Галлий. Забавный металл. Галлий история открытия элемента Кто открыл галлий

Галлий - элемент главной подгруппы третьей группы четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 31. Обозначается символом Ga (лат. Gallium ). Относится к группе лёгких металлов. Простое вещество галлий - мягкий пластичный металл серебристо-белого цвета с синеватым оттенком.

Атомный номер - 31

Атомная масса - 69,723

Плотность, кг/м³ - 5910

Температура плавления, °С - 29,8

Теплоемкость, кДж/(кг·°С) - 0,331

Электроотрицательность - 1,8

Ковалентный радиус, Å - 1,26

1-й ионизац. потенциал, эв - 6,00

История открытия галлия

Французский химик Поль Эмиль Лекок де Буабодран вошел в историю как открыватель трех новых элементов: галлия (1875), самария (1879) и диспрозия (1886). Первое из этих открытий принесло ему славу.

В то время за пределами Франции он был мало известен. Ему было 38 лет, занимался он преимущественно спектроскопическими исследованиями. Спектроскопистом Лекок де Буабодран был хорошим, и это, в конечном счете, привело к успеху: все три свои элемента он открыл методом спектрального анализа.

В 1875 году Лекок де Буабодран исследовал спектр цинковой обманки, привезенной из Пьеррфита (Пиренеи). В этом спектре и была обнаружена новая фиолетовая линия. Новая линия свидетельствовала о присутствии в минерале неизвестного элемента, и, вполне естественно, Лекок де Буабодран приложил максимум усилий, чтобы этот элемент выделить. Сделать это оказалось непросто: содержание нового элемента в руде было меньше 0,1 %, и во многом он был подобен цинку*. После длительных опытов ученому удалось-таки получить новый элемент, но в очень небольшом количестве. Настолько небольшом (меньше 0,1 г), что изучить его физические и химические свойства Лекок де Буабодран смог далеко не полно.

Сообщение об открытии галлия – так в честь Франции (Галлия – ее латинское название) был назван новый элемент – появилось в докладах Парижской академии наук.

Это сообщение прочел Д.И. Менделеев и узнал в галлии предсказанный им пятью годами раньше экаалюминий. Менделеев тут же написал в Париж. «Способ открытия и выделения, а также немногие описанные свойства заставляют предполагать, что новый металл не что иное, как экаалюминий», – говорилось в его письме. Затем он повторял предсказанные для этого элемента свойства. Более того, никогда не держа в руках крупинки галлия, не видя его в глаза, русский химик утверждал, что первооткрыватель элемента ошибся, что плотность нового металла не может быть равна 4,7, как писал Лекок де Буабодран, – она должна быть больше, примерно 5,9...6,0 г/см 3 ! Но опыт показал обратное: ошибся первооткрыватель. Открытие первого из предсказанных Менделеевым элементов значительно укрепило позиции периодического закона.

Нахождение галлия в природе

Среднее содержание галлия в земной коре 19 г/т. Галлий типичный рассеянный элемент, обладающий двойной геохимической природой. Единственный минерал Галлия - галлит CuGaS 2 очень редок. Геохимия Галлия тесно связана с геохимией алюминия, что обусловлено сходством их физико-химических свойств. Основная часть Галлия в литосфере заключена в минералах алюминия. Ввиду близости его кристаллохимических свойств с главными породообразующими элементами (Al, Fe и др.) и широкой возможности изоморфизма с ними, галлий не образует больших скоплений, несмотря на значительную величину кларка. Выделяются следующие минералы с повышенным содержанием галлия: сфалерит (0 – 0,1%), магнетит (0 – 0,003%), касситерит (0 – 0,005%), гранат (0 – 0,003%), берилл (0 – 0,003%), турмалин (0 – 0,01%), сподумен (0,001 – 0,07%), флогопит (0,001 – 0,005%), биотит (0 – 0,1%), мусковит (0 – 0,01%), серицит (0 – 0,005%), лепидолит (0,001 – 0,03%), хлорит (0 – 0,001%), полевые шпаты (0 – 0,01%), нефелин (0 – 0,1%), гекманит (0,01 – 0,07%), натролит (0 – 0,1%).

