Бериллий магний и щелочноземельные металлы таблица. Щелочноземельные металлы, бериллий, магний. Химические свойства кальция и магния

К семейству щёлочноземельных эле­ментов относят кальций, стронций, барий и радий. Д. И. Менделеев включал в это семей­ство и магний. Щёлочноземельными элементы именуются по той причине, что их гидроксиды, подобно гидро­ксидам щелочных металлов, раство­римы в воде, т. е. являются щелочами. «…Земельными же они названы пото­му, что в природе они встречаются в состоянии соединений, образующих нерастворимую массу земли, и сами в виде окисей RO имеют землистый вид», - пояснял Менделеев в «Основах химии».

Общая характеристика элементов II а группы

Металлы главной подгруппы II группы имеют электронную конфигурацию внешнего энергетического уровня ns², и являются s-элементами.

Легко отдают два валентных электрона, и во всех соединениях имеют степень окисления +2

Сильные восстановители

Активность металлов и их восстановительная способность увеличивается в ряду: Be–Mg–Ca–Sr–Ba

К щёлочноземельным металлам относят только кальций, стронций, барий и радий, реже магний

Бериллий по большинству свойств ближе к алюминию

Физические свойства простых веществ


Щелочноземельные металлы (по сравнению со щелочными металлами) обладают более высокими t°пл. и t°кип., потенциалами ионизации, плотностями и твердостью.

Химические свойства щелочноземельных металлов + Be

1. Реакция с водой.

В обычных условиях поверхность Be и Mg покрыты инертной оксидной пленкой, поэтому они устойчивы по отношению к воде. В отличие от них Ca, Sr и Ba растворяются в воде с образованием щелочей:

Mg + 2H 2 O – t° → Mg(OH) 2 + H 2 ­

Ca + 2H 2 O → Ca(OH) 2 + H 2 ­

2. Реакция с кислородом.

Все металлы образуют оксиды RO, барий-пероксид – BaO 2:

2Mg + O 2 → 2MgO

Ba + O 2 → BaO 2

3. С другими неметаллами образуют бинарные соединения:

Be + Cl 2 → BeCl 2 (галогениды)

Ba + S → BaS (сульфиды)

3Mg + N 2 → Mg 3 N 2 (нитриды)

Ca + H 2 → CaH 2 (гидриды)

Ca + 2C → CaC 2 (карбиды)

3Ba + 2P → Ba 3 P 2 (фосфиды)

Бериллий и магний сравнительно медленно реагируют с неметаллами.

4. Все щелочноземельные металлы растворяются в кислотах:

Ca + 2HCl → CaCl 2 + H 2 ­

Mg + H 2 SO 4 (разб.) → MgSO 4 + H 2 ­

5. Бериллий растворяется в водных растворах щелочей:

Be + 2NaOH + 2H 2 O → Na 2 + H 2 ­

6. Летучие соединения щёлочноземельных металлов придают пламени характерный цвет:

соединения кальция - кирпично-красный, стронция - карминово-красный, а бария - желтовато-зелёный.

Бериллий, также как и литий, относится к числу s-элементов. Четвертый электрон, появляющийся в атоме Be, помещается на 2s-орбитали. Энергия ионизации бериллия выше, чем у лития, из-за большего заряда ядра. В сильных основаниях он образует ион-бериллат ВеО 2- 2 . Следовательно, бериллий ‑ металл, но его соединения обладают амфотерностью. Бериллий, хотя и металл, но значительно менее электроположительный, по сравнению с литием.

Высокой энергией ионизации атома бериллий заметно отличается от остальных элементов ПА-подгруппы (магния и щелочноземельных металлов). Его химия во многом сходна с химией алюминия (диагональное сходство). Таким образом, это элемент с наличием у его соединений амфотерных качеств, среди которых преобладают все же основные.

Электронная конфигурация Mg: 1s 2 2s 2 2p 6 3s 2 по сравнению с натрием имеет одну существенную особенность: двенадцатый электрон помещается на 2s-орбитали, где уже имеется 1е — .

Ионы магния и кальция ‑ незаменимые элементы жизнедеятельности любой клетки. Их соотношение в организме должно быть строго определённым. Ионы магния участвуют в деятельности ферментов (например, карбоксилазы), кальция – в построении скелета и обмена веществ. Повышение содержания кальция улучшает усвоение пищи. Кальций возбуждает и регулирует работу сердца. Его избыток резко усиливает деятельность сердца. Магний играет отчасти роль антагониста кальция. Введение ионов Mg 2+ под кожу вызывает наркоз без периода возбуждения, паралич мышц, нервов и сердца. Попадая в рану в форме металла, он вызывает долго незаживающие гнойные процессы. Оксид магния в лёгких вызывает так называемую литейную лихорадку. Частый контакт поверхности кожи с его соединениями приводит к дерматитам. Самые широко используемые в медицине соли кальция: сульфат СаSO 4 и хлорид CaCL 2 . Первый используется для гипсовых повязок, а второй применяется для внутривенных вливаний и как внутреннее средство. Он помогает бороться с отёками, воспалениями, аллергией, снимает спазмы сердечно-сосудистой системы, улучшает свертываемость крови.

