенки 3...100 мм из медных, алюминиевых и магниевых сплавов, а также из чугуна и стали, масса которых колеблется в широких пределах – от нескольких граммов, до нескольких тонн; например, крупные лопасти, головки и блоки двигателей внутреннего сгорания, корпуса нагнетателей реакторов, диффузора и др.

Литьем в кокиль обеспечивается повышенная точность геометрических размеров, снижается шероховатость поверхности отливок, уменьшаются припуски на механическую обработку, улучшаются механические свойства отливок в сравнении с отливками, полученными в песчано-глинистых формах.

Недостаток литья в кокиль – большая стоимость изготовления и высокая теплопроводность формы, приводящая к понижению заполняемости ее металлом вследствие быстрой потери текучести.

Конструкции кокилей чрезвычайно разнообразны. Кокиль для простых отливок изготовляют из двух частей, соответствующих верхней и нижней опокам при литье в песчано-глинистые формы. Для сложных отливок форму изготовляют из разъемных частей, каждая из которых образует часть отливки, при этом поверхность разъема формы определяется конструкцией отливки; при этом поверхность разъема формы определяется конструкцией отливки. Кроме этого, толщина стенок кокиля влияет на скорость затвердевания и последующее охлаждение отливки, а следовательно, на образование структуры отливки.

Для получения внутренней полости отливки применяют стержни: для отливок из легкоплавких сплавов – преимущественно металлические, для чугунных и стальных отливок – песчаные.

Газ, находящийся в форме, отводится через выпор и вентиляционные отводные каналы, расположенные вдоль разъема формы. Для извлечения отливки в форме имеются выталкиватели.

Технология литья в кокиль имеет ряд специфических особенностей, обусловленных конструкцией металлической формы и требованиями к заливаемому металлу.

В целях получения качественной отливки и удлинения срока службы кокиля его покрывают огнеупорной облицовкой или краской. Рабочая температура формы зависит от заливаемого сплава находятся в пределах 150 – 300°С. Нанося более толстый спой краски на отдельные участки формы, можно предотвратить быстрый теплоотвод на границе металл-форма и таким образом, в разных частях отливки.

Краски часто изготовляют из материалов, выделяющих газ в период заливки на границе металл-форма; газ создает восстановительную атмосферу, предохраняющую металл от окисления. Наиболее часто применяют окись цинка, тальк, графит, окись алюминия.

В массовом и серийном производстве применяют специальные литейные кокильные машины с механизированным разъемом отдельных частей. При э том заливаемый металл должен обладать хорошей жидкотекучестью и малой усадкой.

7. Центробежное литье

Использование центробежных сил для заполнения и кристаллизации металла в полости формы – отличительная особенность центробежного литья. Центробежные силы образуются в результате вращения литейной формы.

Этот способ литья применяют преимущественно для изготовления полых отливок, имеющих форму тела вращения (трубы, втулки, кольца), из чугуна, стали, цветных сплавов (медных, алюминиевых, титановых и др.), фасонных отливок с малой толщиной стенок, но повышенной плотностью материала (лопатки турбин, корпуса, детали гидроаппаратуры и т.д.). Для получения отливок используют установки с горизонтальной и вертикальной осью вращения формы. Под действием центробежных сил жидкий металл 1 (Рис. 12) прижимается в внутренней поверхности вращающейся формы 2, увлекается ею и в таком состоянии кристаллизуется. При центробежном литье возможно применять не только металлическую форму, но и оболочковую 1 (Рис. 13), песчано-глинистую и форму, получаемую по выплавляемой модели.

Рис. 1 Схема центробежного литья

Центробежное литье по сравнению с литьем в неподвижные формы имеет ряд преимуществ:

1) отливки обладают большой плотностью материала;

2) исключаются затраты на изготовление стержней для получения полости в цилиндрических отливках;

3) улучшается заполняемость форм металлом;

4) возможно получение отливок из сплавов, обладающих низкой жидкотекучестью.

Рис. 13. Схема центробежного литья в оболочковую форму

Центробежный способ литья имеет следующие недостатки:

1) загрязнение свободной поверхности отливки неметалли-ческими включениями (более легкими, чем сплав отливки);

2) наличие дефектов в отливке в виде химической неоднородности по радиальному направлению из-за ликвации составляющих сплава по плотности. С увеличением скорости вращения возрастает ликвация элементов по плотностям в сечении отливки.

Скорость вращения форм является важным параметром технологии центробежного литья. При заниженной скорости вращения внутренняя поверхность получается негладкой, не происходит достаточного очищения отливок от неметаллических включений. При завышенной скорости сильно возрастает внутреннее давление жидкого металла, что приводит к образованию трещин и усиливается ликвация компонентов сплава по плотностям. Оптимальную скорость вращения для каждой отливки определяют по эмпирическим формулам или номограммам.

8. Литье по выплавляемым моделям

Литье по выплавляемым моделям – это процесс получения отливок в неразъемных разовых огнеупорных формах, изготавливаемых с помощью моделей из легкоплавящихся, выжигаемых илы растворяемых составов. Используют как оболочковые (керамические), так и монолитные (гипсовые) формы. При этом, рабочая полость формы образуется выплавлением, растворением или выжиганием модели.

Модельные составы, применяемые при литые по выплавляемым моделям, должны обладать минимальными значениями усадки и коэффициента термического расширения, иметь высокую жидкотекучесть в вязкопластичном состоянии, хорошо смачиваться керамической или гипсовой суспензией, наносимой на модель, но химически с ней не взаимодействовать, обладать температурой размягчения, превышающей 40°С.

Изготовление моделей осуществляется посредством заливки или запрессовки модельного состава в пастообразном (подогретом) состоянии в специальные пресс-формы 1 (Рис. 14). В частности, литьевой способ получения пенополистероловых моделей на специальных термопластавтоматах включает в себя пластификацию нагревом (100 – 220°С) гранул полистирола, впрыскивая его в пресс-форму с последующим вспениванием и охлаждением модели. Для производства пресс-форм используют как металлические (стали, алюминиевые и свинцово-сурьмянистные сплавы), так и неметаллические (гипс, эпоксидные смолы, формопласт, виксинт, резина, твердые породы дерева) материалы. Пресс-формы, используемые для получения моделей, должны обеспечивать им высокие параметры точности размеров и качества поверхности, быть удобными в изготовлении и эксплуатации, а также иметь соответствующий уровню серийности ресурс работы. Так, при единичном, мелкосерийном и серийном производствах используются, в основном, литые металлические, гипсовые, цементные, пластмассовые, деревянные, а также полученные методами металлизации пресс-формы, изготавливаемые с помощью механической обработки.

Рис. 14. Литье по выплавляемым моделям: 1 – пресс-форма; 2 – модель; 3 – модельно-литниковый блок; 4 – суспензия; 5 – псевдоожиженный слой зернистого огнеупорного материала; 6 – подача сжатого воздуха; 7 – расплав модельной массы (или горячая вода); 8 – керамическая оболочковая форма; 9 – опорный наполнитель (кварцевый песок); 10 – печь; 11 – ковш

При изготовлении гипсовых пресс-форм эталон модели (модель-эталон), выполненный из любого конструкционного материала, заливают водной суспензией высокопрочного гипса марок 350 и выше. Такие пресс-формы выдерживают изготовление до 50 штук моделей, но не обеспечивают последним высоких показателей точности размеров и качества поверхности.

Для изготовления пресс-форм применяются также методы гальванопластики, металлизации и напыления. Так, гальваническое покрытие наносят на модель-эталон, изготовленный из полированного сплава на основе алюминия или цинка. При формировании плазменных покрытий на основе металлических порошков в качестве материала модели-эталона применяют металлические сплавы, графит или гипс. Запрессовка модельных составов осуществляется на прессах (пневматических, рычажных и др.) или вручную. Монтаж модельных блоков осуществляется путем объединения мелких моделей 2 в блоки 3 (Рис. 14, б ) с единой литниковой системой, что повышает технологичность, производительность и экономичность процесса литья. Сборка моделей в модельные блоки (т. е. соединение моделей отливки с моделью стояка) осуществляется разными способами: а) припаиванием разогретым инструментом (паяльником, ножом) или жидким модельным составом; б) соединение моделей в кондукторе с одновременной отливкой модели лнтниковой системы; в) соединением моделей в блоки на металлическом стояке (каркасе) с помощью механического крепления (зажима); г) склеиванием моделей отливки и литниковой системы.

Способ литья по выплавляемым моделям нашел широкое применение в промышленности (особенно в авиастроении) благодаря использованию неразъемных керамических оболочковых форм. обладающих комплексом необходимых эксплуатационных свойств (газопроницаемость, термостойкость, жесткость, гладкость поверхности. точность размеров. отсутствие газотворности, высокая рабочая температура и др.).

Обычно керамическая оболочка состоит из 3 – 8 последовательно наносимых слоев (в принципе, число слоев может достигать 20 и более), обеспечивающих в итоге общую толщину стенок формы от 2 до 5 мм. В ряде случаев допускаются и меньшие значения толщин стенок (0,5—1,5 мм) керамической оболочки. Слои суспензии 4 наносят погружением в нее модельного блока (рис 20, б ). После стекания с моделей излишков суспензии их обсыпают огнеупорным материалом (например, кварцевым песком, крошкой шамота, электрокорундом с размером зерен для разных слоев в пределах 0,1 – 1,5 мм) в псевдожиженном слое 5 (Рис. 14, г ) и сушат. При этом каждый слой оболочки просушивают до тех пор, пока содержание жидкой фазы в нем будет не более 20%.

Преимуществами данного способа литья являются: возможность получения отливок сложной конфигурации; использование практически любых сплавов; высокое качество поверхности и точность размеров отливок; минимальные припуски на механическую обработку; обеспечение качественной равновесной, столбчатой и монокристаллической структуры с высоким уровнем эксплуатационных свойств.

К недостаткам способа литья можно отнести: многооперационность, трудоемкость и длительность процесса, многообразие материалов, используемых для изготовления формы.

Способом литья по выплавляемым моделям изготавливают сложные отливки высокого качества, например, турбинные лопатки из жаропрочных сплавов, постоянные магниты с определенной кристаллографической ориентацией структуры, художественные изделия и др.

9. Способ литья под давлением и выжиманием

Литьем под давлением называется способ получения фасонных отливок в металлических формах, при котором форму принудительно заполняют металлом под давлением, превосходящим атмосферное. Литые под давлением обеспечивает высокую точность геометрических размеров и малую шероховатость поверхности, значительно снижает объем механической обработки отливок и в некоторых случаях полностью ее исключает, обеспечивает высокие механические свойства отливок, позволяет получить сложные по конфигурации отливки с малой толщиной стенок.

Этим способом получают отливки из алюминиевых, магниевых, цинковых и медных сплавов с толщиной стенок от 0,7 до 6,0 мм, массой от нескольких граммов до 50 кг. Он находит применение для изготовления деталей электронно-счетных машин, оптических приборов, блоков цилиндров, тормозных дисков и др.

При литье под давлением металлические формы имеют более сложную конструкцию и их изготовляют более точно и тщательно, чем при кокильном литье. Формы при литье под давлением делают стальными со стальными стержнями. Применение песчаных стержней исключено, так как струя металла под давлением может размыть песчаный стержень.