Физические свойства галлия

Пожалуй, самое известное свойство галлия, это его температура плавления, она составляет 29.76 °C. Это второй по легкоплавкости металл в периодической системе (после ртути). Это позволяет плавить металл, держа его в руке. Галлий – один из немногих металлов, расширяющихся при затвердевании расплава (другие – Bi, Ge).

Кристаллический галлий имеет несколько полиморфных модификаций, однако термодинамически устойчивой является только одна (I), имеющая орторомбическую (псевдотетрагональную) решётку с параметрами а = 4,5186 Å, b = 7,6570 Å, c = 4,5256 Å . Другие модификации галлия (β, γ, δ, ε) кристаллизуются из переохлаждённого диспергированного металла и являются нестабильными. При повышенном давлении наблюдались ещё две полиморфные структуры галлия II и III, имеющие, соответственно, кубическую и тетрагональную решётки .

Плотность галлия в твёрдом состоянии при температуре T=20 °C равна 5,904 г/см³.

Одной из особенностей галлия является широкий температурный интервал существования жидкого состояния (от 30 и до 2230 °C), при этом он имеет низкое давление пара при температурах до 1100÷1200 °C. Удельная теплоёмкость твёрдого галлия в температурном интервале T=0÷24 °C равна 376,7 Дж/кг·К (0,09 кал/г·град.), в жидком состоянии при T=29÷100 °C - 410 Дж/кг·К (0,098 кал/г·град).

Удельное электрическое сопротивление в твёрдом и жидком состоянии равны, соответственно, 53,4·10 −6 ом·см (при T=0 °C) и 27,2·10 −6 ом·см (при T=30 °C). Вязкость жидкого галлия при разных температурах равна 1,612 пуаз при T=98 °C и 0,578 пуаз при T=1100 °C. Поверхностное натяжение, измеренное при 30 °C в атмосфере водорода равно 0,735 н/м. Коэффициенты отражения для длин волн 4360 Å и 5890 Å составляют 75,6 % и 71,3 %, соответственно.

Природный галлий состоит из двух изотопов 69 Ga (61,2 %) и 71 Ga (38,8 %). Поперечное сечение захвата тепловых нейтронов равно для них 2,1·10 −28 м² и 5,1·10 −28 м², соответственно.

Галлий-малотоксичный элемент. Из-за низкой т-ры плавления слитки галлия рекомендуется транспортировать в пакетах из полиэтилена, к-рый плохо смачивается расплавом галлия. Одно время металл даже применялся для изготовления пломб (вместо амальгамных). Это применение основано на том, что при смешивании порошка меди с расплавленным галлием получается паста, которая через несколько часов затвердевает (из-за образования интерметаллического соединения) и потом может выдержать нагрев до 600 градусов без плавления.

При высоких температурах галлий является очень агрессивным веществом. При температурах выше 500 °C, он разъедает практически все металлы, кроме вольфрама, а также многие другие материалы. Кварц устойчив к действию расплавленного галлия до 1100 °C, но проблема может возникнуть из-за того, что кварц (а также большинство других стекол) отлично смачивается этим металлом. То есть, галлий просто налипнет на стенки кварца.

Химические свойства галлия

Химические свойства галлия близки к свойствам алюминия. Оксидная плёнка, образующаяся на поверхности металла на воздухе, предохраняет галлий от дальнейшего окисления. При нагревании под давлением галлий реагирует с водой, образуя соединение GaOOH по реакции:

2Ga + 4H 2 O = 2GaOOH + 3H 2 .