Все соединения бария, кроме BaSO 4 , ядовиты. Вызывают менегоэнцефалит с поражением мозжечка, поражение гладких сердечных мышц, паралич, а в больших дозах – дегенеративные изменения печени. В малых же дозах соединения бария стимулируют деятельность костного мозга.

При введении в желудок соединений стронция наступает его расстройство, паралич, рвота; поражения по признакам сходны с поражениями от солей бария, но соли стронция менее токсичны. Особую тревогу вызывает появление в организме радиоактивного изотопа стронция 90 Sr. Он исключительно медленно выводится из организма, а его большой период полураспада и, следовательно, длительность действия могут служить причиной лучевой болезни.

Радий опасен для организма своим излучением и огромным периодом полураспада (Т 1/2 = 1617 лет). Первоначально после открытия и получения солей радия в более или менее чистом виде его стали использовать довольно широко для рентгеноскопии, лечения опухолей и некоторых тяжёлых заболеваний. Теперь с появлением других более доступных и дешевых материалов применение радия в медицине практически прекратилось. В некоторых случаях его используют для получения радона и как добавку в минеральные удобрения.

В атоме кальция завершается заполнение 4s-орбитали. Вместе с калием он образует пару s-элементов четвертого периода. Гидроксид кальция ‑ довольно сильное основание. У кальция - наименее активного из всех щелочноземельных металлов - характер связи в соединениях ионный.

По своим характеристикам стронций занимает промежуточное положение между кальцием и барием.

Свойства бария наиболее близки к свойствам щелочных металлов.

Бериллий и магний широко используют в сплавах. Бериллиевые бронзы – упругие сплавы меди с 0,5-3% бериллия; в авиационных сплавах (плотность 1,8) содержится 85-90% магния («электрон»). Бериллий отличается от остальных металлов IIА группы – не реагирует с водородом и водой, зато растворяется в щелочах, поскольку образует амфотерный гидроксид:

Be+H 2 O+2NaOH=Na 2 +H 2 .

Магний активно реагирует с азотом:

3 Mg + N 2 = Mg 3 N 2 .

В таблице приведена растворимость гидроксидов элементов II группы.

Традиционная техническая проблемажесткость воды , связанная с наличием в ней ионов Mg 2+ и Ca 2+ . Из гидрокарбонатов и сульфатов на стенках нагревательных котлов и труб с горячей водой оседают карбонаты магния и кальция и сульфат кальция. Особенно мешают они работе лабораторных дистилляторов.

S-элементы в живом организме выполняют важную биологическую функцию. В таблице приведено их содержание.

Во внеклеточной жидкости содержится в 5 раз больше ионов натрия, чем внутри клеток. Изотонический раствор («физиологическая жидкость») содержит 0,9% хлорида натрия, его применяют для инъекций, промывания ран и глаз и т. п. Гипертонические растворы (3-10% хлорида натрия) используют как примочки при лечении гнойных ран («вытягивание» гноя). 98% ионов калия в организме находится внутри клеток и только 2% во внеклеточной жидкости. В день человеку нужно 2,5-5 г калия. В 100 г кураги содержится до 2 г калия. В 100 г жареной картошки – до 0,5 г калия. Во внутриклеточных ферментативных реакциях АТФ и АДФ участвуют в виде магниевых комплексов.

Ежедневно человеку требуется 300-400 мг магния. Он попадает в организм с хлебом (90 мг магния на 100 г хлеба), крупой (в 100 г овсяной крупы до 115 мг магния), орехами (до 230 мг магния на 100 г орехов). Кроме построения костей и зубов на основе гидроксилапатита Ca 10 (PO 4) 6 (OH) 2 , катионы кальция активно участвуют в свертывании крови, передаче нервных импульсов, сокращении мышц. В сутки взрослому человеку нужно потреблять около 1 г кальция. В 100 г твердых сыров содержится 750 мг кальция; в 100 г молока – 120 мг кальция; в 100 г капусты – до 50 мг.

Распространение в природе и получение. Магний и кальций - распространенные на Земле элементы (магний - восьмой, кальций - шестой), а остальные элементы более редкие. Стронций и радий - радиоактивные элементы.

В земной коре бериллий находится в виде минералов: берилл Be 3 Al 2 (Si0 3) 6 , фенакит Be 2 Si0 4 . Окрашенные примесями прозрачные разновидности берилла (зеленые изумруды, голубые аквамарины и др.) - драгоценные камни. Известно 54 собственно бериллиевых минералов, важнейшие из них - берилл (и его разновидности - изумруд, аквамарин, гелиодор, воробьевит, ростерит, баццит).

Магний входит в состав силикатных (среди них преобладает оливин Mg 2 Si0 4), карбонатных (доломит CaMg(C0 3) 2 , магнезит MgC0 3) и хлоридных минералов (карналлит KClMgCl 2 -6H 2 0). Большое количество магния содержится в морской воде (до 0,38% MgCl 2) и в воде некоторых озер (до 30% MgCl 2).

