Принцип работы гальванического элемента. Химические источники электрического тока. Гальванические элементы Химические источники тока

Примером химического гальванического элемента может служить элемент Якоби-Даниэля (рис. 6). Он состоит из медного электрода (медной пластинки, погруженной в раствор CuSO 4) и цинкового электрода (цинковой пластинки, погруженной в раствор ZnSO 4). На поверхности цинковой пластинки возникает ДЭС и устанавливается равновесие

Zn ⇄ Zn 2+ + 2ē

При этом возникает электродный потенциал цинка, и схема электрода будет иметь вид Zn|ZnSO 4 или Zn|Zn 2+ .

Аналогично, на медной пластинке также возникает ДЭС и устанавливается равновесие

Cu ⇄ Cu 2+ + 2ē

Поэтому возникает электродный потенциал меди, и схема электрода будет иметь вид Cu|CuSO 4 или Cu|Cu 2+ .

На Zn-электроде (электрохимически более активном), протекает процесс окисления: Zn – 2ē →Zn 2+ . На Cu-электроде (электрохимически менее активном) протекает процесс восстановления: Cu 2+ + 2ē → Cu.

Рис. 6 Схема медно-цинкового гальванического элемента

Суммарное уравнение электрохимической реакции:

Zn + Cu 2+ → Zn 2+ + Cu

или Zn + CuSO 4 → ZnSO 4 + Cu

Поскольку схема химического гальванического элемента записывается по правилу «правого плюса», то схема элемента Якоби–Даниэля будет иметь вид

Двойная черта в схеме обозначает электролитический контакт между электродами, осуществляемый обычно посредством солевого мостика.

В марганцево-цинковом гальваническом элементе (рис. 7) , как и в медно-цинковом, анодом служит цинковый электрод. Положительный электрод прессуется из смеси диоксида марганца с графитом и ацетиленовой сажей в виде столбика «агломерата», в середине которого помещается угольный стержень ‑ токоотвод.

Рис. 7 Схема сухого марганцево-цинкового элемента

1 – анод (цинковый стаканчик), 2 – катод (смесь диоксида марганца с графитом), 3 – токоотвод из графита с металлическим колпачком,

4 - электролит

Применяемый в марганцово-цинковых элементах электролит, содержащий хлорид аммония, вследствие гидролиза NH 4 CI имеет слабокислую реакцию. В кислом электролите на положительном электроде идет токообразующий процесс:

МnO 2 + 4Н + + 2ē → Мn 2+ + 2Н 2 O

В электролите с рН равным 7-8 ионов водорода слишком мало и реакция начинает протекать с участием воды:

МnО 2 + H 2 O + ē → MnOOH + ОН -

МnООН - это неполный гидроксид марганца (III) – манганит.

По мере расходования ионов водорода на токообразующий процесс электролит становится из кислого нейтральным или даже щелочным. Удержать кислую реакцию в солевом электролите при разряде элементов не удается. Добавить кислоту к солевому электролиту нельзя, так как это вызовет сильный саморазряд и коррозию цинкового электрода. По мере накопления на электроде манганита он частично может реагировать с ионами цинка, образующимися при разряде цинкового электрода. При этом получается труднорастворимое соединение ‑ гетаэролит, и раствор подкисляется:



2MnOOH + Zn 2+ → ZnO∙Мn 2 O 3 + 2Н +

Образование гетаэролита предохраняет электролит от слишком сильного подщелачивания при разряде элемента.

Кроме электролиза, возможен еще один вариант протекания окислительно- восстановительной реакции. В этом случае электроны от восстановителя к окис­лителю переходят по металлическому проводнику через внешнюю электрическую цепь. В результате во внешней цепи возникает электрический ток, и такое устрой­ство называют гальваническим элементом. Гальванические элементы являются химическими источниками тока - устройствами для прямого преобразования химической энергии в электрическую, минуя другие ее формы.
Гальванические элементы на основе различных металлов и их соединений на­шли широкое практическое применение как химические источники тока.