Галлий взаимодействует с минеральными кислотами с выделением водорода и образованием солей, причём реакция протекает даже ниже комнатной температуры:

2Ga + 6HCl = 2GaCl 3 + 3H 2

Продуктами реакции с щелочами и карбонатами калия и натрия являются гидроксогаллаты, содержащие ионы Ga(OH) 4 - и, возможно, Ga(OH) 6 3- и Ga(OH) 2 - :

2Ga + 6H 2 O + 2NaOH = 2Na + 3H 2

Галлий реагирует с галогенами: реакция с хлором и фтором идёт при комнатной температуре, с бромом - уже при −35 °C (около 20 °C - с воспламенением), взаимодействие с иодом начинается при нагревании.

Галлий не взаимодействует с водородом, углеродом, азотом, кремнием и бором.

При высоких температурах галлий способен разрушать различные материалы и его действие сильнее расплава любого другого металла. Так, графит и вольфрам устойчивы к действию расплава галлия до 800 °C, алунд и оксид бериллия BeO - до 1000 °C, тантал, молибден и ниобий устойчивы до 400÷450 °C.

С большинством металлов галлий образует галлиды, исключением являются висмут, а также металлы подгрупп цинка, скандия, титана. Один из галлидов V 3 Ga имеет довольно высокую температуру перехода в сверхпроводящее состояние 16,8 K.

Галлий образует полимерные гидриды:

4LiH + GaCl 3 = Li + 3LiCl.

Устойчивость ионов падает в ряду BH 4 - → AlH 4 - → GaH 4 - . Ион BH 4 - устойчив в водном растворе, AlH 4 - и GaH 4 - быстро гидролизуются:

GaH 4 - + 4H 2 O = Ga(OH) 3 + OH - + 4H 2 -

При растворении Ga(OH) 3 и Ga 2 O 3 в кислотах образуются аквакомплексы 3+ , поэтому из водных растворов соли галлия выделяются в виде кристаллогидратов, например, хлорид галлия GaCl 3 *6H 2 O, галлийкалиевые квасцы KGa(SO 4) 2 *12H 2 O.

Интересно происходит взаимодействие галлия с серной кислотой. Оно сопровождается выделением элементарной серы. При этом сера обволакивает поверхность металла и препятствует его дальнейшему растворению. Если же обмыть металл горячей водой, реакция возобновится, и будет идти до тех пор, пока на галлии не нарастет новая «шкура» из серы.

Основные соединения галлия
  • Ga 2 H 6 - летучая жидкость, t пл −21,4 °C, t кип 139 °C. В эфирной суспензии с гидратом лития или таллия образует соединения LiGaH 4 и TlGaH 4 . Образуется в результате обработки тетраметилдигаллана триэтиламином. Имеются банановые связи, как и в диборане
  • Ga 2 O 3 - белый или жёлтый порошок, t пл 1795 °C. Существует в виде двух модификаций. α- Ga 2 О 3 - бесцветные тригональные кристаллы с плотностью 6,48 г/см³, малорастворимые в воде, растворимые в кислотах. β- Ga 2 О 3 - бесцветные моноклинные кристаллы c плотностью 5,88 г/см³, малорастворимые в воде, кислотах и щёлочах. Получают нагреванием металлического галлия на воздухе при 260 °C или в атмосфере кислорода, или прокаливанием нитрата или сульфата галлия. ΔH° 298(обр) −1089,10 кДж/моль; ΔG° 298(обр) −998,24 кДж/моль; S° 298 84,98 Дж/моль*K. Проявляют амфотерные свойства, хотя основные свойства, по сравнению с алюминием, усилены:

Ga 2 O 3 + 6HCl = 2GaCl 2 Ga 2 O 3 + 2NaOH + 3H 2 O = 2Na Ga 2 O 3 + Na 2 CO 3 = 2NaGaO 2 + CO 2