Кальций содержится в виде силикатов и алюмосиликатов в горных породах (граниты, гнейсы и др.), карбоната в виде кальцита СаС0 3 , смеси кальцита и доломита {мрамор), сульфата {ангидрит CaS0 4 и гипс CaS0 4 -2H 2 0) а также фторида {флюорит CaF 2) и фосфата {апатит Са 5 (Р0 4) 3) и др.

Важнейшие минералы стронция и бария: карбонаты {стронцианит SrC0 3 , витерит ВаС0 3) и сульфаты {целестин SrS0 4 , барит BaS0 4). Радий встречается в урановых рудах.

В промышленности бериллий, магний, кальций, стронций и барий получают :

  • 1) электролизом расплавов хлоридов МеС1 2 , в которые для понижения температуры плавления добавляют NaCl или другие хлориды;
  • 2) мсталло- и углетермическим методами при температурах 1000-1300°С.

Особо чистый бериллий получают зонной плавкой. Для получения чистого магния (99,999% Mg) технический магний многократно сублимируют в вакууме. Барий высокой чистоты получают алюминотермическим методом из ВаО.

Физические и химические свойства. В виде простых веществ это - блестящие серебристо-белые металлы, бериллий - твердый (им можно резать стекло), но хрупкий, остальные мягкие и пластичные. Особенностью бериллия является то, что он покрывается на воздухе тонкой оксидной пленкой, защищающей металл от действия кислорода даже при высоких температурах. Выше 800°С происходит окисление бериллия, а при температуре 1200°С металлический бериллий сгорает, превращаясь в белый порошок ВеО.

С увеличением порядкового номера элемента плотность, температуры плавления и кипения возрастают. Электроотрицательность элементов этой группы различна. Для Be она довольно высока (зе = 1,57), что обусловливает амфотерный характер его соединений.

Все металлы в свободном виде менее реакционноспособны по сравнению со щелочными металлами, но довольно активны (их также хранят под керосином в запаянных сосудах, а кальций обычно в плотно закрывающихся металлических банках).

Взаимодействие с простыми веществами. Химическая активность металлов увеличивается по подгруппе сверху вниз с ростом порядкового номера.

На воздухе они окисляются с образованием оксидов МеО, а стронций и барий при нагревании на воздухе до ~500°С образуют пероксиды Ме0 2 , которые при более высокой температуре разлагаются на оксид и кислород. Взаимодействие с простыми веществами представлено на схеме:

Все металлы активно взаимодейстуют с неметаллами: с кислородом они образуют оксиды MeO (Me = Be - Ra), с галогенами - галогениды, например хлориды МеС1 2 , с водородом - гидриды МеЫ 2 , с серой - сульфиды MeS, с азотом - нитриды Me 3 N 2 , с углеродом - карбиды (ацетилениды) МеС 2 , и т.д.

С металлами они образуют эвтектические смеси, твердые растворы и интерметаллические соединения. Бериллий с некоторыми d-элементами образует бериллиды - соединения переменного состава МеВе 12 (Me = Ti, Nb, Та, Mo), MeBe tl (Me = Nb, Та), характеризующиеся высокими температурами плавления и устойчивостью к окислению при нагревании до 1200- 1600°С.

Отношение к воде , кислотам и щелочам. Бериллий на воздухе покрыт оксидной пленкой, которая обусловливает его пониженную химическую активность и препятствует взаимодействию его с водой. Он проявляет амфотерные свойства, реагирует с кислотами и щелочами с выделением водорода. При этом образуются соли катионного и анионного типов:

Концентрированными холодными HN0 3 и H 2 S0 4 бериллий пассивируется.

Магний, как и бериллий, устойчив по отношению к воде. С холодной водой он взаимодействует очень медленно, так как образующийся Mg(OH) 2 плохо растворим; при нагревании реакция ускоряется за счет растворения Mg(OII) 2 . В кислотах он растворяется очень энергично. Исключение составляют HF и Н 3 Р0 4 , образующие с ним малорастворимые соединения. Со щелочами магний, в отличие от бериллия, не взаимодействует.

Металлы подгруппы кальция (щелочноземельные) реагируют с водой и разбавленными соляной и серной кислотами с выделением водорода и образованием соответствующих гидроксидов и солей:


Со щелочами, аналогично магнию, не взаимодействуют. Свойства соединений элементов подгруппы НА. Соединения с кислородом . Оксид и гидроксид бериллия обладают амфотерным характером, остальные - основным. Хорошо растворимыми в воде основаниями являются Sr(OH) 2 и Ва(ОН) 2 , их относят к щелочам.

Оксид ВеО тугоплавок (? пл = 2530°С), обладает повышенной теплопроводностью и, после предварительно прокаливания при 400°С, химической инертностью. Обладает амфотерным характером, взаимодействует при сплавлении и с кислотными, и с основными оксидами, а также с кислотами и щелочами при нагревании, образуя соответственно соли бериллия и бериллаты:

Аналогичным образом ведет себя и соответствующий гидроксид бериллия Ве(ОН) 2 - не растворяясь в воде, он растворим и в кислотах, и в щелочах:

Для его осаждения применяют не щелочь, а слабое основание - гидроксид аммония:

Гидролиз солей бериллия протекает с образованием осадков малорастворимых основных солей, например:

Растворимы бериллаты только щелочных металлов.