В гальваническом элементе химическая энергия преобразуется в электриче­скую. Простейший гальванический элемент представляет собой два сосуда с рас­творами CuSO 4 и ZnSO 4 , в которые погружены соответственно медная и цинковая пластинки. Сосуды соединены между собой трубкой, которая называется солевым мостиком, заполненной раствором электролита (например, KCl). Такая система на­зывается медно-цинковым гальваническим элементом.

Схематически процессы, протекающие в медно-цинковом гальваническом эле­менте или же, другими словами, схема гальванического элемента, представлена на рисунке ниже.

Схема гальванического элемента

На аноде протекает процесс окисления цинка:

Zn — 2е – = Zn 2+ .

В результате этого атомы цинка превращаются в ионы, которые переходят в раствор, а цинковый анод растворяется, и его масса уменьшается. Обратите вни­мание, что анод в гальваническом элементе является отрицательным электродом (за счет электронов, полученных от атомов цинка) в отличие от процесса элек­тролиза, где он подключается к положительном полюсу внешней батареи.

Электроны от атомов цинка по внешней электрической цепи (металлическому проводнику) движутся к катоду, где протекает процесс восстановления ионов меди из раствора ее соли:

Cu 2+ + 2е – = Cu.

В результате этого образуются атомы меди, которые осаждаются на поверх­ности катода, и его масса увеличивается. Катодом в гальваническом элементе яв­ляется положительно заряженный электрод.

Суммарное уравнение реакции, протекающей в медно-цинковом гальваниче­ском элементе, можно представить так:

Zn + Cu 2+ = Zn 2+ + Cu.

Фактически протекает реакция замещения меди цинком в ее соли. Эту же ре­акцию можно осуществить и иным способом - погрузить цинковую пластинку в раствор CuSO 4 . При этом образуются те же самые продукты - медь и ионы цин­ка. Но отличие реакции в медно-цинковом гальваническом элементе в том, что про­цессы отдачи и присоединения электронов пространственно разделены. Процессы отдачи (окисление) и присоединения (восстановление) электронов происходят не при непосредственном контакте атома Zn с ионом Сu 2+ , а в разных местах систе­мы - соответственно на аноде и на катоде, которые соединены металлическим про­водником. При таком способе проведения этой реакции электроны перемещаются от анода к катоду по внешней цепи, представляющей собой металлический про­водник. Направленный и упорядоченный поток заряженных частиц (в данном случае электронов) и есть электрический ток . Во внешней цепи гальванического элемента возникает электрический ток. Вам необходимо включить JavaScript, чтобы проголосовать

Гальванический элемент медь - цинк - серная кислота

Налил в стакан разбавленной серной кислоты, опустил в нее пластинку оцинкованной жести. Началось выделение водорода. К пластинке прикрепил "крокодильчиком" провод, соединенный с помощью другого крокодильчика с расплющенной медной трубкой. Опустил медь в стакан с цинком и кислотой - с поверхности меди началось выделение водорода.

Мы получили гальванический элемент: цинк растворяется, электроны по проводу переходят к меди, на поверхности меди разряжаются (восстанавливаются) ионы водорода. В идеале после погружения меди в кислоту выделение водорода на поверхности цинка должно было бы прекратиться, но реально водород выделялся и на меди, и на цинке.

Если вынуть цинковую пластинку из кислоты, но оставить медную, выделение водорода с поверхности меди прекратится: медь не вытесняет водород из серной кислоты.

Подключил между пластинками электроды тестера - напряжение оказалось 0.8-0.9 В. Если вынуть одну из пластинок (медь или цинк) из раствора - напряжение упадет до нуля (в системе нет электрического тока). То же самое произойдет, если медь и цинк в растворе соприкоснуться: электроны будут переходить от цинка к меди непосредственно - минуя провод и тестер.

Как можно увеличить напряжение нашего гальванического элемента? Ответ мы получим, если рассмотрим уравнения происходящих процессов:

Zn 0 => Zn 2+ + 2e -
2H + + 2e - = H 2 0

Электродвижущая сила (ЭДС) гальванического элемента равна разности потенциалов электродов, в нашем случае - "водородного" и цинкового:

ЭДС = Е(2H + /H 2) - Е(Zn 2+ /Zn)

Чем больше потенциал водородного электрода и чем меньше - цинкового, тем больше ЭДС гальванического элемента. В обоих случаях потенциал электрода - водородного или цинкового возрастает с увеличением концентрации катионов водорода или цинка в растворе, соответственно.