  • Ga(OH) 3 - выпадает в виде желеобразного осадка при обработке растворов солей трёхвалентного галлия гидроксидами и карбонатами щелочных металлов (pH 9,7). Растворяется в концентрированном аммиаке и концентрированном растворе карбоната аммония, при кипячении осаждается. Нагреванием гидроксид галлия можно перевести в GaOOH, затем в Ga 2 O 3 *H 2 O, и, наконец, в Ga 2 O 3 . Можно получить гидролизом солей трёхвалентного галлия.
  • GaF 3 - белый порошок. t пл >1000 °C, t кип 950 °C , плотность - 4,47 г/см³. Малорастворим в воде. Известен кристаллогидрат GaF 3 ·3Н 2 O. Получают нагреванием оксида галлия в атмосфере фтора.
  • GaCl 3 - бесцветные гигроскопичные кристаллы. t пл 78 °C, t кип 215 °C, плотность - 2,47 г/см³. Хорошо растворим в воде. В водных растворах гидролизуется. Получают непосредственно из элементов. Применяется в качестве катализатора в органических синтезах.
  • GaBr 3 - бесцветные гигроскопичные кристаллы. t пл 122 °C, t кип 279 °C плотность - 3,69 г/см³. Растворяется в воде. В водных растворах гидролизуется. В аммиаке малорастворим. Получают непосредственно из элементов.
  • GaI 3 - гигроскопичные светло-жёлтые иглы. t пл 212 °C, t кип 346 °C, плотность - 4,15 г/см³. Гидролизуется тёплой водой. Получают непосредственно из элементов.
  • GaS 3 - жёлтые кристаллы или белый аморфный порошок с t пл 1250 °C и плотностью 3,65 г/см³. Взаимодействует с водой, при этом полностью гидролизуется. Получают взаимодействием галлия с серой или сероводородом.
  • Ga 2 (SO 4) 3 ·18H 2 O - бесцветное, хорошо растворимое в воде вещество. Получается при взаимодействии галлия, его оксида и гидроксида с серной кислотой. С сульфатами щелочных металлов и аммония легко образует квасцы, например, KGa(SO 4) 2 ·12Н 2 О.
  • Ga(NO 3) 3 ·8H 2 O - бесцветные, растворимые в воде и этаноле кристаллы. При нагревании разлагается с образованием оксида галлия (III). Получается действием азотной кислоты на гидроксид галлия.
Получение галлия

Основной источник получения Галлия - алюминиевое производство. Галлий при переработке бокситов по способу Байера концентрируется в оборотных маточных растворах после выделения Аl(ОН) 3 . Из таких растворов Галлий выделяют электролизом на ртутном катоде. Из щелочного раствора, полученного после обработки амальгамы водой, осаждают Ga(OH) 3 , которую растворяют в щелочи и выделяют Галлий электролизом.

При содово-известковом способе переработки бокситовой или нефелиновой руды Галлий концентрируется в последних фракциях осадков, выделяемых в процессе карбонизации. Для дополнительного обогащения осадок гидрооксидов обрабатывают известковым молоком. При этом большая часть Al остается в осадке, а Галлий переходит в раствор, из которого пропусканием СО 2 выделяют галлиевый концентрат (6-8% Gа 2 О 3); последний растворяют в щелочи и выделяют Галлий электролитически.

Источником Галлия может служить также остаточный анодный сплав процесса рафинирования Al по методу трехслойного электролиза. В производстве цинка источниками Галлия являются возгоны (вельц-оксиды), образующиеся при переработке хвостов выщелачивания цинковых огарков.

Полученный электролизом щелочного раствора жидкий Галлий, промытый водой и кислотами (НСl, HNO 3), содержит 99,9-99,95% Ga. Более чистый металл получают плавкой в вакууме, зонной плавкой или вытягиванием монокристалла из расплава.

Применение галлия

Арсенид галлия GaAs - перспективный материал для полупроводниковой электроники.

Нитрид галлия используется в создании полупроводниковых лазеров и светодиодов синего и ультрафиолетового диапазона. Нитрид галлия обладает превосходными химическими и механическими свойствами, типичными для всех нитридных соединений.

Как элемент III группы, способствующий усилению в полупроводнике «дырочной» проводимости, галлий (чистотой не меньше 99,999%) применяют как присадку к германию и кремнию. Интерметаллические соединения галлия с элементами V группы – сурьмой и мышьяком – сами обладают полупроводниковыми свойствами.