Оксид MgO (жженая магнезия) - тугоплавкое (? пл = 2800°С) инертное вещество. В технике его получают термическим разложением карбоната:

Мелкокристаллический MgO, напротив, химически активен, является основным оксидом. Он взаимодействует с водой, поглощает С0 2 , легко растворяется в кислотах.

Оксиды щелочноземельных металлов получают в лаборатории термическим разложением соответствующих карбонатов или нитратов:

в промышленности - термическим разложением природных карбонатов. Оксиды энергично взаимодействуют с водой, образуя сильные основания, по силе уступающие лишь щелочам. В ряду Ве(ОН) 2 -> Са(ОН) 2 -> Sr(OH) 2 -> Ва(ОН) 2 усиливается основный характер гидроксидов, их растворимость и термическая устойчивость. Все они энергично взаимодействуют с кислотами с образованием соответствующих солей:

В отличие от солей бериллия, растворимые в воде соли щелочноземельных металлов и магния гидролизу по катиону не подвергаются.

Растворимость в воде солей элементов ПА-подгруппы различна. Хорошо растворимыми являются хлориды, бромиды, иодиды, сульфиды (Са - Ва), нитраты, нитриты (Mg - Ва). Малорастворимыми и практически нерастворимыми - фториды (Mg - Ва), сульфаты (Са - Ва), ортофосфаты, карбонаты, силикаты.

Соединения с водородом и неметаллами . Гидриды МеН 2 , нитриды Me 3 N 2 , карбиды (ацетилениды) МеС 2 неустойчивы, разлагаются водой с образованием соответствующих гидроксидов и водорода или водородных соединений неметаллов:

Применение. Бериллий легко образует сплавы со многими металлами, придавая им большую твердость, прочность, жаростойкость и коррозионную стойкость. Уникальными свойствами обладают бериллиевые бронзы (сплавы меди с 1-3% бериллия). В отличие от чистого бериллия, они хорошо поддаются механической обработке, из них можно, например, изготовить ленты толщиной всего 0,1 мм. Разрывная прочность этих бронз больше, чем у многих легированных сталей. При старении их прочность возрастает. Они немагнитные, обладают высокими показателями электро- и теплопроводности. Благодаря такому комплексу свойств они широко используются в авиационной и космической технике. В атомных реакторах бериллий используется как замедлитель и отражатель нейтронов. В смеси с препаратами радия он служит источником нейтронов, образующихся при действии на Be альфа-частиц:

ВеО применяют в качестве химически стойкого и огнеупорного материала для изготовления тиглей и специальной керамики.

Магний в основном используется для производства «сверхлегких» сплавов, в металлотермии - для производства Ti, Zr, V, U и др. Наиболее важный сплав магния - электрон (3-10% А1 2 0 3 , 2-3% Zn, остальное Mg), который благодаря его прочности и малой плотности (1,8 г/см 3) применяют в ракетной технике и авиастроении. Смеси порошка магния с окислителями применяются для осветительных и зажигательных ракет, снарядов, в фото- и осветительной технике. Жженую магнезию MgO применяют в производстве магния, в качестве наполнителя в производстве резины, для очистки нефтепродуктов, в производстве огнеупоров, строительных материалов и др.

Хлорид MgCl 2 применяется для получения магния, в производстве магнезиального цемента, который получают смешиванием предварительно прокаленного MgO с 30%-ным водным раствором MgCl 2 . Эта смесь постепенно превращается в белую твердую массу, устойчивую но отношению к кислотам и щелочам.

Основное применение металлического кальция - восстановитель при получении многих переходных металлов, урана, редкоземельных элементов (РЗЭ).

Карбид кальция СаС 2 - для производства ацетилена, СаО - при получении хлорной извести, Са(ОН) 2 , СаС0 3 , CaS0 4 H 2 0 - в строительстве. Са(ОН) 2 (известковое молоко , гашеная известь) применяется в качестве дешевого растворимого основания. Природные соединения кальция широко применяются в производстве вяжущих материалов для строительных растворов, для изготовления бетона, строительных деталей и конструкций. К вяжущим веществам относятся цементы , гипсовые материалы , известь и др. Гипсовые материалы - это прежде всего жженый гипс , или алебастр , - гидрат состава 2CaS0 4 H 2 0. Главное применение стронция и бария - газопоглотители в электровакуумных приборах. Раствор Ва(ОН) 2 (баритовая вода , едкий барит) - лабораторный реактив для качественной реакции на С0 2 . Титанат бария (BaTi0 3) - основной компонент диэлектриков, пьезо- и сегнето- электриков.