Для создания давления при заполнении формы металлов применяют специальные весьма сложные машины. Существуют машины компрессорного действия и поршневого. Давление на металл в разных конструкциях машин колеблется в широких пределах (от 60 до 2000 Па).

Литье выжиманием используют для получения тонкостенных крупногабаритных отливок панельного типа размерами до 10002500 мм с толщиной стенки 2,5...5 мм. Способ позволяет также изготовлять отливки типа тонкостенных цилиндрических оболочек. Точность отливок приближается к точности отливок, получаемых при свободном литье в металлические формы, уступая им из-за неточности стыковки полуформ. Характерной особенностью литья выжиманием является отсутствие литниковой системы и возможности заливки металла при более низких температурах (в суспензионном состоянии, т.е. в начальной стадии кристаллизация).

10. Литейные свойства сплавов

Не все известные сплавы в одинаковой степени пригодны для изготовления отливок. Из одних сплавов (оловянистой бронзы, силумина, серого чугуна и др.) можно получить фасонное литье заданной конфигурации с соответствующими свойствами любыми способами литья, из других сплавов (титановых, легированных сталей) получение отливок сопряжено с большими технологическими трудностями (требуется вакуумная защита, высокие давления и др.).

Возможности и трудности получения из металлов и сплавов отливок высокого качества в большой степени предопределяются их литейными свойствами. Литейные свойства – свойства, характеризующие поведение металлов и сплавов при изготовлении из них отливок.

Таким образом, литейными свойствами являются такие технологические свойства металлов и сплавов, которые прямо и непосредственно влияют на получение качественных отливок заданной конструкции с необходимыми эксплуатационными показателями: точностью и чистотой поверхности.

Литейные свойства сплавов должны обязательно учитываться при конкретной разработке технологии получения отливки, а также в процессе создания и проектирования литых конструкций. Надежность и долговечность изделий в значительной степени предопределяются литейными свойствами используемого для их изготовления сплава.

Номенклатура литейных свойств в зависимости от уровня производства литейных сплавов и общего развития техники может со временем меняться. В настоящее время номенклатура литейных свойств складывается из следующих показателей: жидкотекучесть; усадка; склонность к поглощению газов и образованию газовых включений; склонность к образованию неметаллических включений; особенности строения при первичной и вторичной кристаллизации макро- и микроструктуры; трещиноустойчивость; образование литейных напряжений; склонность к ликвидации; активность взаимодействия сплавов со средой и литейной формой.

Под жидкотекучестью понимают способность металлов и сплавов в жидком состоянии заполнять литейные формы, в которых формируется отливка.

Хорошая жидкотекучесть необходима не только для воспроизведения в отливке очертаний литейной формы, но и для улучшения вывода за пределы отливки усадочных раковин, для уменьшения опасности образования всех видов пористости и трещин. Заполнение литейной формы жидким металлом – сложный физико-химический и гидромеханический процесс.

Жидкотекучесть зависит от характера движения сплава, и при турбулентном движении она будет меньшей, чем при ламинарном. Потеря расплавом способности ламинарного движения при прочих равных условиях зависит от числа Рейнольдса Re : чем меньше значение числа Рейнольдса у литейного сплава, тем он легче переходит из ламинарного в турбулентное движение. Число R е для стали в два раза меньше числа R е для чугуна. Из этого следует, что сталь может перейти из ламинарного в турбулентное движение легче чугуна.

Жидкотекучесть находится в зависимости от положения сплава на диаграмме состояния. Наибольшей жидкотекучестью обладают чистые металлы и славы эвтектического состава (рис 21); наименьшей – сплавы, образующие твердые растворы. Это обусловливается тем, что при затвердевании чистых металлов и сплавов эвтектического состава образуются кристаллы постоянного состава, которые растут от поверхности отливки сплошным фронтом, и жидкий расплав имеет возможность свободно перемещаться внутрь отливки. В сплавах типа твердых растворов кристаллизация протекает с образованием нитевидных кристаллов, которые далеко проникают в объем отливки в виде тонких разветвленных дендритов, что приводит к сильному уменьшению жидкотекучести. Жидкотекучесть в большой степени зависит интервала кристаллизации сплава.

Рис. 15. Диаграммы состояния (а ) и жидкотекучести (б ) сплавов системы Рв – Sn

Жидкотекучесть является функцией большого числа переменных и аналитическое определение ее весьма затруднительно, поэтому на практике для установления жидкотекучести применяют технологические пробы. Результаты испытания, как правило, изображают графически в координатах жидкотекучесть – температура заливки или жидкотекучесть – химический состав и т.п. Полученными кривыми пользуются при выборе температуры заливки или состава литейного сплава.

Усадка – свойство металлов и сплавов уменьшать линейные размеры и объем отливки при охлаждении. При охлаждении отливки ее линейные размеры начинают изменяться с момента, когда на поверхности образуется прочная твердая корка.

В литейном производстве усадку отливок, связанную только со свойствами сплавов, принято называть свободной усадкой. Если же усадка определяется не только физическими свойствами сплава, но и размерами и конструкцией литейной формы, то такая усадка называется затруднительной.

В табл. 1 приводятся ориентировочные значения свободной и затруднительной линейной усадки для наиболее распространенных сплавов. Усадка сплавов изменяется в связи с изменением их состава.

Таблица 1

Свободная и затрудненная линейная усадка литейных сплавов

Сплав

Линейная усадка, %

свободная

затруднительная

Серый чугун

1,1…1,3

0,6…1,2

Белый чугун

1,8…2,0

1,5…2,0

Углеродистая сталь

2,0…2,4

1,5…2,0

Специальная сталь

2,5…3,0

2,0…2,5

Латуни

1,5…1,9

1,3…1,6

Оловянистые бронзы

1,2…1,4

0,9…1,0

Безоловянистые бронзы

1,6…2,2

1,1…1,8

Магниевые сплавы

1,3…1,9

1,0…1,6

Усадка относятся к числу важнейших литейных свойств сплавов, так как с ней связаны основные технологические трудности получения качественных отливок. Усадка может вызвать появление в металле напряжений, деформацию отливок и в некоторых случаях образование в них трещин. Причинами напряженного состояния материала отливок могут быть: сопротивление литейной формы, усадка металла и неодновременное охлаждение различных частей отливок неправильно выбранный способ литья. При охлаждении различных участков отливки с разной скоростью усадка этих участков металла протекает неодинаково, в результате развиваются литейные напряжения.

Для получения плотных отливок из сплавов с большой усадкой при разработке литниковых систем предусматривают прибыли. Прибыль устанавливают в верхней части отливки с таким расчетом, чтобы благодаря ускоренному охлаждению низа и стремлению жидкого металла переместиться на более низкие уровни все усадочные полости оказались бы внутри прибыли, которую затем отделяют от отливки.

При выборе металла для литых деталей конструктор должен быть осведомлен о его жидкотекучести, литейной усадке, технологии получения данной отливки и о влиянии ее на прочностные характеристики разрабатываемого узла.

Литература

1. Технология конструкционных материалов: Учеб. пособие для вузов по специальности «Комплексная автоматизация машиностроения» / А.М. Дальский, В.С. Гаврилюк, Л.Н. Бухаркин и др.; Под общ. ред. А.М. Дальского. – М.: Машиностроение, 1990. – 352 с.

2. Технология конструкционных материалов: Учебн. для вузов / А.М. Дальский, И.А. Арутюнова, Т.М. Барсукова и др.; Под общ. ред. А. М. Дальского. – М.: Машиностроение, 1985. – 448 с.

3. Технология металлов и других конструкционных материалов. / М.А. Барановский, Е.И. Вербицкий, А.М. Дмитрович и др. Под общ. Ред. А.М. Дмитровича. – Минск: Вышезйш. шк., 1973. – 528 с.

4. Технология металлов и сварка: Учебник для вузов / П.И. Полухин, Б.Г. Гринберг, В.Т. Ждан и др.; Под общ. ред. П.И. Полухина. – М.: Машиностроение, 1984. – 464 с.

5. Челноков Н.М., Власьевнина Л.К., Адамович Н.А. Технология горячей обработки материалов: Учебник для учащихся техникумов. – М.: Высш. шк, 981. – 296с.

6. Семенов Е.И., Кондратенко В.Г., Ляпунов Н.И. Технология и оборудование ковки и объемной штамповки: Учебн. пособие для техникумов. – М.: Машиностроение, 1978. – 311 с.

7. Технология и оборудование контактной сварки: Учебник для машиностроительных вузов /Б.Д. Орлов, А.А. Чакалев, Ю.В. Дмитриев и др.; Под общ. ред. Б.Д. Орлова. – М.: Машиностроение, 1986. – 352 с.

8. Полетаев Ю.В., Прокопенко В.В. Термическая резка металлов: Учеб. пособие / Волгодонский институт (филиал) ЮРГТУ. – Новочеркасск: ЮРГТУ, 2003. – 172 с.

9. Технология обработки конструкционных материалов: Учеб. для машиностр. спец. вузов / П.Г. Петруха, А.И. Марков, П.Д. Беспахотный и др.; по ред. П.Г. Петрухи. – М.: Вьгсш. шк., 1991. – 512 с.

10. Металлорежущие станки: Учеб. пособие для втузов. Н.С. Колев, Л.В. Красниченко, Н.С. Никулин и др. – М.: Машиностроение, 1980. – 500 с.

11. Станочное оборудование автоматизированного производства. Т. 2./ Под ред. В. Н. Бушуева. – М.: Изд-во “Станкин”, 1994. – 656 с.

12. Физико-технологические основы етодтов обработки / Под ред. А.П. Бабичева. – Ростов – на – Дону: Изд-во «Феникс», 2006. – 409 с.

13. Бутенко В.И. Технология механической обработки металлов и сплавов: Учебное пособие. – Таганрог: Изд-во ТРТУ, 2003. – 102 с.

14. Кулинский А.Д., Бутенко В.И. Отделочно-упрочняющая обработка деталей машин: Учебное пособие. – Таганрог: Изд-во ТРТУ, 2006. – 104 с.

15. Дюдин Б.В., Дюдин В.Б. Электрофизические и электрохимические методы обработки материалов в приборостроении: Учебное пособие. – Таганрог: Изд-во ТРТУ, 1998. – 82 с.

16. Берела А.И., Егоров С.Н. Технология, машины и оборудование машиностроительного рпоизводства: Учебное поосбие. – Новочеркасск: Изд-во ЮРГТУ (НПИ), 2005. – 184 с.

17. Евстратова Н.Н., Компанеец В.Т., Сахарникова В.А. Технология конструкционных материалов: Учебное пособие. – Новочеркасск: Изд-во ЮРГТУ (НПИ), 2007. – 350 с.

18. Титов Н.Д., Степанов Ю.А. Технология литейного производства. – М.: Машиностроение, 1974. – 672 с.

19. Бутенко В.И., Захарченко А.Д., Шаповалов Р.Г. Технологические рпоцессы и оборудование: Учебное пособие. – Таганрог: Изд-во ТРТУ, 2005. – 132 с.