Выхода два: понизить концентрацию ионов цинка или повысить концентрацию ионов водорода.

В начальный момент концентрация катионов цинка практически равна нулю (снижать ее некуда), зато можно повысить концентрацию катионов водорода - добавить в стакан еще серной кислоты. Потенциал водородного электрода возрастет, в результате разница потенциалов увеличится.

И сразу же существенное уточнение: по мере работы гальванического элемента концентрация ионов водорода в растворе будет уменьшаться, а ионов цинка - возрастать (цинк переходит в раствор, а ионы водорода восстанавливаются до H 2). Вывод: ЭДС нашего гальванического элемента со временем будет падать.

Еще один вариант - заменить цинк на любой металл, который стоит в электрохимическом ряду напряжений левее цинка (т.е. на металл, более активный, чем цинк). Потенциал электрода с таким металлом более положительный (при прочих равных условиях). Например, вместо цинка можно взять магний.

А что изменится, если вместо меди взять другой - менее активный металл (который в ряду напряжений стоит правее меди), например - серебро, платину и т.п.? Потенциал гальванического элемента увеличится? Нет, поскольку мы имеем дело не с гальваническим элементом с цинковым и медным электродами (он же элемента Даниэля):

А с гальваническим элементом с цинковым и водородным электродами.

Zn | ZnSO 4 || H 2 SO 4 | H 2 .
Zn 0 => Zn 2+ + 2e -
2H + + 2e - = H 2 0

Легко видеть, что материал электрода, на котором выделяется водород, не входит в уравнения, а значит, не имеет значения .

__________________________________________________
Термин "водородный электрод" взят в кавычки потому, что в стандартном водородном электроде пластинка не медная, а платиновая - это существенно влияет на его работу.

Строго говоря, материал электрода, на котором выделяется водород, имеет значение (еще как имеет). - Иначе для стандартного водородного электрода не было бы потребности использовать платину. Но не будем усложнять изложение.

О.С.ЗАЙЦЕВ

УЧЕБНАЯ КНИГА ПО ХИМИИ

ДЛЯ УЧИТЕЛЕЙ СРЕДНИХ ШКОЛ,
СТУДЕНТОВ ПЕДАГОГИЧЕСКИХ ВУЗОВ И ШКОЛЬНИКОВ 9–10 КЛАССОВ,
РЕШИВШИХ ПОСВЯТИТЬ СЕБЯ ХИМИИ И ЕСТЕСТВОЗНАНИЮ

УЧЕБНИКЗАДАЧНИКЛАБОРАТОРНЫЙ ПРАКТИКУМНАУЧНЫЕ РАССКАЗЫ ДЛЯ ЧТЕНИЯ

Продолжение. См. № 4–14, 16–28, 30–34, 37–44, 47, 48/2002;
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25-26, 27-28, 29, 30, 31, 32, 35, 36, 37, 39, 41, 42, 43, 44, 46, 47/2003;
1, 2, 3, 4, 5, 7, 11, 13, 14, 16, 17, 20, 22, 24, 29, 30, 31, 34/2004

§ 8.2. Реакции на границе металл–раствор

(продолжение)

Составим цепь из двух электродов, например, медного и цинкового. Обсудим три варианта такого гальванического элемента.
Сразу скажем, что первый вариант нам будет неинтересен. Опустим цинковую и медную пластинки в стакан с раствором их солей – сульфатов цинка и меди (рис. 8.6). Соединим электроды проводниками через прибор для измерения напряжения – вольтметр, который на рисунке обозначен символом «В».

И цинк, и медь посылают в раствор свои ионы, но равновесие соответствующих реакций смещено в сторону металлов, т. к. они находятся не в чистой воде, а в растворе, содержащем ионы этих металлов. Несмотря на это, цинк обладает более высокой способностью посылать в раствор ионы и иметь более высокое отрицательное значение электродного потенциала. Поэтому ионы меди устремятся к цинковому электроду, и на цинке образуется медь:

Zn + Cu 2+ = Zn 2+ + Cu.