Токсичность элементов. Все соединения бериллия токсичны! Особенно опасна пыль бериллия и его соединений. Стронций и барий, являясь нервными и мышечными ядами, также обладают общей токсичностью. Соединения бария вызывают воспалительные заболевания головного мозга. Ядовитость солей бария весьма зависит от их растворимости. Практически нерастворимый сульфат бария (чистый) не ядовит, растворимые же соли: хлорид, нитрат, ацетат бария и др. - сильно токсичны (0,2-0,5 г хлорида бария вызывают отравление, смертельная доза - 0,8-0,9 г). Токсическое действие солей стронция сходно с действием солей бария. Оксиды кальция и других щелочноземельных металлов в виде пыли раздражают слизистые оболочки, а при попадании на кожу вызывает тяжелые ожоги. Оксид стронция действует аналогично оксиду кальция, но значительно сильнее. Соли щелочноземельных металлов вызывают кожные заболевания.

К щелочноземельным металлам относятся металлы IIA группы Периодической системы Д.И. Менделеева – кальций (Ca), стронций (Sr), барий (Ba) и радий (Ra). Кроме них в главную подгруппу II группы входят бериллий (Be) и магний (Mg). На внешнем энергетическом уровне щелочноземельных металлов находится два валентных электрона. Электронная конфигурация внешнего энергетического уровня щелочноземельных металлов – ns 2 . В своих соединениях они проявляют единственную степень окисления равную +2. В ОВР являются восстановителями, т.е. отдают электрон.

С увеличением заряда ядра атомов элементов, входящих в группу щелочноземельных металлов, энергия ионизации атомов уменьшается, а радиусы атомов и ионов увеличиваются, металлические признаки химических элементов усиливаются.

Физические свойства щелочноземельных металлов

В свободном состоянии Be – металл серо-стального цвета, обладающий плотной гексагональной кристаллической решеткой, достаточно твердый и хрупкий. На воздухе Be покрывается оксидной пленкой, что придает ему матовый оттенок и снижает его химическую активность.

Магний в виде простого вещества представляет собой белый металл, который, также, как и Be, при нахождении на воздухе приобретает матовый оттенок за счет образующейся оксидной пленки. Mg мягче и пластичнее бериллия. Кристаллическая решетка Mg – гексагональная.

Ca, Ba и Sr в свободном виде – серебристо-белые металлы. При нахождении на воздухе мгновенно покрываются желтоватой пленкой, которая представляет собой продукты их взаимодействия с составными частями воздуха. Кальций – достаточно твердый металл, Ba и Sr – мягче.

Ca и Sr имею кубическую гранецентрированную кристаллическую решетку, барий – кубическую объемоцентрированную кристаллическую решетку.

Все щелочноземельные металлы характеризуются наличием металлического типа химической связи, что обуславливает их высокую тепло- и электропроводность. Температуры кипения и плавления щелочноземельных металлов выше, чем щелочных металлов.

Получение щелочноземельных металлов

Получение Be осуществляют по реакции восстановления его фторида. Реакция протекает при нагревании:

BeF 2 + Mg = Be + MgF 2

Магний, кальций и стронций получают электролизом расплавов солей, чаще всего – хлоридов:

CaCl 2 = Ca + Cl 2

Причем, при получении Mg электролизом расплава дихлорида для понижения температуры плавления в реакционную смесь добавляют NaCl.

Для получения Mg в промышленности используют металло- и углетермические методы:

2(CaO×MgO) (доломит) + Si = Ca 2 SiO 4 + Mg

Основной способ получения Ba – восстановление оксида:

3BaO + 2Al = 3Ba + Al 2 O 3

Химические свойства щелочноземельных металлов

Поскольку в н.у. поверхность Be и Mg покрыта оксидной пленкой – эти металлы инертны по отношению к воде. Ca, Sr и Ba растворяются в воде с образованием гидроксидов, проявляющих сильные основные свойства:

Ba + H 2 O = Ba(OH) 2 + H 2

Щелочноземельные металлы способны реагировать с кислородом, причем все они, за исключением бария, в результате этого взаимодействия образуют оксиды, барий – пероксид:

2Ca + O 2 = 2CaO

Ba + O 2 = BaO 2

Оксиды щелочноземельных металлов, за исключением бериллия, проявляют основные свойства, Be – амфотерные свойства.

При нагревании щелочноземельные металлы способны к взаимодействию с неметаллами (галогенами, серой, азотом и др.):

Mg + Br 2 =2MgBr

3Sr + N 2 = Sr 3 N 2

2Mg + 2C = Mg 2 C 2

2Ba + 2P = Ba 3 P 2

Ba + H 2 = BaH 2

Щелочноземельные металлы реагируют с кислотами – растворяются в них:

Ca + 2HCl = CaCl 2 + H 2

Mg + H 2 SO 4 = MgSO 4 + H 2

Бериллий реагирует с водными растворами щелочей – растворяется в них:

Be + 2NaOH + 2H 2 O = Na 2 + H 2

Качественные реакции

Качественной реакцией на щелочноземельные металлы является окрашивание пламени их катионами: Ca 2+ окрашивает пламя в темно-оранжевый цвет, Sr 2+ — в темно-красный, Ba 2+ — в светло-зеленый.