Изотоп галлий-71 является важнейшим материалом для регистрации нейтрино, и в этой связи перед техникой стоит весьма актуальная задача выделения этого изотопа из природной смеси в целях повышения чувствительности детекторов нейтрино. Так как содержание 71 Ga составляет в природной смеси изотопов около 39,9 %, то выделение чистого изотопа и использование его в качестве детектора нейтрино способно повысить чувствительность регистрации в 2,5 раза.

Добавка галлия в стеклянную массу позволяет получить стекла с высоким коэффициентом преломления световых лучей, а стекла на основе Ga 2 O 3 хорошо пропускают инфракрасные лучи.

Галлий дорог, в 2005 году на мировом рынке тонна галлия стоила 1,2 млн долларов США, и в связи с высокой ценой и в то же время с большой потребностью в этом металле очень важно наладить его полное извлечение при алюминиевом производстве и переработке каменных углей на жидкое топливо.

Жидкий галлий отражает 88% падающего на него света, твердый – немногим меньше. Поэтому делают очень простые в изготовлении галлиевые зеркала – галлиевое покрытие можно наносить даже кистью.

Галлий имеет ряд сплавов, жидких при комнатной температуре, и один из его сплавов имеет температуру плавления 3 °C, но с другой стороны галлий (сплавы в меньшей степени) весьма агрессивен к большинству конструкционных материалов (растрескивание и размывание сплавов при высокой температуре), и как теплоноситель он малоэффективен, а зачастую просто неприемлем.

Предпринимались попытки применить галлий в атомных реакторах, но вряд ли результаты этих попыток можно считать успешными. Мало того, что галлий довольно активно захватывает нейтроны (сечение захвата 2,71 барна), он еще реагирует при повышенных температурах с большинством металлов.

Галлий не стал атомным материалом. Правда, его искусственный радиоактивный изотоп 72 Ga (с периодом полураспада 14,2 часа) применяют для диагностики рака костей. Хлорид и нитрат галлия-72 адсорбируются опухолью, и, фиксируя характерное для этого изотопа излучение, медики почти точно определяют размеры инородных образований.

Галлий - превосходный смазочный материал. На основе галлия и никеля, галлия и скандия созданы практически очень важные металлические клеи.

Металлическим галлием также заполняют кварцевые термометры (вместо ртути) для измерения высоких температур. Это связано с тем, что галлий имеет значительно более высокую температуру кипения по сравнению с ртутью.

Оксид галлия входит в состав ряда стратегически важных лазерных материалов.

Производство галлия в мире

Его мировое производство не превышает двух сотен тонн в год. За исключением двух недавно обнаруженных месторождений - в 2001 г. в Gold Canion, Невада, США и в 2005 г. во Внутренней Монголии, Китай - нигде в мире галлий не встречается в промышленных концентрациях. (В последнем месторождении установлено наличие 958 тыс. тонн галлия в угле – это удвоение мировых ресурсов галлия).

Мировые ресурсы галлия только в бокситах, по оценкам, превышают 1 млн. тонн, и в упомянутое месторождение в Китае 958 тыс. тонн галлия в угле – удвоение мировых ресурсов галлия).

Производителей галлия не так много. Одним из лидеров на рынке галлия является фирма GEO Gallium. Ее основные мощности до 2006 г. складывались из предприятия в Stade (Германия), где добывается около 33 тонн в год, завода в Salindres, перерабатывающий 20 тонн/год (Франция) и в Pinjarra (Западная Австралия) – потенциальные (но не введенные в строй) мощности до 50 тонн/год.

В 2006 г. позиции производителя №1 ослабились - предприятие в Stade было куплено английским МСР и американским Recapture Metals.

Японская фирма Dowa Mining – единственный в мире производитель первичного галлия из цинковых концентратов попутно в производстве цинка. Полные мощности по первичному материалу Dowa Mining – оцениваются до 20 тонн/год, В Казахстане предприятие «Алюминий Казахстана» в Павлодаре – полные мощности до 20 тонн/год.