20. Попов М.Е., Кравченко Л.А., Клименко А.А. Технология заготовительно-штамповочного производства в авиастроении: Учебное пособие. – Ростов – на – Дону: Издательский центр ДГТУ, 2005. – 83 с.

21. Флек М.Б., Шевцов С.Н., Родригес С.Б., Сибирский В.В., Аксенов В.Н. Разработка технологических процессов изготовления деталей летательных аппаратов: Учебное пособие. – Ростов – на – Дону: Издательский центр ДГТУ, 2005. – 179 с.

22. Дальский А.М., Суслов А.Г., Косилова А.Г. и др. Справочник технолога-машиностроителя. Т. 1 – М.: Машиностроение, 2000. – 941 с.

23. Слюсарь Б.Н., Шевцов С.Н., Рубцов Ю.Б. Введение в авиационную технику и технологию: Текст лекций. – Ростов – на – Дону: Издательский центр ДГТУ, 2005. – 149 с.

24. Бутенко В.И., Дуров Д.С. Совершенствование процессов обработки авиационных материалов. – Таганрог: Изд-во ТРТУ, 2004. – 127 с.

25. Вульф А.М. Резание металлов. – Л.: Машиностроение, 1975. – 496 с.

26. Бутенко В.И. Бездефектное шлифование поверхностей деталей машин (библиотека технолога). – Таганрог: Изд-во ТТИ ЮФУ, 2007. – 60 с.

27. Бутенко В.И. Структура и свойства материалов в экстремальных условиях эксплуатации. – Таганрог: Изд-во Технологического института ЮФУ, 2007. – 264 с.

Литьем можно получить детали массой от нескольких граммов до сотен тонн, размерами от нескольких миллиметров до десятков метров, самой сложной формы, которую нельзя получить другими методами. Литью поддаются самые различные сплавы, как пластичные, так и хрупкие. Литьем получают заготовки с минимальными припусками на обработку, а в некоторых случаях детали, не требующие ее вообще, что значительно сокращает расход металла и объем механической обработки. В СССР на долю стального литья в общем балансе отливок приходится около 23%, чугунного -72 и цветных сплавов - 5%. Продукцией литейного производства для судостроения являются крупные стальные отливки: форштевни, ахтерштевни, якоря, цепи и др. Чаще их выполняют предприятия, имеющие собственное литейное производство и литейный цех. Суть литейного производства состоит в том, что фасонные детали (заготовки) получают заливкой жидкого металла в литейную форму, полость которой соответствует их размерам и форме. После кристаллизации металла литую деталь (заготовку), называемую отливкой, удаляют из литейной формы и отправляют на последующую обработку. Применяют формы разового и многократного использования. Технологический процесс изготовления отливок в разовых формах складывается из ряда операций, которые осуществляются в соответствующих отделениях литейного цеха (рис. 4.1).


Рис. 4.1. Схема технологического процесса изготовления отливок в разовых формах

Наряду с требуемыми механическими, физическими и химическими свойствами литейные сплавы должны обладать определенными технологическими свойствами, главными из которых являются жидкотекучесть, усадка, склонность к ликвации и газопоглощению.

Жидкотекучесть - способность жидкого металла заполнять щелевидные полости литейной формы и четко воспроизводить очертания отливки. При хорошей жидкотекучести металл заполняет всю полость формы, какой бы сложной она ни была, а при недостаточной - образует недоливы в тонких сечениях отливки. Жидкотекучесть зависит от химического состава и температуры заливаемого сплава. Фосфор, кремний и углерод улучшают ее, а сера ухудшает. Повышение температуры жидкого металла улучшает жидкотекучесть.

Усадка - уменьшение объема металла и линейных размеров отливки в процессе ее кристаллизации и охлаждения в твердом состоянии.

Ликвация - неоднородность химического состава сплава по сечению отливки.

Газопоглощение - способность литейных сплавов в жидком состоянии растворять кислород, азот и водород, причем их растворимость растет с перегревом расплава. Залитый в форму газонасыщенный расплав охлаждается, понижается растворимость газов, и они, выделяясь из металла, могут образовать в отливке газовые раковины.

Величина напряжений, образование раковин и пористости зависят от правильного сопряжения и оформления углов отливки. При конструировании отливки должны быть соблюдены равностенность; наличие формовочных уклонов на вертикальных стенках, перпендикулярных плоскости разъема формы; плавность переходов при сопряжении стенок; наличие галтелей и др.

Литьё является одним из важнейших и распространенных способов изготовления заготовок и деталей машин. Масса литых деталей составляет около 60 % от массы тракторов и сельскохозяйственных машин, (70… 85) % от массы прокатных станов и металлорежущих станков.

Сущность процесса литья состоит по сути в том, что расплавленный металл определœенного химического состава заливается в заранее приготовленную литейную форму, полость которой по своим размерам и конфигурации соответствует форме и размерам требуемой заготовки. После остывания заготовки или готовой детали, называемые отливками, извлекают из формы.

Для получения отливок высокого качества литейные сплавы должны обладать определœенными литейными свойствами: хорошей жидкотекучестью, низкой усадкой, иметь химическую однородность структуры, низкую температуру плавления и т.д.

Большую часть чугунных и стальных отливок получают методом литья в песчано-глинистые формы (до 60 % общего объёма). Для получения отливок с высокой точностью (минимальными припусками на механическую обработку) и шероховатостью поверхности, однородной структурой металла применяют специальные способы литья: литье в металлические формы (кокили), центробежное литье, литье под давлением, литье по выплавляемым моделям, литье в оболочковые формы и т. д.

Основными преимуществами литья перед другими способами получения заготовок и деталей являются:

а) возможность получения заготовок и деталей различной конфигурации, из различных металлов и сплавов;

б) возможность получения фасонных изделий сложной конфигурации (полых, объёмных и т. д.), которые невозможно и экономически нецелœесообразно изготавливать другими методами (к примеру, резанием – большой расход металла в стружку, значительные затраты времени и др.);

в) универсальность технологий – возможность изготовления заготовок от нескольких граммов до сотен тонн;

г) возможность переработки отходов производства и брака:

д) относительная простота получения и низкая стоимость отливок.

Наряду с достоинства литье имеет и недостатки :

а) трудность получения однородного химического состава отливки;

б) точность и качество поверхности детали ниже, чем при обработке её резанием или пластическим деформированием;

в) неоднородность состава и пониженная плотность материала заготовок, а следовательно, их более низкие, чем заготовок, полученных обработкой давлением, прочностные характеристики.

Основными направлениями развития литейного производства являются: реконструкция и модернизация имеющегося оборудования; замена устаревшего оборудования высокопроизводительными литейными автоматами и полуавтоматами, робототехническими комплексами; снижение материалоемкости продукции машиностроительного комплекса путем увеличения доли литья из легированных сталей и высокопрочного чугуна, а также точного литья.

Основными технико-экономическими показателями работы литейных цехов являются: годовой выпуск отливок в тоннах; выпуск отливок на одного производственного работающего; съем литья с одного квадратного метра производственной площади цеха; выход годного металла; доля брака литья; уровень механизации и автоматизации; доля литья получаемого специальными способами; себестоимость одной тонны литья.

А) Литье в песчано-глинистые формы

Литейную форму, имеющую полость, в которую заливают расплавленный металл, изготавливают из формовочной смеси по модели. Модель - это приспособление для получения в форме рабочей полости будущей отливки. Модели могут изготавливаться из дерева, пластмассы или металла, размеры их должны быть больше размеров отливок на величину усадки металла и величину припуска для последующей механической обработки.

Формовочные смеси для литейных форм и стержней состоят из кварцевого песка, специальной глины, воды и ряда добавок (льняного масла, канифоли, декстрина, жидкого стекла, деревянных опилок или торфяной крошки), обеспечивающих газопроницаемость и пластичность смеси. При изготовлении формы формовочную смесь, увлажненную и тщательно перемешанную, засыпают в нижнюю опоку, предварительно установив модель отливки (рис.1). Далее смесь уплотняют вручную различными приспособлениями или на специальных формовочных машинах. После уплотнения смеси модель извлекают из нижней опоки. Аналогичным образом уплотняют смесь и в верхней опоки, предварительно установив в нее, помимо модели отливки, модель литниковой системы, образующую каналы для заливки жидкого металла в полость литейной формы. Литниковая система состоит из литниковой чаши, вертикального стояка, шлакоуловителя, питателя и выпора. Литниковая система должна обеспечивать плавное поступление расплавленного металла в форму и отвод газов из формы.

Затем, установив стержни в форму, производят её сборку: верхнюю опоку устанавливают на нижнюю и фиксируют опоки штырями. В таком виде (рис. 1) форма готова к заливке расплавом.

Плавку металла выполняют в различных плавильных устройствах. Чугун плавят в вагранках, сталь - в конверторах и электропечах, цветные металлы и их сплавы - в электрических печах и тиглях. Температуру расплавленного металла доводят до температуры заливки, ᴛ.ᴇ. на 100…150 С выше температуры плавления сплава.

После заливки расплава в литейную форму и его охлаждения, отливки выбивают из формы и очищают от формовочной смеси вручную, на вибрационных решетках или дробеструйных установках. Обрубку элементов литниковой системы выполняют дисковыми фрезами, ленточными пилами, на обрезных прессах, газопламенными или плазменными резаками. Зачистку отливок от заусенцев и заливов выполняют абразивными кругами.

Перед отправкой в механические цехи стальные отливки обязательно подвергаются термической обработке – отжигу или нормализации – для снятия внутренних напряжений и измельчения зерна металла. В отдельных случаях термической обработке подвергаются отливки и из других сплавов.

Преимуществом литья в песчано-глинистые формы является невысокая стоимость формовочных материалов и модельной оснастки. При этом данный способ литья является более трудоемким в сравнении с другими. Вместе с тем, литьё в песчано-глинистые формы обеспечивает малую точность размеров и большую шероховатость поверхности.

Б) Специальные способы литья

Специальные способы литья по сравнению с литьем в песчано-глинистые формы позволяют получать отливки более точных размеров с хорошим качеством поверхности, что способствует: уменьшению расхода металла и трудоемкости механической обработки; повышению механических свойств отливок и уменьшению потерь от брака; значительному снижению или исключению расхода формовочных материалов; сокращению производственных площадей; улучшению санитарно-гигиенических условий и повышению производительности труда.

К ним относят литьё: в постоянные металлические формы (кокиль); центробежное; под давлением; в тонкостенные разовые формы; по выплавляемым моделям; корковое или оболочковое; электрошлаковое литьё.

Литье в оболочковые формы. При этом способе литья применяют специальные оболочковые формы, изготавливаемые из кварцевого песка (92…95 %) и термореактивной синтетической смолы (5…8 %). Песчано-смоляную смесь готовят перемешиванием песка и измельченной порошкообразной смолы с добавкой растворителя (холодный способ) или при температуре 100…120 С (горячий способ), благодаря чему смола обволакивает (плакирует) зерна песка. Далее смесь дополнительно дробиться до получения отдельных зерен, плакированных смолой, и загружается в бункер.