Качественной реакцией на катион бария Ba 2+ являются анионы SO 4 2- , в результате чего образуется белый осадок сульфата бария (BaSO 4), нерастворимый в неорганических кислотах.

Ba 2+ + SO 4 2- = BaSO 4 ↓

Примеры решения задач

ПРИМЕР 1

Задание Осуществите ряд превращений: Ca→CaO→Ca(OH) 2 →Ca(NO 3) 2
Решение 2Ca + O 2 →2CaO

CaO + H 2 O→Ca(OH) 2

Ca(OH) 2 + 2HNO 3 →Ca(NO 3) 2 + 2H 2 O

К понятию щелочноземельных металлов относится часть элементов II группы системы Менделеева: бериллий, магний, кальций, стронций, барий, радий. Четыре последних металла имеют наиболее ярко выраженные признаки щелочноземельной классификации, поэтому в некоторых источниках бериллий и магний не включают в список, ограничиваясь четырьмя элементами.

Свое название металла получили благодаря тому, что при взаимодействии их оксидов с водой образуется щелочная среда. Физические свойства щелочноземельных металлов: все элементы имеют серый металлический цвет, при нормальных условиях имеют твердую структуру, с ростом порядкового номера увеличивается их плотность, имеют очень высокую температуру плавления. В отличие от щелочных металлов, элементы данной группы не режутся ножом (за исключением стронция). Химические свойства щелочноземельных металлов: имеют два валентных электрона, активность растет с повышением порядкового номера, в реакциях выступают в качестве восстановителя.

Характеристика щелочноземельных металлов свидетельствует об их высокой активности. В особенности это относится к элементам с большим порядковым номером. Например, бериллий в нормальных условиях не ступает во взаимодействие с кислородом и галогенами. Для запуска механизма реагирования его необходимо нагреть до температуры свыше 600 градусов по Цельсию. Магний в нормальных условиях имеет на поверхности оксидную пленку и также не реагирует с кислородом. Кальций окисляется, но достаточно медленно. А вот стронций, барий и радий окисляются практически мгновенно, поэтому их хранят в безкислородной среде под керосиновым слоем.

Все оксиды усиливают основные свойства с ростом порядкового номера металла. Гидроксид бериллия представляет собой амфотерное соединение, которое не реагирует с водой, но хорошо растворяется в кислотах. Гидроксид магния является слабой щелочью, нерастворимой в воде, но реагирующей с сильными кислотами. Гидроксид кальция - сильное, малорастворимое в воде основание, реагирующее с кислотами. Гидроксиды бария и стронция относятся к сильным основаниям, хорошо растворимым в воде. А гидроксид радия - это одна из сильнейших щелочей, которая хорошо реагирует с водой и практически всеми видами кислот.

Способы получения

Получают гидроксиды щелочноземельных металлов путем воздействия воды на чистый элемент. Реакция протекает при комнатных условиях (кроме бериллия, для которого требуется повышение температуры) с выделением водорода. При нагревании все щелочноземельные металлы реагируют с галогенами. Полученные соединения используются в производстве большого ассортимента продукции от химических удобрений до сверхточных деталей микропроцессора. Соединения щелочноземельных металлов проявляют такую же высокую активность, как и чистые элементы, поэтому их используют во многих химических реакциях.

Чаще всего это происходит при реакциях обмена, когда необходимо вытеснить из вещества менее активный металл. В окислительно-восстановительных реакциях принимают участие в качестве сильного восстановителя. Двухвалентные катионы кальция и магния придает воде так называемую жесткость. Преодоление этого явления происходит путем осаждения ионов при помощи физического воздействия или добавления в воду специальных смягчающих веществ. Соли щелочноземельных металлов образуются путем растворения элементов в кислоте либо в результате реакций обмена. Полученные соединения имеют прочную ковалентную связь, поэтому обладают невысокой электропроводностью.

В природе щелочноземельные металлы не могут находиться в чистом виде, так как быстро вступают во взаимодействие с окружающей средой, образую химические соединения. Они входят в состав минералов и горных пород, содержащихся в толще земной коры. Наиболее распространен кальций, немного уступает ему магний, довольно часто встречаются барий и стронций. Бериллий относится к редким металлам, а радий - к очень редким. За все время, которое прошло с момента открытия радия, во всем мире было добыто всего полтора килограмма чистого металла. Как и большинство радиоактивных элементов, радий имеет изотопы, коих у него насчитывается четыре штуки.

Получают щелочноземельные металлы путем разложения сложных веществ и выделения из них чистого вещества. Бериллий добывают путем восстановления его из фторида при воздействии высокой температуры. Барий восстанавливает из его оксида. Кальций, магний и стронций получают путем электролиза их хлоридного расплава. Сложнее всего синтезировать чистый радий. Его добывают путем воздействия на урановую руду. По подсчетам ученых в среднем на одну тонну руды приходится 3 грамма чистого радия, хотя встречаются и богатые месторождения, в которых содержится целых 25 грамм на тонну. Для выделения металла используются методы осаждения, дробной кристаллизации и ионного обмена.