Очень серьезным поставщиком галлия стал Китай. В Китае есть 3 крупных производителя первичного галлия – Geatwall Aluminium Co. (до 15 тонн/год), Shandong Aluminium Plant (около 6 тонн/год) и Guizhou Aluminium Plant (до 6 тонн/год). Существует также ряд совместных производств. Sumitоmo Chemical создала в Китае совместное предприятия с производительностью до 40 тонн/год. Американская фирма АХТ создала с крупнейшим китайским алюминиевым предприятием Shanxi Aluminium Factory совместное предприятия Beijing JiYa semiconductor Material Co. с производительностью до 20 тонн/год.

Производство галлия в России

В России структура галлиевого производства определяется формированием алюминиевой отрасли. Две ведущие группы, объявившие о слиянии – «Русский Алюминий» и «СУАЛ» являются владельцами галлиевых участков, создававшихся при глиноземных заводах.

«Русский алюминий»: Николаевский глиноземный комбинат в Украине (классический гидрохимический метод Байера переработки тропических бокситов, мощность участка – до 12 тонн галлия/год) и Ачинский глиноземный комбинат в России (переработка методом спекания нефелинового сырья – уртитов Кия-Шалтырского месторождения Красноярского края, мощность участка – 1.5 тонн галлия/год).

«СУАЛ»: Мощности в Каменск-Уральском (технология Байер-спекания бокситов Северо-Уральского бокситорудного района, мощность участка – до 2 тонн галлия/год), на Бокситогорском глиноземном комбинате (перерабатывает бокситы Ленинградской области методом спекания, мощность – 5 тонн галлия/год, в настоящее время законсервирован) и «Пикалевском глиноземе» (перерабатывает методом спекания нефелиновые концентраты из апатит-нефелиновых руд Мурманской области, мощность участка – 9 тонн галлия/год). Суммарно все предприятия Русала и СУАЛа могут производить свыше 20 тонн/год.

Реальное производство ниже – например в 2005 г. из России было экспортировано 8.3 тонны галлия и 13.9 тонн галлия Николаевского глиноземного комбината из Украины.

При подготовке материала использована информация компании «Квар».

Сформулировал свой периодических закон и составил периодическую же таблицу, многие металлы были науке ещё не известны.

Это, впрочем, не помешало химику выстроить свою периодическую систему, оставив пустые клетки для ещё не открытых элементов. Эти "белые пятна" вскорости были заполнены. Об одном из таких предсказанных Менделеевым элементов и пойдёт сегодня речь.

Знакомьтесь: галлий, 31 номер в таблице. Третья группа, легкоплавкий металл, близкий по свойствам к алюминию и кремнию. Менделеев не только достаточно подробно описал свойства этого металла, но и практически со стопроцентной точностью указал его атомный вес.

Открытие и происхождение названия

Галлий был открыт и выделен в виде просто вещества французским химиком Полем Эмилем Лекоком де Буабодраном. Произошло это в 1875 году, года учёный исследовал образцы цинковой обманки, привезённые из Пиренеев. Исследования проводились методом спектроскопии и учёный заметил в спектре руды фиолетовую линию, свидетельствующую о присутствии в минерале неизвестного элемента.

Выделение элемента в чистом виде потребовало немало труда, так как содержание его в руде было меньше 0,1%. В конце концов, Лекоку де Буабодрану удалось получить менее 0,1 грамма чистого вещества и исследовать его. Обнаруженный французом элемент по свойствам оказался во многом сходен с цинком.

На очередном заседании Парижской академии наук, состоявшемся 20 сентября 1875 года, было зачитано письмо Лекока де Буабодрана, в котором сообщалось об открытии нового элемента и изучении его свойств. Также химик сообщал, что назвал новооткрытый элемент в честь Франции, по её латинскому названию - Галлия (Gallia).