Изготовление оболочковых форм производят следующим образом (рис. 2.). Металлическую модель, нагретую до 200…300 С, покрывают слоем теплостойкой смазки (силиконовая жидкость) и помещают в бункер, затем засыпают формовочной смесью и выдерживают 10…30 с. За это время происходит предварительное спекание оболочки на модели. Потом с модели удаляют излишки сыпучей формовочной смеси и вместе с оболочкой выдерживают в печи 1…3 мин. при температуре 300…375 С. При этом происходит окончательное спекание оболочки толщиной 7…15 мм. После охлаждения, благодаря разделительному слою теплостойкой смазки, оболочка легко снимается с модели. Выполненные таким образом отдельные части формы и литниковую систему собирают, склеивая по плоскостям разъемов и скрепляя скобами или струбцинами. Изготовление и сборка оболочковых форм легко механизируется и автоматизируется.

В отличие от литья в песчано-глинистые формы литье в оболочковые формы обеспечивает большую точность размеров и меньшую шероховатость. Припуск на механическую обработку составляет 0,5…3 мм. При этом ограниченная масса отливок (до 250…300 кг) и более сложная технологическая оснастка являются недостатками этого способа литья. По этой причине литье в оболочковые формы используют в серийном и массовом производстве отливок малых и средних размеров.

Литье по выплавляемым моделям. Процесс получения отливок состоит в следующем. В пресс-форме из легкоплавкой смеси стеарина (50 %) и парафина (50 %) отливают модель отливки и элементов литниковой системы. Температура прессования смеси 42…45 С. Модель и литниковую систему собирают в блок, покрывают керамической оболочкой (толщиной 2…8 мм). Керамическое покрытие состоит из 60…70 % пылевидного кварца или тонко измельченного кварцевого песка и 30…40 % связующего вещества (раствор этилсиликата). Далее из керамической литейной формы водой, паром или горячим воздухом выплавляют модель. Освобожденные от модели формы помещают в опоки с песком, уплотняют и прокаливают при 900…950 С в течение 3…5 ч. При этом происходит выгорание остатков модельного состава и отжиг керамической формы. После прокаливания готовые формы поступают на заливку металлом.

Литье по выплавляемым моделям обеспечивает получение размеров отливки большей точности. Этим способом можно получить отливки самой сложной формы с толщиной стенок до 0,3…0,8 мм с минимальным припуском на механическую обработку (до 0,7 мм).

Недостатки – стоимость отливок, получаемых по выплавляемым моделям, выше, чем изготавливаемых другими способами литья.

Литье в металлические формы. Металлические литейные формы (кокили) изготавливают разъёмными и неразъёмными в основном из стали и чугуна. Для получения сложных полостей используют металлические и песчаные стержни.

Процесс литья в кокиль включает следующие операции: очистку кокиля, нанесение на его внутреннюю поверхность огнеупорной обмазки (из кварца, графита͵ асбеста и жидкого стекла), нагрев кокиля до 150…450 С, заливку расплавленного метала. Нанесение огнеупорной обмазки обеспечивает увеличение срока службы кокиля, предупреждение приваривания металла к стенкам кокиля и облечение извлечения отливок. Подогрев предохраняет кокиль от растрескивания и облегчает заполнение формы металлом. После затвердевания отливку извлекают из кокиля при помощи выталкивателя.

Преимуществами литья в кокиль по сравнению с литьем в разовые песчано-глинистые формы являются: получение отливок более точных размеров и форм; мелкозернистой структуры металла и соответственно с лучшими физико-механическими свойствами; обеспечение высокой производительности труда; более низкой стоимости отливок; улучшения условий труда литейщика.

Недостатки способа - высокая стоимость кикилей; низкая газопроницаемость и податливость металлической формы, приводящая к образованию газовых раковин и трещин в отливках; быстрое охлаждение металла затрудняет получение отливок сложной формы, вызывает опасность появления у чугунных отливок отбелœенных труднообрабатываемых поверхностей.

Литье под давлением. Сущность процесса литья состоит по сути в том, что расплавленный металл заполняет пресс-форму под давлением поршня (рис.3а). После затвердевания металла форма раскрывается и отливка извлекается.

Перед началом работы пресс-форму подогревают до 150…400 С исходя из заливаемого сплава и смазывают смазкой на базе минœеральных масел с графитом.

Производительность поршневых машин достигает 500 отливок в час. В условиях массового производства применение литья под давлением позволяет снизить трудоемкость получения отливок в 10…12 раз, а трудоемкость механической обработки – в 5…8 раз. За счёт высокой точности изготовления и обеспечения повышенных механических свойств отливок, полученных под давлением, достигается экономия до 30…50 % металла по сравнению с литьем в разовые формы. Создается возможность полной автоматизации процесса.

Центробежный способ литья – высокопроизводительный способ изготовления полых отливок типа тел вращения (втулок, труб, гильз) из цветных и желœезоуглеродистых сплавов, а также биметаллов. Сущность способа состоит в заливке жидкого металла во вращающуюся металлическую или керамическую форму (изложницу). Жидкий металл за счёт центробежных сил отбрасывается к стенкам формы, растекается вдоль них и затвердевает. Неметаллические включения собираются на внутренней стороне отливки и удаляются при дальнейшей механической обработке (рис.3б). После охлаждения готовая отливка с помощью специальных приспособлений извлекается из формы.

Отливки получаются точной конфигурации, с малой шероховатостью поверхностей и имеют плотную мелкозернистую структуру металла.

Как и при кокильном литье, металлические формы перед заливкой жидкого металла подогреваются и на них наносятся защитные покрытия.

Центробежное литьё высокопроизводительно (за 1 ч. можно отлить 40…50 чугунных труб диаметром 200…300 мм), дает возможность получать полые отливки без применения стержней и биметаллические отливки последовательной заливкой двух сплавов (к примеру, стали и бронзы), по сравнению с литьем в стационарные песчано-глинистые и металлические формы обеспечивает более высокое качество отливок, почти устраняет расход металла на прибыли и выпоры, увеличивает выход годного литья на 20…60 %.

К недостаткам способа следует отнести высокую стоимость форм и оборудования, ограниченность номенклатуры отливок.

Непрерывное литьё - это способ получения протяжных отливок постоянного поперечного сечения путем непрерывной подачи расплава в форму и вытягивания из нее затвердевшей части отливки. Учитывая зависимость отнаправления вытягивания различают вертикальное и горизонтальное непрерывное литье. Вертикальное литье обычно применяют для получения слитков и труб.

Схема горизонтального литья приведена на рис.4. Кристаллизатор 2, установленный в металлоприемник 1, изготавливается из меди, графита и, реже, стали. Он имеет внутреннюю полость, профиль которой соответствует поперечному сечению отливки. На выходной части кристаллизатора устанавливается рубашка водяного охлаждения 3. Слиток 6 вытягивается из кристаллизатора тянущими роликами 5 и разделяется на мерные куски с помощью пилы 7 или плазменной резки. Центральная часть слитка после его выхода из кристаллизатора остается жидкой, в связи с чем с целью ускорения затвердевания и исключения прорыва расплава через оболочку твердого металла устанавливается душевое устройство для охлаждения водой 4.

Непрерывным литьем получают заготовки постоянного сечения в виде круга, полосы или более сложного профиля. Недостатком этого метода литья является ограниченность номенклатуры отливок, связанная с невозможностью получения сложных по форме заготовок.

Литье вакуумным всасыванием - этим методом получают отливки типа втулок, колец, заготовок зубчатых колес, гильз и т.д. На поверхности расплава, находящегося в металлоприемнике 3, помещают плоское кольцо из огнеупорного материала 2, на ĸᴏᴛᴏᴩᴏᴇ сверху опускается металлическая водоохлаждаемая форма - кристаллизатор 1. Внутри формы насосом создается разряжение и расплавленный металл 4 втягивается в форму. Снимая разряжение в форме, можно удалять из неё расплав и получать полые отливки. За счёт направленной кристаллизации от поверхности к центру и подпитки затвердевающей отливки из металлоприемника удается получить плотную отливку без усадочных дефектов и газовой пористости. Особенностью этого процесса является высокий выход годного металла, так как отсутствует крайне важно сть в литниковой системе и прибылях.

Дефекты отливок - обусловлены неправильной конструкцией отливок, нарушением технологии литья или ошибками при её разработке. К основным дефектам относят раковины, трещины, дефекты поверхности и несоответствие конфигурации и размеров требованиям чертежа.


Контрольная работа

Технология литейного производства

1. Общая характеристика литейного производства

сплав отливка деталь технический

Литейное производство - отрасль машиностроения, производящая фасонные заготовки или детали (отливки) путем заливки жидкого металла в литейную форму, полость которой имеет конфигурацию и размеры отливки. При охлаждении металл затвердевает и сохраняет заданную конфигурацию.

Литье является важным и экономически выгодным способом производства. Во многих случаях литье - единственный способ изготовления нужных деталей.

Особенно это проявляется в тех случаях, когда требуется изготовить детали больших размеров и массы, а также сложной конфигурации. Кроме того, малопластичные сплавы, например чугун, которые не поддаются обработке давлением, с успехом используют для производства фасонных отливок.

Литьем получают изделия массой от нескольких граммов до 300 т, длиной от нескольких сантиметров, со стенками толщиной 0,5…500 мм (блоки цилиндров, поршни, коленчатые валы, корпуса и крышки редукторов, зубчатые колеса, станины станков и прокатных станов и др.).

Дальнейшее совершенствование технологии литейного производства, механизация и автоматизация всех процессов, освоение и внедрение прогрессивных способов сокращает механическую обработку отливок, снижает их стоимость и расширяет область применения литейного производства в промышленности.

Для изготовления отливок применяют множество способов литья: в песчаные формы, в оболочковые формы, по выплавленным моделям, в кокиль, под давлением, центробежное литье и др.

Все способы фасонного литья, кроме литья в песчаные формы, называются специальными. Область применения того или иного способа литья определяется объемом производства, требованиями к геометрической точности и шероховатости отливок, экономической целесообразностью и другими факторами.

2. Изготовление отливок в песчано-глинистой форме

Начинается процесс с разработки чертежа отливки и изготовления рабочих чертежей модельного комплекта.

Литьем в песчано-глинистые формы изготавливают до 80% общего количества (по массе) отливок.

Песчано-глинистые формы называют разовыми, т.е. их используют только один раз; после заливки в них металла и его охлаждения формы разрушают и извлекают отливки. Песчано-глинистые формы изготавливают из формовочных смесей в опоках или почве при помощи моделей и другой модельно-опочной оснастки.

В комплект модельно-опочной оснастки входят модели, подмодельные (подопочные) и сушильные плиты, стержневые ящики, опоки, приспособления для контроля форм и стержней, модели элементов литниковой системы.

С помощью модели в литейной форме получают отпечаток наружной конфигурации отливки. Они бывают неразъемные, разъемные, с отъемными частями. В серийном и массовом производстве применяют в основном металлические (реже - пластмассовые), а в индивидуальном и мелкосерийном - деревянные (из сосны, ольхи, липы, бука и др.) модели. Модели изготавливают с учетом припусков на механическую обработку и литейную усадку металла. Это значит, что они имеют большие размеры, чем отливка или готовая деталь. Кроме того, для лучшего извлечения модели из песчаной формы ее боковые стенки имеют формовочные уклоны.