Переход электронов происходит непосредственно на поверхности цинка, разность потенциалов между пластинками не возникает, и вольтметр не покажет напряжения.
Изменим опыт. Поместим в сосуд перегородку из пористой керамики (рис. 8.7).

Электроны покидают цинк и по проводнику через вольтметр переходят на медь, где взаимодействуют с ионами меди, в результате чего медь осаждается на медном электроде. Одновременно ионы цинка переходят в раствор.
Пористая перегородка служит для того, чтобы не допустить подхода ионов меди к цинку и тем самым предотвратить прямой переход электронов с цинка на ионы меди вместо перехода по проводнику. По мере прохождения реакции ионы цинка переходят от цинка к меди, аналогичное происходит с ионами меди.
Пористая перегородка плохо предотвращает смешение растворов, и, кроме того, изготовление сосудов с пористой перегородкой затруднительно, поэтому можно поступить следующим образом. Возьмем два стакана, нальем в них растворы, которые соединим электролитическим мостиком – П-образной стеклянной трубкой, заполненной насыщенным раствором хлорида калия (рис. 8.8).
В концы трубок вставлены ватные тампоны, чтобы жидкость из мостика не выливалась.

Итак, пористая перегородка заменена электролитическим мостиком. В нем хлорид-ионы двигаются к цинковому электроду, а ионы калия – к медному электроду. Мостик разделяет электродные пространства, предотвращает электропроводность за счет перемещения ионов цинка и меди, понижает потенциал, возникающий при контакте двух различных растворов. Дополнительный потенциал также возникает при движении ионов с различными скоростями, а ионы калия и хлорид-ионы передвигаются с почти одинаковыми скоростями.
Составим цепь (см. рис. 8.8) из стандартных медного и цинкового электродов (концентрации ионов металлов в растворах по 1 моль/л). Определим направление реакции в этом гальваническом элементе и его ЭДС:

Потенциал цинкового электрода имеет отрицательный знак, а медного – положительный. Следовательно, цинковый электрод обладает большей способностью отдавать электроны, и на нем будет проходить противоположно направленная реакция, а медный электрод будет электроны принимать:

Таким образом, если мы погрузим кусок металлического цинка в раствор сульфата меди, то цинк будет переходить в раствор в виде ионов и одновременно на нем будет осаждаться слой меди.
В списке электродных потенциалов есть реакция:

2H + (10 –7 M, вода) + 2e = H 2 (г.), Е = –0,41 В.

Это потенциал водородного электрода в воде. Все металлы, которые расположены в списке выше и электродные потенциалы которых имеют более высокие отрицательные значения, должны реагировать с водой («растворяться») с образованием водорода. Но вы прекрасно знаете, что железо, хром, цинк, алюминий при обычных условиях с водой не реагируют. Магний реагирует с горячей водой, а натрий, кальций, калий и литий реагируют с водой при обычных условиях. Это объясняется тем, что на железе, хроме, цинке, алюминии образуются малорастворимые оксидные пленки, исключающие доступ воды к металлу. При удалении слоя оксида начинается взаимодействие этих металлов с водой. Оксиды или гидроксиды натрия, кальция, калия, лития растворимы в воде и не защищают металлы от контакта с водой.
Для электродных реакций, потенциалов и ЭДС применимы все те формулы, которые мы раньше вывели для окислительно-восстановительных реакций:

G = nЕF = Н Т S = –RT ln K = 96 484 = –2,303 8,314 Т lg К.

При вычислении константы равновесия помните, что кристаллические фазы (металлы) в выражение константы равновесия не записываются, т.к. концентрация кристаллического вещества не зависит от его количества, т.е. постоянна. Например:

Электродные потенциалы и ЭДС электрохимических реакций очень сильно зависят от концентраций ионов и рН среды. Поэтому часто предсказываемое для стандартных условий направление процесса не совпадает с тем, которое осуществляется при данных условиях.

О том, как определить направление реакции при нестандартных условиях, смотрите в учебниках химии для высшей школы.

Список новых и забытых понятий и слов