Применение щелочноземельных металлов

Спектр применения щелочноземельных металлов очень обширен и охватывает многие отрасли. Бериллий в большинстве случаев используется в качестве легирующей добавки в различные сплавы. Он повышает твердость и прочность материалов, хорошо защищает поверхность от воздействия коррозии. Также благодаря слабому поглощению радиоактивного излучения бериллий используется при изготовлении рентгеновских аппаратов и в ядерной энергетике.

Магний используют как один из восстановителей при получении титана. Его сплавы отличаются высокой прочностью и легкостью, поэтому используются при производстве самолетов, автомобилей, ракет. Оксид магния горит ярким ослепительным пламенем, что нашло отражение в военном деле, где он используется для изготовления зажигательных и трассирующих снарядов, сигнальных ракет и светошумовых гранат. Является одним из важнейших элементов для регуляции нормального процесса жизнедеятельности организма, поэтому входит в состав некоторых лекарств.

Кальций в чистом виде практически не применяют. Он нужен для восстановления других металлов из их соединений, а также в производстве препаратов для укрепления костной ткани. Стронций используют для восстановления других металлов и в качестве основного компонента для производства сверхпроводящих материалов. Барий добавляют во многие сплавы, которые предназначены для работы в агрессивной среде, так как он обладает отличными защитными свойствами. Радий используется в медицине для кратковременного облучения кожи при лечении злокачественных образований.

IIA группа содержит только металлы – Be (бериллий), Mg (магний), Ca (кальций), Sr (стронций), Ba (барий) и Ra (радий). Химические свойства первого представителя этой группы — бериллия — наиболее сильно отличаются от химических свойств остальных элементов данной группы. Его химические свойства во многом даже более схожи с алюминием, чем с остальными металлами IIA группы (так называемое «диагональное сходство»). Магний же по химическим свойствами тоже заметно отличается от Ca, Sr, Ba и Ra, но все же имеет с ними намного больше сходных химических свойств, чем с бериллием. В связи со значительным сходством химических свойств кальция, стронция, бария и радия их объединяют в одно семейство, называемое щелочноземельными металлами .

Все элементы IIA группы относятся к s -элементам, т.е. содержат все свои валентные электроны на s -подуровне. Таким образом, электронная конфигурация внешнего электронного слоя всех химических элементов данной группы имеет вид ns 2 , где n – номер периода, в котором находится элемент.

Вследствие особенностей электронного строения металлов IIA группы, данные элементы, помимо нуля, способны иметь только одну единственную степень окисления, равную +2. Простые вещества, образованные элементами IIA группы, при участии в любых химических реакциях способны только окисляться, т.е. отдавать электроны:

Ме 0 – 2e — → Ме +2

Кальций, стронций, барий и радий обладают крайне высокой химической активностью. Простые вещества, образованные ими, являются очень сильными восстановителями. Также сильным восстановителем является магний. Восстановительная активность металлов подчиняется общим закономерностям периодического закона Д.И. Менделеева и увеличивается вниз по подгруппе.

Взаимодействие с простыми веществами

с кислородом

Без нагревания бериллий и магний не реагируют ни с кислородом воздуха, ни с чистым кислородом ввиду того, что покрыты тонкими защитными пленками, состоящими соответственно из оксидов BeO и MgO. Их хранение не требует каких-либо особых способов защиты от воздуха и влаги, в отличие от щелочноземельных металлов, которые хранят под слоем инертной по отношению к ним жидкости, чаще всего керосина.

Be, Mg, Ca, Sr при горении в кислороде образуют оксиды состава MeO, а Ba – смесь оксида бария (BaO) и пероксида бария (BaO 2):

2Mg + O 2 = 2MgO

2Ca + O 2 = 2CaO

2Ba + O 2 = 2BaO

Ba + O 2 = BaO 2

Следует отметить, что при горении щелочноземельных металлов и магния на воздухе побочно протекает также реакция этих металлов с азотом воздуха, в результате которой, помимо соединений металлов с кислородом, образуются также нитриды c общей формулой Me 3 N 2 .

с галогенами

Бериллий реагирует с галогенами только при высоких температурах, а остальные металлы IIA группы — уже при комнатной температуре:

Мg + I 2 = MgI 2 – иодид магния

Са + Br 2 = СаBr 2 – бромид кальция

Ва + Cl 2 = ВаCl 2 – хлорид бария

с неметаллами IV–VI групп

Все металлы IIA группы реагируют при нагревании со всеми неметаллами IV–VI групп, но в зависимости от положения металла в группе, а также активности неметаллов требуется различная степень нагрева. Поскольку бериллий является среди всех металлов IIA группы наиболее химически инертным, при проведении его реакций с неметаллами требуется существенно бо льшая температура.