Стержневые ящики предназначены для изготовления песчаных стержней. В индивидуальном и мелкосерийном производстве применяют деревянные стержневые ящики, а в серийном и массовом - металлические, реже - пластмассовые. В зависимости от размеров и формы стержней ящики могут быть цельные, разъемные и с отъемными частями. Как и модели, их изготовляют с учетом литейной усадки и припусков на механическую обработку. Стержень - элемент литейной формы для образования отверстия, полости или иного сложного контура в отливке.

Подмодельные плиты, деревянные или металлические, служат для установки на них моделей и опок при формовке.

Опока - приспособление для удержания формовочной смеси при изготовлении литейной формы.

Для подвода расплавленного металла в полость литейной формы, ее заполнения и питания отливки при затвердевании используют литниковую систему . Обычно литниковая система состоит из литниковой чаши (воронки), стояка, шлакоуловителя, питателя.

Формовочные материалы - это совокупность природных и искусственных материалов, используемых для приготовления формовочных и стержневых смесей. В качестве исходных материалов используют формовочные кварцевые пески и литейные формовочные глины.

Формовочная смесь - это многокомпонентная смесь формовочных материалов, соответствующая условиям технологического процесса изготовления литейных форм. Формовочные смеси по характеру использования разделяют на облицовочные, наполнительные и единые.

Облицовочные смеси применяют при ручной формовке для образования рабочей поверхности литейной формы, которая контактирует с жидким металлом, толщина слоя составляет 15…20 мм. Они обладают лучшими физико-механическими свойствами и приготавливаются из свежих песка и глины с добавкой противопригарных материалов.

Наполнительную смесь засыпают поверх облицовочной, заполняя остальную часть литейной формы. Эту смесь приготавливают из оборотной, переработанной после выбивки опок смеси с добавкой 5…10% свежих песка и глины.

Единые смеси применяют в массовом производстве при машинной формовке для наполнения всего объема литейной формы. Приготавливают ее из оборотной смеси с добавкой до 50% свежего песка и глины.

По состоянию формы перед заливкой металла различают смеси для изготовления форм: сырых, подсушенных, сухих, химически твердеющих и самотвердеющих.

Технологический процесс приготовления формовочных смесей заключается в перемешивании составляющих компонентов смеси с последующим ее выстаиванием и разрыхлением. Подготовка исходных материалов и приготовление формовочных смесей производятся в смесеприготовительных отделениях литейных цехов.

Приготовленные формовочные смеси должны обладать следующими основными свойствами: достаточной прочностью (противостоять разрушающим усилиям в процессе изготовления и транспортировки форм, а также воздействия жидкого металла при заливке), хорошей газопроницаемостью (пропускать газы после заливки металла в форму), низкой газотворностью (не выделять газы при контактировании с жидким металлом), пластичностью (хорошо формоваться и давать четкий отпечаток от модели), податливостью (не препятствовать усадке металла при затвердевании отливки), огнеупорностью (не размягчаться и не расплавляться под действием высокой температуры жидкого металла, заливаемого в форму), выбиваемостью (легко разрушаться и выбиваться из опок).

Технология ручной формовки

Ручную формовку широко используют при изготовлении мелких и средних отливок в индивидуальном и мелкосерийном производстве, а также при изготовлении крупных отливок (станины станков, прокатных станов и др.) массой до 200 т и более. На практике используют различные приемы ручной формовки.

Формовка в парных опоках по разъемной модели наиболее распространена.

Литейную форму, состоящую из двух полуформ, изготавливают по разъемной модели в такой последовательности: на модельную плиту устанавливают нижнюю половину модели и ставят нижнюю опоку. Модель припудривают припылом, затем засыпают формовочной смесью и уплотняют. Избыток смеси удаляют линейкой и в формовочной смеси душником накалывают отверстия для улучшения вентиляции формы. Готовую полуформу поворачивают на 180, устанавливают верхнюю половину модели, модель шлакоуловителя, стояка и выпоров. По центрирующим штырям устанавливают верхнюю опоку, засыпают формовочной смесью и уплотняют. После извлечения моделей стояка и выпоров форму раскрывают. Из полуформ извлекают модели, в нижнюю полуформу устанавливают стержень, накрывают нижнюю полуформу верхней и скрепляют или нагружают их. Форма готова под заливку жидким металлом.

Формовку по шаблонам применяют в единичном производстве для получения отливок, имеющих конфигурацию тел вращения.

Формовку в кессонах применяют при изготовлении крупных отливок массой до 200 т и более.

Технология изготовления литейных форм и стержней на машинах и автоматах

Машинная формовка по сравнению с ручной имеет значительные преимущества: резко увеличивается производительность, улучшаются условия труда рабочих, повышается качество отливок, снижается брак и себестоимость литья. Этот вид формовки применяют, в основном, в массовом и серийном производстве при изготовлении мелких и средних отливок. Такие трудоемкие процессы, как уплотнение формовочной смеси, поворот формы и выемка моделей из формы, механизированы.

Для изготовления песчано-глинистых форм на машинах необходимо иметь специальную модельно-опочную оснастку:

Универсальные металлические модельные плиты, позволяющие ускорять монтаж и демонтаж моделей;

Точно изготовленные металлические модели;

Металлические взаимозаменяемые опоки.

Формовочные машины классифицируют по следующим признакам:

По методу уплотнения смеси в опоке (прессовые, встряхивающие и пескометы);

По способу извлечения модели из формы (со штифтовым съемом, с протяжкой модели вниз, с поворотной плитой и перекидным столом).

Технология изготовления форм на машинах заключается в следующем: модель с модельной плитой, закрепленной на столе машины, обдувают сжатым воздухом и опрыскивают керосином, чтобы не прилипала формовочная смесь. Затем на плиту ставят нижнюю опоку и наполняют ее формовочной смесью из бункера, расположенного над машиной. Смесь в опоке уплотняется, после чего излишек смеси срезается заподлицо с кромкой опоки. Далее на полученную полуформу устанавливают поддоночный щиток и полуформу поворачивают на 180 0 и, подняв модельную плиту или опустив опоку (в зависимости от конструкции машины), извлекают модель.

При формовке верхней полуформы на подмодельную плиту с верхней половиной модели ставят верхнюю опоку и модель стояка и производят все операции формовки так же, как и в случае с нижней полуформой. После удаления моделей готовую верхнюю полуформу снимают с машины и передают на сборку.

На участке сборки в нижнюю полуформу ставят стержень и обдувают сжатым воздухом. Затем на нижнюю полуформу, по фиксирующим стержням, ставят верхнюю полуформу и обе половины скрепляют скобами или ставят груз для предупреждения подъема верхней опоки во время заливки металлом.

Встряхивающие машины применяют главным образом для изготовления форм в высоких опоках. Уплотнение смеси происходит за счет встряхивания, возникающего при ударе стола машины с закрепленной на нем плитой и опокой о станину машины. Стол машины под действием сжатого воздуха, поступающего в цилиндр машины, поднимается на высоту 30…100 мм и затем под действием сил тяжести падает, ударяясь о станину. При этом смесь уплотняется. Уплотнение зависит от мощности удара и числа ударов (обычно 30…50 в минуту). На машинах указанного типа можно изготавливать песчано-глинистые формы массой от 100 кг до 40 т, производительность машин при этом составляет до 15 крупных форм в час.

На встряхивающих машинах уплотнение формовочной смеси в опоке происходит неравномерно: нижние слои - более плотные, верхние - менее. Для устранения этого недостатка применяются встряхивающие машины с допрессовкой верхних слоев формы. В этом случае распределение плотности смеси более равномерно.

Прессовые формовочные машины применяются двух типов (с верхним и нижним прессованием) и приводятся в действие сжатым воздухом. Эти машины более производительны по сравнению со встряхивающими, т.к. уплотнение смеси занимает всего несколько секунд.

Принцип работы машины с верхним прессованием состоит в следующем. На подмодельную плиту с моделью, укрепленную на столе машины, ставят опоку со съемной наполнительной рамкой. Опоку и наполнительную рамку заполняют из бункера формовочной смесью и над опокой устанавливают поворотную траверсу с прессующей колодкой. При подъеме стола вверх форма прижимается к плите траверсой. Смесь уплотняется колодкой, которая, войдя в рамку, выдавливает из нее смесь и уплотняет ее в опоке. Затем стол с заформованной опокой опускают и траверсу с колодкой отводят в сторону. Готовую полуформу снимают и на стол машины ставят следующую опоку. В машинах с нижним прессованием роль наполнительной рамки выполняет углубление в неподвижном столе. Недостатком формовочных прессовых машин является неравномерное уплотнение формовочной смеси по высоте опоки. При верхнем прессовании более плотными получаются верхние слои смеси в опоке, а при нижнем - нижние, прилегающие к модели. Прессовые машины применяют для формовки в опоках небольшой высоты (200…250 мм).

Для изготовления больших форм применяют стационарные или передвижные пескометы . Уплотнение смеси в опоке получается достаточно хорошим и равномерным по высоте. Работает пескомет следующим образом: формовочная смесь подается ленточным транспортером в пескометную головку, где подхватывается лопаткой, укрепленной на вращающемся диске, и с большой скоростью выбрасывается в опоку через отверстие в горловине, постепенно наполняя опоку. Скорость вращения диска достигает 1500 об/мин. В процессе набивки опоки рабочий перемещает хобот пескомета по всей площади опоки.

Полуавтоматы и автоматические формовочные машины подразделяются на однопозиционные проходные и многопозиционные карусельные.

На этих машинах, кроме обычных трудоемких операций формовки, механизированы и все остальные (очистка моделей, установка опок и др.).

На однопозиционных проходных машинах все операции формовки (обдувка модели, подача смеси в опоку, уплотнение, подпрессовка, снятие полуформы с подмодельной плиты и подача ее на приемный механизм) производятся последовательно. На многопозиционных карусельных машинах указанные выше операции выполняются на каждой позиции одновременно (параллельно) с другими. Все механизмы, производящие технологические операции, расположены неподвижно относительно перемещающихся на карусели полуформ. В процессе работы карусель периодически поворачивается на четверть оборота. На позиции 1 происходит операция обдувки и смазки модели. На позиции 2 на подмодельную плиту ставится пустая опока. Затем на этой же позиции происходит заполнение опоки смесью. На позиции 3 формовочная смесь уплотняется встряхиванием с последующей подпрессовкой. На позиции 4 происходит протяжка модели и съем готовой полуформы с помощью толкателя. Готовые полуформы по рольгангу поступают на сборку.

Изготовление стержней осуществляют в стержневых ящиках вручную и на машинах (при серийном и массовом производствах). Используют несколько видов машин: пескострельные, пескодувные, встряхивающие и др. Они отличаются между собой различными методами уплотнения стержневой смеси в ящиках.

Сушка форм является нежелательной операцией, т.к. она увеличивает продолжительность процесса изготовления отливок. Однако в ряде случаев (изготовление стальных и крупных чугунных отливок) она необходима. Температура сушки форм должна быть ниже температуры, при которой глина теряет связующую способность. В некоторых случаях сушку заменяют поверхностной подсушкой рабочей полости формы на глубину, зависящую от толщины стенки отливки.

От правильности сборки форм в значительной степени зависит точность изготовляемых отливок и их качество. Операцию сборки начинают с установки нижней полуформы на заливочную площадку, рольганг или тележку конвейера. Затем полость полуформы продувают сжатым воздухом, устанавливают в нее стержни и нижнюю полуформу осторожно по фиксирующим штырям накрывают верхней. Для предотвращения подъема верхней полуформы статическим давлением жидкого металла ее скрепляют с нижней полуформой скобами или ставят грузы.

Заливка форм, выбивка, обрубка и очистка отливок

Заливку жидкого металла в формы производят при помощи литейных разливочных ковшей: ручных (емкостью до 60 кг), крановых чайниковых (емкостью до 1 тонны), крановых стопорных (емкостью до 10 т). Перед заливкой форму подготавливают к заливке: сушат, покрывают термостойкой краской, собирают.

При заливке металла необходимо соблюдать некоторые условия, от которых будет зависеть качество отливки. Основными из них являются: температура перегрева заливаемого металла, длительность заливки, степень заполнения литниковой системы расплавом, высота струи. Например, недостаточно перегретый металл плохо заполняет щелевидные полости формы, приводя к недоливу. Превышение температуры перегрева металла приводит к образованию усадочных и газовых раковин, увеличивает пригар смеси. Оптимальная температура заливки металла в форму составляет: для стального литья 1450…1550 0 С; чугунного - 1350…1450 0 С; бронзового - 1050…1200 0 С и силуминов - 700…750 0 С.

При этом для тонкостенных отливок температура перегрева металла примерно на 100 0 С выше, чем для толстостенных. Струя металла при заливке должна быть спокойной, без перерывов и завихрений металла, литниковая система должна быть полностью заполнена металлом. Перед заливкой металл, как правило, некоторое время выдерживают в ковше для выделения газов и всплывания неметаллических и шлаковых включений.

После кристаллизации производится выбивка отливкииз формы.

Мелкие и средние отливки выбивают из форм на вибрационных выбивных решетках. По роду привода их разделяют на эксцентриковые (привод от шатунно-кривошипного механизма) и инерционные (привод от вала с неуравновешенным грузом). При колебании выбивной решетки форма подпрыгивает на ней, разрушается, куски смеси проваливаются на транспортер, а опока с отливкой остается на решетке.

Для выбивки крупных отливок используют вибрационное коромысло. При этом форму подвешивают краном на коромысле и с помощью вибраторов подвергают вибрации. Смесь просыпается через неподвижную решетку на транспортер, а отливка остается на решетке.

Стержни из отливки выбивают на пневматических вибрационных машинах. Крупные стержни вымывают мощной струей воды.

Отливки, освобожденные от форм и стержней, подвергают обрубке . Обрубкой удаляют литниковую систему и прибыли. Для этого используют прессы-кусачки, ленточные или дисковые пилы, газокислородную и газовую резку. Заливы и неровности на отливке обрубывают пневмозубилом или зачищают абразивным кругом.

После обрубки поверхность отливки очищают от пригоревшей формовочной смеси.

В индивидуальном производстве очистку производят вручную стальными щетками или пневмозубилом. В серийном или массовом производствах - во вращающихся барабанах, дробеструйными, дробеметными машинами или напором сжатого воздуха с песком.

3. Специальные способы получения отливок

Изготовление отливок в песчано-глинистых разовых формах при машинной и особенно при ручной формовке имеет ряд существенных недостатков: невысокая точность и недостаточная чистота поверхности отливок; необходимость оставлять значительные припуски на механическую обработку; образование крупнозернистой литой структуры и др. Поэтому развитие массового производства и повышение требований к отливкам привело к разработке специальных способов литья: в оболочковые формы, по выплавляемым моделям, в кокиль, под давлением, центробежного и других, позволяющих получать отливки повышенной точности, с малой шероховатостью поверхности, минимальными припусками на механическую обработку, обеспечивающих высокую производительность труда и т.д.

Литьем в оболочковые формы называется такой метод литья, при котором отливки получаются в форме, состоящей из двух песчано-смоляных оболочек. Изготовление оболочковых форм и стержней производится из мелкозернистого кварцевого песка с добавкой в качестве связующего фенолформальдегидной смолы. Характерной особенностью таких смол является их способность при определенной температуре необратимо твердеть. При нагревании до 140…160 0 С они расплавляются, превращаясь в клейкую массу, обволакивают зерна кварцевого песка, а затем при повышении температуры до 250…300 0 С уже через несколько секунд затвердевают. При повышении температуры более 600 0 С смола, не расплавляясь, сгорает, образуя в оболочке поры, облегчающие выход газам. Оболочковые полуформы изготавливают в основном бункерным (насыпным) способом. Готовые оболочковые полуформы склеивают быстротвердеющим клеем. Литье в оболочковые формы применяют в крупносерийном и массовом производствах при получении высокоточных ответственных фасонных мелких и средних отливок из различных сплавов. Этот способ является разновидностью литья в разовые формы.

Литьем по выплавляемым моделям называется такой метод, при котором полость в огнеупорной оболочковой форме, необходимой для получения отливок, образуется за счет выплавления моделей, изготовленных из легкоплавкой смеси.

Из легкоплавкого модельного состава (50% парафина и 50% стеарина) в металлической пресс-форме, состоящей из двух частей, изготавливают модели отливок и литниковой системы. Полученные модели собирают в блоки, затем путем окунания наносят суспензию, состоящую из 30…40% гидролизованного этилсиликата и 60…70% пылевидного кварца. После этого блок обсыпают мелким сухим кварцевым песком и просушивают в течение 2…2,5 часов. На модельный блок наносят 4…6 слоев огнеупорного покрытия с последующим просушиванием каждого слоя. Выплавление моделей из оболочки производят в сушильных шкафах при температуре 110…120 0 С или погружением в горячую воду. Затем огнеупорную оболочку помещают в ящик и засыпают до самой воронки сухим кварцевым песком, помещают в электрическую печь, нагретую до 850…900 0 С, и выдерживают 3…4 часа. В процессе прокаливания происходит выгорание остатков модельной смеси, а оболочка приобретает прочность. Вслед за прокаливанием следует заливка формы металлом. Процессы получения отливок по выплавляемым моделям механизированы и автоматизированы. Этот метод способствует получению отливок с высокой точностью, малой шероховатостью поверхности, малой толщиной стенок и сложной конфигурации, массой от нескольких граммов до десятков килограмм.

Кроме выплавляемых моделей в литейном производстве используют выжигаемые (газифицируемые) модели при изготовлении ответственных отливок массой до 3,5 т из чугуна, стали и цветных сплавов в индивидуальном производстве. Для изготовления выжигаемых моделей используют пенополистирол.

При литье в кокиль отливки получают путем заливки расплавленного металла в металлические формы. По конструкции различают кокили неразъемные (вытряхные); с вертикальным разъемом и горизонтальным разъемом. Лучшим материалом для изготовления кокилей является серый чугун.

Технологический процесс состоит из следующих операций. Подготовка кокиля к заливке: на нагретый до 200 0 С кокиль наносят пульверизатором слой теплоизоляционной краски, затем подогревают вновь до 300 0 С, т.к. заливка металла в холодный кокиль может привести к выбросу; заливка кокиля жидким металлом; охлаждение отливки до ее затвердевания; выемка отливки; удаление стержней; удаление литников и зачистка отливки. Все операции механизированы и автоматизированы. Применяют в массовом и серийном производствах. Кокильные отливки имеют высокую степень точности, малую шероховатость поверхности, высокие механические свойства. К недостаткам относят высокую трудоемкость изготовления кокилей, их ограниченную стойкость, ограниченность получения отливок по массе и размерам.

Центробежным литьем называется такой метод, при котором жидкий металл заполняет полость формы под действием центробежной силы, возникающей во вращающейся форме. Этим методом изготавливают отливки, имеющие форму тел вращения. Он применяется в массовом и серийном производствах. Направленная кристаллизация отливки от наружной поверхности к внутренней обеспечивает получение плотных отливок, свободных от неметаллических включений. В зависимости от положения оси вращения формы центробежные машины подразделяются на машины с вертикальной, горизонтальной и наклонной осью. Если диаметр отливки значительно меньше ее длины, то ось вращения располагают горизонтально. Если же диаметр отливки больше, чем ее высота, то ось вращения располагают вертикально. Преимущества этого метода: получение трубных заготовок без стержней; большая экономия сплава за счет отсутствия литниковой системы; возможность получения двухслойных заготовок.

Литьем под давлением называется такой метод, при котором жидкий металл заполняет полость металлической формы (пресс-формы) под принудительным давлением 30…100 МПа.

Получение отливок производится на специальных машинах с холодной или горячей камерами прессования.

Технологический процесс получения отливок на машинах первого типа заключается в следующем: металл заливается в заливочное окно камеры сжатия ковшом, затем поршнем под давлением сплав заполняет пресс-форму; после затвердевания сплава извлекают металлический стержень, открывают пресс-форму и выталкивают толкателем отливку; далее процесс повторяется. С целью повышения срока службы формы перед началом работы нагревают до температуры 150…300 0 С и периодически наносится смазка на трущиеся части пресс-формы.

При правильной эксплуатации срок службы пресс-форм в зависимости от сложности отливок и типа сплава может достигать для цинковых сплавов 300…400 тыс. отливок, для алюминиевых - 80…100 тыс., для медных - 5…20 тыс. Преимущества этого способа: очень высокая производительность; высокая точность и низкая шероховатость поверхности, возможность получения отливок сложной конфигурации. Недостатки: высокая стоимость пресс-форм и оборудования; ограниченность габаритных размеров и массы отливок; образование пористости, раковин в массивных частях отливок. В настоящее время создаются автоматизированные установки литья под давлением.

4. Изготовление отливок из различных сплавов

Теоретические основы производства отливок. Литейные свойства металлов и сплавов

При конструировании литой детали следует учитывать ход процесса затвердевания отливки. В отливках из сплавов, имеющих большую усадку и ликвацию, необходимо, чтобы затвердевание происходило снизу вверх, вследствие чего усадочная раковина, а также ликвирующие включения перемещаются в верхнюю часть отливки, где устанавливается прибыль (элемент литниковой системы для питания отливок в период затвердевания с целью предупреждения образования усадочных раковин).

После заливки металл затвердевает послойно, начиная от стенок формы. При затвердевании и охлаждении уменьшается объем металла, поэтому уровень жидкого металла в прибыли опускается, и последующие слои в ней затвердевают на более низких уровнях. Так как в прибыли металл затвердевает в последнюю очередь, именно в ней и образуется усадочная раковина.

Для производства отливок целесообразно применять сплавы, обладающие хорошими литейными свойствами, позволяющими получать из них отливки весьма сложной конфигурации. К хорошим литейным свойствам сплавов относятся высокая жидкотекучесть, малая усадка при затвердевании и дальнейшем охлаждении, незначительная ликвация, низкая способность сплавов поглощать газы при плавке и заливке.

Жидкотекучестью сплава называется его способность заполнять полость литейной формы и точно воспроизводить очертания этой полости. Жидкотекучесть зависит от химического состава и температуры заливаемого в форму сплава, от температурного интервала кристаллизации, вязкости и поверхностного натяжения расплава, свойств литейной формы и других факторов.