Следует отметить, что при реакции металлов с углеродом могут образовываться карбиды разной природы. Различают карбиды, относящиеся к метанидам и условно считающимися производными метана, в котором все атомы водорода замещены на металл. Они так же, как и метан, содержат углерод в степени окисления -4, и при их гидролизе или взаимодействии с кислотами-неокислителями одним из продуктов является метан. Также существует другой тип карбидов – ацетилениды, которые содержат ион C 2 2- , фактически являющийся фрагментом молекулы ацетилена. Карбиды типа ацетиленидов при гидролизе или взаимодействии с кислотами-неокислителями образуют ацетилен как один из продуктов реакции. То, какой тип карбида – метанид или ацетиленид — получится при взаимодействии того или иного металла с углеродом, зависит от размера катиона металла. С ионами металлов, обладающих малым значением радиуса, образуются, как правило, метаниды, с ионами более крупного размера – ацетилениды. В случае металлов второй группы метанид получается при взаимодействии бериллия с углеродом:

Остальные металлы II А группы образуют с углеродом ацетилениды:

С кремнием металлы IIA группы образуют силициды — соединения вида Me 2 Si, с азотом – нитриды (Me 3 N 2), фосфором – фосфиды (Me 3 P 2):

с водородом

Все щелочноземельные металлы реагируют при нагревании с водородом. Для того чтобы магний прореагировал с водородом, одного нагрева, как в случае со щелочноземельными металлами, недостаточно, требуется, помимо высокой температуры, также и повышенное давление водорода. Бериллий не реагирует с водородом ни при каких условиях.

Взаимодействие со сложными веществами

с водой

Все щелочноземельные металлы активно реагируют с водой с образованием щелочей (растворимых гидроксидов металлов) и водорода. Магний реагирует с водой лишь при кипячении вследствие того, что при нагревании в воде растворяется защитная оксидная пленка MgO. В случае бериллия защитная оксидная пленка очень стойкая: с ним вода не реагирует ни при кипячении, ни даже при температуре красного каления:

c кислотами-неокислителями

Все металлы главной подгруппы II группы реагируют с кислотами-неокислителями, поскольку находятся в ряду активности левее водорода. При этом образуются соль соответствующей кислоты и водород. Примеры реакций:

Ве + Н 2 SO 4(разб.) = BeSO 4 + H 2

Mg + 2HBr = MgBr 2 + H 2

Ca + 2CH 3 COOH = (CH 3 COO) 2 Ca + H 2

c кислотами-окислителями

− разбавленной азотной кислотой

С разбавленной азотной кислотой реагируют все металлы IIA группы. При этом продуктами восстановления вместо водорода (как в случае кислот-неокислителей) являются оксиды азота, преимущественно оксид азота (I) (N 2 O), а в случае сильно разбавленной азотной кислоты – нитрат аммония (NH 4 NO 3):

4Ca + 10HNO 3( разб .) = 4Ca(NO 3) 2 + N 2 O + 5H 2 O

4Mg + 10HNO 3(сильно разб.) = 4Mg(NO 3) 2 + NН 4 NO 3 + 3H 2 O

− концентрированной азотной кислотой

Концентрированная азотная кислота при обычной (или низкой) температуре пассивирует бериллий, т.е. в реакцию с ним не вступает. При кипячении реакция возможна и протекает преимущественно в соответствии с уравнением:

Магний и щелочноземельные металлы реагируют с концентрированной азотной кислотой с образованием большого спектра различных продуктов восстановления азота.

− концентрированной серной кислотой

Бериллий пассивируется концентрированной серной кислотой, т.е. не реагирует с ней в обычных условиях, однако реакция протекает при кипячении и приводит к образованию сульфата бериллия, диоксида серы и воды:

Be + 2H 2 SO 4 → BeSO 4 + SO 2 + 2H 2 O

Барий также пассивируется концентрированной серной кислотой вследствие образования нерастворимого сульфата бария, но реагирует с ней при нагревании, сульфат бария растворяется при нагревании в концентрированной серной кислоте благодаря его превращению в гидросульфат бария.

Остальные металлы главной IIA группы реагируют с концентрированной серной кислотой при любых условиях, в том числе на холоду. Восстановление серы может происходить до SO 2 , H 2 S и S в зависимости от активности металла, температуры проведения реакции и концентрации кислоты:

Mg + H 2 SO 4( конц .) = MgSO 4 + SO 2 + H 2 O

3Mg + 4H 2 SO 4( конц .) = 3MgSO 4 + S↓ + 4H 2 O

4Ca + 5H 2 SO 4( конц .) = 4CaSO 4 +H 2 S + 4H 2 O

с щелочами

Магний и щелочноземельные металлы со щелочами не взаимодействуют, а бериллий легко реагирует как растворами щелочей, так и с безводными щелочами при сплавлении. При этом при осуществлении реакции в водном растворе в реакции участвует также и вода, а продуктами являются тетрагидроксобериллаты щелочных или щелочноземельных металлов и газообразный водород:

Be + 2KOH + 2H 2 O = H 2 + K 2 — тетрагидроксобериллат калия

При осуществлении реакции с твердой щелочью при сплавлении образуются бериллаты щелочных или щелочноземельных металлов и водород

Be + 2KOH = H 2 + K 2 BeO 2 — бериллат калия

с оксидами

Щелочноземельные металлы, а также магний могут восстанавливать менее активные металлы и некоторые неметаллы из их оксидов при нагревании, например:

Метод восстановления металлов из их оксидов магнием называют магниетермией.