Чистые металлы и сплавы, затвердевающие при постоянной температуре, обладают лучшей жидкотекучестью, чем сплавы, образующие твердые растворы и затвердевающие в интервале температур. Чем выше вязкость, тем меньше жидкотекучесть. С увеличением поверхностного натяжения жидкотекучесть понижается, и тем больше, чем тоньше канал в литейной форме; с повышением температуры заливки расплавленного металла и температуры формы жидкотекучесть улучшается. Увеличение теплопроводности материала формы уменьшает жидкотекучесть, т.е. песчаная форма отводит теплоту медленнее, и расплавленный металл заполняет ее лучше, чем металлическую, которая интенсивно охлаждает расплав.

Усадкой называется свойство металлов и сплавов уменьшаться в линейных размерах и объеме при кристаллизации и охлаждении отливки. Различают линейную и объемную усадку.

Линейная усадка сопровождается уменьшением линейных размеров при кристаллизации и охлаждении отливки. Так, отливки из серого чугуна имеют линейную усадку 0,9…1,3%, из углеродистой стали - 2…2,4%, из алюминиевых сплавов - 0,9…1,5%, из медных - 1,4…2,3%. Стержни и форма оказывают сопротивление линейной усадке металла, в результате в отливке возникают внутренние напряжения, вызывающие коробление, а иногда и образование трещин (горячих или холодных). С целью уменьшения сопротивления линейной усадке формовочные и стержневые смеси изготавливают податливыми. Линейную усадку учитывают при изготовлении модели и стержневых ящиков, увеличивая (уменьшая) размеры, по сравнению с размерами отливки на величину линейной усадки соответствующего сплава.

Объемная усадка сопровождается уменьшением объема металла при кристаллизации и дальнейшем охлаждении, и поэтому в массивном сечении отливки может образовываться усадочная пористость или концентрированная усадочная раковина. Ее устранение осуществляют установкой прибыли или холодильников в этом месте. Прибыль изготавливают более массивной, чем стенки отливки.

Ликвацией называется образование неоднородности химического состава в различных частях отливки. Различают два основных вида ликвации: зональную , когда отдельные зоны отливки имеют различный химический состав, и внутрикристаллическую , характеризующуюся неоднородностью зерна металла. На ликвацию оказывают значительное влияние химический состав сплава, скорость охлаждения и масса отливки.

Газопоглощение - это способность литейных сплавов в жидком состоянии поглощать различные газы (кислород, водород и азот), причем их растворимость растет с повышением температуры жидкого металла. В литейной форме газонасыщенный расплав охлаждается, понижается растворимость газов, и они, выделяясь из металла, могут образовывать в отливке газовые раковины. Технологические литейные сплавы должны обладать хорошей жидкотекучестью, малой усадкой и газопоглощением, а также не ликвировать.

Изготовление отливок из чугуна

В отечественном машиностроении 74% всех отливок изготавливают из серого чугуна, 21% из стали, 3% из ковкого чугуна и 2% из цветных сплавов (алюминиевых, медных и др.). Если принять среднюю стоимость отливки из серого чугуна за 100%, то стоимость отливок составляет: из ковкого чугуна - 130%; из стали - 150%; из цветных сплавов - 300…600%. Поэтому отливки из чугуна находят широкое применение в различных областях промышленности: в станкостроении - станины станков, стойки, колодки, планшайбы, корпуса насосов, втулки, вкладыши и др.; в автостроении - блоки цилиндров, гильзы, поршневые кольца, кронштейны, картеры, тормозные барабаны и др.; в тяжелом машиностроении - корпуса машин, редукторов и др.

Серый чугун, содержащий 2,7…3,5% С; 0,5…4,0% Si; 0,3…1,5% Mn; до 0,2% Р и менее 0,15% S, обладает хорошей жидкотекучестью, минимальной усадкой, сравнительно невысокой температурой плавления, незначительными газопоглощением и склонностью к ликвации, достаточно высокими механическими свойствами (в =100…400 МПа; =0,2…0,5%). Хорошо работает при сжимающих и ударных нагрузках, не чувствителен к внешним надрезам, гасит вибрацию, имеет высокие антифрикционные свойства, легко обрабатывается резанием.

При изготовлении литейных песчано-глинистых форм для отливок из серого чугуна особое внимание нужно уделить литниковой системе. Жидкий металл подводят к тонкому сечению отливки для его подогрева и одновременного затвердевания с более массивными частями. Для получения сложных и крупных отливок металл подводят несколькими питателями для равномерного заполнения всей полости. Прибыли устанавливают только в массивных крупных отливках. В обычном сером чугуне графит кристаллизуется в виде пластинок, которые действуют как внутренние микротрещины.

Высокопрочный чугун получают присадкой в жидкий серый чугун 1,0% смеси магния с ферросилицием или церием. В результате кристаллизации графит принимает не пластинчатую форму, а шаровидную. Состав высокопрочного чугуна до 3,3% С; до 2,5% Si; 0,5…0,8% Mn; менее 0,2% Р и 0,14% S. Эти чугуны имеют более высокие механические свойства, не уступающие литой углеродистой стали, сохраняя при этом положительные свойства чугуна. Так, в =373…1180 МПа, =2…17%. Отливки из высокопрочного чугуна применяют для изготовления деталей прокатного, кузнечно-прессового и горнорудного оборудования, а также дизелей, паровых, газовых и гидравлических турбин, прокатных валков, коленчатых валов и др. Технология изготовления форм для отливок из высокопрочного чугуна ничем не отличается от технологии формовки для получения отливок из серого чугуна.

Ковким называется чугун, который получается при длительном отжиге отливок из белого чугуна. Для этого выплавляют чугун такого химического состава, чтобы при затвердевании в форме он получился белым. Из белого чугуна обычным способом получают отливки, которые затем подвергают отжигу с целью разложения цементита и получения необходимой конечной структуры с выделившимся свободным графитом хлопьевидной формы. Химический состав исходного чугуна: 2,2…2,9% С; 0,8…1,4% Si; 0,3…0,5% Mn; 0,05…0,07% Cr; не более 0,2% Р и 0,1% S. Отливки из ковкого чугуна применяют для изготовления деталей автомобилей, тракторов и других машин, испытывающих в процессе работы сложные напряжения и ударные нагрузки. Особенности изготовления форм для отливок из ковкого чугуна обусловлены повышаемой усадкой белого чугуна, а поэтому необходимо предусматривать установку прибылей в каждом местном утолщении отливки и металлических холодильников, особенно в местах, где скапливается наибольшее количество металла. Ковкий чугун обладает высоким временным сопротивлением 300…630 МПа, относительным удлинением 2…12%, высокими износостойкостью и сопротивлением ударным нагрузкам, хорошо обрабатывается резанием.

В настоящее время до 90% серого чугуна выплавляют в вагранках, а остальное приходится на долю дуговых и индукционных печей.

Производство стальных отливок

Фасонные отливки изготавливаются из углеродистых и легированных сталей. Литейные свойства сталей, особенно легированных, ниже, чем у чугуна. Это может привести к образованию усадочных раковин и трещин в отливках. Для предупреждения образования усадочных раковин в формах предусматривают прибыли, питающие жидким металлом массивные части отливок. Для повышения огнеупорных свойств формовочных смесей в них вводят хромистый кварц, хромистый железняк и магнезит, готовые формы и стержни красят огнеупорной краской. Литниковую систему и расположение отливки в форме выполняют так, чтобы полость формы заполнялась спокойно, а затвердевание отливки было направлено снизу вверх. После охлаждения, выбивки и обрубки отливки подвергаются термической обработке (отжигу). Отжиг производится для снятия внутренних напряжений, измельчения зерна и повышения механических свойств.

В зависимости от назначения отливок применяют углеродистые стали 15Л…60Л, легированные - 30ХГСЛ, 15Х18Н9ТЛ и др., с пределом прочности на растяжение 400…600 МПа и относительным удлинением 10…24%.

Для плавки литейных сталей, как правило, используют дуговые и индукционные печи, иногда мартеновские.

Изготовление отливок из сплавов цветных металлов

Для производства фасонных отливок используют медные сплавы: бронзы и латуни.

Бронзы применяются оловянные и специальные (безоловянные). Оловянные бронзы имеют хорошую жидкотекучесть, высокую усадку, большой интервал кристаллизации, что обуславливает образование в отливках рассеянной пористости.

Безоловянные бронзы обладают хорошей жидкотекучестью и большой усадкой, но малым интервалом кристаллизации, что приводит к образованию в отливках сосредоточенных усадочных раковин.

Латуни имеют удовлетворительную жидкотекучесть, высокую усадку, небольшой интервал кристаллизации, что обуславливает образование усадочных раковин и пористости.

Отливки из медных сплавов в основном (до 80%) изготавливают литьем в песчаные и оболочковые формы, а остальные - литьем в кокиль, под давлением, центробежным и др. Для предупреждения образования усадочных раковин и пористости в массивных узлах отливок устанавливают прибыли и холодильники.

Медные сплавы плавят в индукционных, тигельных и дуговых печах на воздухе, в среде защитных газов или вакууме. Для предохранения металла от окисления плавку производят под слоем древесного угля. Готовый сплав перед заливкой в формы раскисляют фосфористой медью. В качестве противопригарной добавки в формовочную смесь вводят мазут.

Из оловянистых бронз изготавливают зубчатые колеса, подшипники, втулки и др. Безоловянные бронзы используют для изготовления различной арматуры для морского судостроения, червячные винты, санитарно-техническую арматуру.

Алюминиевые литейные сплавы, применяемые для изготовления фасонных отливок, имеют хорошие технологические и механические свойства, которые изменяются в зависимости от состава сплава, методов литья и термической обработки. Отливки из алюминиевых сплавов преимущественно изготавливают литьем в кокиль, под давлением, реже - в песчаные формы. Формовочные и стержневые смеси должны обладать достаточной податливостью.

Учитывая сильную окисляемость алюминиевых сплавов, форму следует заливать непрерывной струей во избежание образования окисных плен.

Плавку алюминиевых сплавов производят в газовых и электрических, тигельных, в пламенных отражательных и индукционных печах.

Отливки из алюминиевых сплавов широко используют в авиационной и ракетной технике, автомобильной, приборостроительной, электротехнической промышленности.

Магниевые сплавы имеют более низкие литейные и механические свойства, чем алюминиевые, но обладают меньшей плотностью (1,8…1,9 г/см 3), благодаря чему широко используются в автомобильной, текстильной, приборостроительной, авиационной и ракетной технике. Они при температурах, близких к температуре плавления, вследствие сильного окисления, подвержены возгоранию. Поэтому при изготовлении из них отливок применяют защитные средства: плавку ведут под слоем флюса или в нейтральной среде, в формовочную смесь добавляют до 8% фтористых солей, а в стержневую - смесь борной кислоты и серы (до 1,0%). Струю металла при заливке в форму припылят серым цветом, а термическую обработку ведут в шахтных печах с защитной атмосферой. Плавку ведут в тигельных электрических печах сопротивления и индукционных печах.

К достоинствам титановых сплавов относят малую их плотность (4,5 г/см 3) и высокую прочность (до 1500 МПа). Они особенно широко применяются в ракетной и авиационной технике, в судостроении, турбостроении. Наряду с высокой температурой плавления титана (1665 0 С), он обладает высокой химической активностью, поэтому для плавки титановых сплавов применяют специальные вакуумные индукционные печи с графитовым тиглем. Основной способ производства отливок из титановых сплавов - литье в графитовые формы, литье в оболочковые формы, изготовленные из нейтральных оксидов магния, циркония или графитового порошка, в качестве связующего используют фенолформальдегидные смолы.

5. Технологичность конструкции литых деталей. Виды брака. Технический контроль

Основным законом конструирования является технологичность отливки.

При разработке технологии отливки необходимо учитывать литейные свойства сплава, технологию изготовления модельного комплекта, формы и стержня, технологию обрубки и очистки отливки. Исходя из условий работы, себестоимости и количества отливок выбирают вид производства (единичное, серийное, массовое), способ литья (в разовые формы, в постоянные и др.), способ формовки (ручная, машинная). Правильно разработанная технология уменьшает брак литья и способствует быстрому освоению отливки в производстве.

Отливки должны иметь по возможности равномерную толщину и прямолинейные очертания стенок, это упрощает конструкцию модели и способствует повышению качества литой детали. Конструкция отливки должна предусматривать наиболее простой разъем модели, что способствует получению литой детали с наиболее точными размерами и облегчает применение формовочных машин. Для облегчения извлечения модели из песчаной формы необходимо на поверхностях, перпендикулярных плоскости разъема, предусмотреть литейные уклоны.

При соединении стенок все острые и прямые углы следует сопрягать радиусом от 1/3 до 1/4 толщины стенки; переход от толстого сечения стенки к тонкому должен быть плавным.

Иногда сложные и крупные отливки при конструировании целесообразно делить на отдельные составляющие, соединяемые затем болтами или сваркой.

Для образования в отливках отверстий минимальные диаметры стержней рекомендуются: для стали 8…10 мм, чугуна 6…8 мм, медных сплавов 5…7 мм, для легких сплавов 4…5 мм.

Основными задачами технического контроля являются: выявление причин отклонения качества отливок от заданного и нарушений технологического процесса, разработка мероприятий по повышению качества продукции; установление соответствия режимов и последовательности выполнения технологических операций, предусмотренных технической документацией; установление соответствия качества материалов, требуемых для производства отливок. Контроль отливок прежде всего осуществляют визуально для выявления окончательного или исправительного брака. Правильность конфигурации и размеров проверяют разметкой, плотность металла отливки - гидравлическими испытаниями под давлением воды до 200 МПа. Внутренние дефекты выявляют в специализированных лабораториях или в литейных цехах (на месте) специальными приборами. Тщательному контролю подвергают литейную оснастку (модели, стержневые ящики и др.) и весь технологический процесс на всех этапах производства отливок (контроль свойств формовочных и стержневых смесей, химического состава, температуры заливки металла и др.).

Дефекты отливок подразделяют на наружные и внутренние. Основными из них являются:

1 Недолив - не полностью выполненная конфигурация отливки в связи с низкой температурой заливки, недостаточной жидкотекучестью, неправильно рассчитанной литниковой системой, уходом металла из формы.

2 Заливы - различные выступы и приливы на теле отливки, не предусмотренные чертежом. Образуются они из-за неплотного прилегания полуформ, чрезмерно больших зазоров у знаков стержней.

3 Пригар - шероховатая поверхность отливки, получающаяся в результате проникновения жидкого металла в стенки формы или в результате химического взаимодействия материала формы с жидким металлом. Возникает при чрезмерно высокой температуре заливки и недостаточной огнеупорности формовочных и стержневых смесей.

4 Коробление - искажение конфигурации и размеров отливки под действием напряжений, вызванных неравномерной усадкой. Этот дефект возникает в результате неравномерного остывания отдельных частей отливки в форме, а также после выбивки.

5 Усадочные раковины, рыхлость и пористость - открытые или закрытые пустоты в теле отливки, имеющие шероховатую поверхность. Образуются в утолщенных местах отливки, а также при неправильном подводе металла в форму или из-за слишком высокой температуры заливаемого металла.

6 Газовые раковины - имеют гладкую и чистую поверхность. Их образование связано с заливкой форм газонасыщенным металлом, пониженной газопроницаемостью или повышенной влажностью форм и стержней, с захватом воздуха струей заливаемого металла.

7 Шлаковые раковины - полости в теле отливки, частично или полностью заполненные шлаком. Возникают при некачественной очистке от шлака заливаемого металла, от неправильно выбранной литниковой системы, не обеспечивающей улавливание шлака.

8 Песчаные раковины - полости в теле отливки, содержащие формовочный материал. Этот дефект появляется в результате недостаточной прочности формовочной и стержневой смесей, слабой набивки формы.

9 Горячие трещины - разрывы или надрывы в теле отливки с окисленными поверхностями. Образование горячих трещин вызывается резкими переходами в конструкции отливок от толстых сечений к тонким, затрудненной усадкой металла, при плотной набивке формы, слишком высокой температурой заливки.

10 Холодные трещины - разрывы или надрывы в теле отливки с чистыми поверхностями. Образуются, когда затруднена усадка отливки, при преждевременной ее выбивке из формы, а также от сильных ударов при обрубке или выбивке.

Дефекты отливок выявляются различными методами контроля. Соответствие размеров отливок размерам чертежа устанавливают путем разметки. Механические свойства отливок контролируют испытаниями отдельных изготовленных образцов, а также образцов, вырезаемых из тела отливки.

Отливки, которые по условиям работы должны выдерживать повышенное давление жидкости или газа, подвергают гидравлическим и пневматическим испытаниям при давлениях, несколько превышающих рабочее давление.

Внутренние дефекты отливок выявляются методами радиографической и ультразвуковой дефектоскопии.

Сущность радиографических методов заключается в облучении отливок рентгеновскими или гамма лучами. Благодаря малой длине волны, эти лучи легко проходят сквозь толщу отливок. Когда внутри отливок имеются дефекты, которые в меньшей степени поглощают лучи, чем сам металл, то на рентгеновской пленке лучи, проходя через такие дефекты, дают более интенсивное почернение.

Ультразвуковой контроль основан на способности ультразвуковой волны отражаться от границы раздела двух сред. Волна, проходящая через стенку отливки, при встрече с границей шлакового включения, трещины или раковины, частично отражается. По интенсивности отраженных волн судят о наличии, глубине залегания и размерах дефектов, находящихся в отливках.

Для выявления наружных поверхностных дефектов применяются люминесцентный контроль, магнитная и цветная дефектоскопия.

Литература

1. Материаловедение и технология металлов: Учебник для ВУЗов по машиностроительным специальностям / Г.П. Фетисов, М.Г. Карпман, В.М. Матюнин и др. - М.: Высшая школа, 2010. - 637 с.: ил.

2. Материаловедение: Учебник для ВУЗов, обучающих по направлению подготовки и специализации в области техники и технологии / Б.Н. Арзамасов, В.И. Макарова, Г.Г. Мухин и др. - 5-е изд., стереотип. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2013. - 646 с.: ил.

3. Лахтин Ю.М., Леонтьева В.Н. Материаловедение. Учебник для ВУЗов технич. спец. - 3-е изд. - М. Машиностроение, 2010. - 528 с.

4. Технология конструкционных материалов: Учебник для студентов машиностроительных ВУЗов / А.М. Дальский, Т.М. Барсукова, Л.Н. Бухаркин и др.; Под общ. ред. А.М. Дальского. - 5-е изд., испр. - М. Машиностроение, 2013. - 511 с.: ил.

5. Технология конструкционных материалов. Учебник для студентов машиностроительных специальностей ВУЗов в 4 ч. Под ред. Д.М. Соколова, С.А. Васина, Г.Г Дубенского. - Тула. Изд-во ТулГУ. - 2007.

6. Материаловедение и технология конструкционных материалов. Учебник для ВУЗов / Ю.П. Солнцев, В.А. Веселов, В.П. Демьянцевич, А.В. Кузин, Д.И. Чашников. - 2-е изд., перер., доп. - М. МИСИС, 2006. - 576 с.

7. Богодухов С.И. Курс материаловедения в вопросах и ответах: Учеб. пособие для ВУЗов, обуч. по направлению подгот. бакалавров «Технология, оборуд. и автомат. машиностр. пр-в» и спец. «Технология машиностроения», «Металлорежущие станки и инструменты» и др. / С.И. Богодухов, В.Ф. Гребенюк, А.В. Синюхин. - М.: Машиностроение, 2003. - 255 с.: ил.

Подобные документы

    Выбор типа литниково-питающей системы. Классификация и свойства модельных составов. Приготовление модельных составов. Сборка моделей в блоки. Плавка металла и заливка форм. Выбивка, очистка и термообработка отливок. Предварительная очистка блоков отливок.

    реферат , добавлен 15.10.2013

    Получение литейных расплавов. Классификация, изготовление кокилей. Изготовление кокильного литья из серого чугуна. Достоинства и технико-экономические показатели производства отливок в кокили. Технические требования к конструкции и материалу кокилей.

    курсовая работа , добавлен 12.03.2013

    Расчет времени полного затвердевания отливок в песчано-глинистой форме по методике Гиршовича и Нехендзи. Закон затвердевания отливок по методике Хворинова и Вейника. Построение температурных полей в корочке отливки в моменты полного затвердевания отливки.

    курсовая работа , добавлен 16.12.2014

    Выбор способа литья и его обоснование. Определение поверхности разъема песчано-глинистой формы, припусков на механическую обработку, размера опок. Расчет литниковой системы. Разработка технологии сборки, плавки и заливки форм. Контроль качества отливок.

    курсовая работа , добавлен 12.10.2014

    Материал отливки и его свойства. Состав формовочной смеси для мелких отливок. Припуски на механическую обработку. Конструирование литейной оснастки. Конструирование элементов литниковой системы. Изготовление форм, стержней, финишная обработка отливок.

    курсовая работа , добавлен 21.10.2013

    Общая характеристика предприятия. Политика в области качества. Анализ документов, регламентирующих изготовление продукции. Технологический процесс производства отливок фасонного литья. Метрологическое обеспечение, контроль технологии, дефектация.

    курсовая работа , добавлен 07.05.2014

    Технологические понятия в литейном производстве. Дефекты отливок, их получение в песчано-глинистых формах. Структура литниковой системы. Литье в оболочковые формы, в кокиль, по выплавляемым моделям. Основы центробежного литья. Литейные свойства сплавов.

    контрольная работа , добавлен 20.08.2015

    Проектирование современного цеха по производству отливок из сплавов черных металлов. Выбор оборудования и расчет производственной программы этого цеха. Особенности технологических процессов выплавки стали. Расчет площади складов для хранения материалов.

    курсовая работа , добавлен 13.05.2011

    Технологические процессы приготовления литейных расплавов, их свойства. Классификация кокилей, область применения; литниковая система; достоинства и технико-экономические показатели производства отливок. Изготовление кокильного литья из серого чугуна.

    курсовая работа , добавлен 13.02.2013

    Описание технологии получения кронштейна задней подвески кабины из чугуна марки ВЧ40 методом литья в песчано-глинистую форму отливки. Расчет времени охлаждения отливки. Технология изготовления стержней. Основные виды брака и меры по его устранению.