Когда Менделеев прочёл опубликованный доклад, посвящённый этому открытию, он отметил, что описание свойств нового элемента почти в точности совпадает с описанием предсказанного им ранее экаалюминия. Менделеев не замедлил сообщить об этом Лекоку де Буабодрану, указав, что плотность нового металла определена неверно и должна быть 5,9-6,0 , а не 4,7 г/см3. Тщательная проверка показала правоту Менделеева.

Добыча галлия

В природе галлий крупных месторождений не образует. В некоторых минералах галлий содержится в относительно больших (для этого металла): гранат, сфалерит, турмалин, берилл, полевые шпаты, нефелин.

Самый богатый источник галлия - минерал германит, руда, состоящая из сульфида меди, которая может содержать 0,5-0,7% галлия. Кроме этого, галлий получают при переработке боксита и нефелина. Также этот металл можно получить с помощью переработки полиметаллических руд, угля.


Загрязнённый галлий промывают водой, после этого фильтруют через пористые пластины и нагревают в вакууме для того, чтобы удалить летучие примеси. Для получения галлия высокой чистоты используют химический (реакции между солями), электрохимический (электролиз растворов) и физический (разложение) методы.

Месторождения, на которых ведётся добыча галлия, находятся, главным образом в Юго-Западной Африке , а также в России и в некоторых из стран СНГ.

Свойства галлия

Галлий – мягкий пластичный металл серебристого цвета. При низких температурах находится в твердом состоянии, но плавится уже при температуре, ненамного превышающей комнатную (29,8°C).

Вообще широкий температурный интервал существования жидкого состояния этого металла (от 30 и до 2230 °C) является одной из особенностей галлия. Химические свойства галлия близки к свойствам алюминия. В связи с легкоплавкостью, перевозка галлия осуществляется в полиэтиленовых пакетах.


До появления полупроводников, галлий использовался для создания легкоплавких сплавов. Сегодня же галлий используется, главным образом, в микроэлектронике в составе полупроводников. Нитрид галлия используется в создании полупроводниковых лазеров и светодиодов синего и ультрафиолетового диапазона.

Галлий - превосходный смазочный материал. На основе галлия и никеля, галлия и скандия созданы очень важные в практическом плане металлические клеи. Металлическим галлием также заполняют кварцевые термометры для измерения высоких температур, заменяя этим металлом ртуть. Это связано с тем, что галлий имеет значительно более высокую температуру кипения по сравнению с ртутью.

Галлий - один из самых дорогих металлов. Так в 2005 году на мировом рынке тонна галлия стоила 1,2 млн долларов США. В связи с его высокой стоимостью и с большой потребностью в этом металле, очень важно наладить его полное извлечение при алюминиевом производстве и переработке каменных углей на жидкое топливо.


ГАЛЛИЙ метал который тает в руках.


Металл ГАЛЛИЙ


Галлий - элемент главной подгруппы третьей группы четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 31. Обозначается символом Ga (лат. Gallium). Относится к группе лёгких металлов. Простое вещество галлий (CAS-номер: 7440-55-3) - мягкий пластичный металл серебристо-белого (по другим данным светло-серого) цвета с синеватым оттенком.


Металл ГАЛЛИЙ


Галлий:Температура плавления 29.76 °C

малотоксичен, можно взять в руки и расплавить!

Материал для полупроводниковой электроники

Арсенид галлия GaAs

Перспективный материал для полупроводниковой электроники.

Нитрид галлия

используется в создании полупроводниковых лазеров и светодиодов синего и ультрафиолетового диапазона. Нитрид галлия обладает превосходными химическими и механическими свойствами, типичными для всех нитридных соединений.

Изотоп галлий-71

является важнейшим материалом для регистрации нейтрино и в связи с этим перед техникой стоит весьма актуальная задача выделения этого изотопа из природной смеси в целях повышения чувствительности детекторов нейтрино. Так как содержание 71Ga составляет в природной смеси изотопов около 39,9 %, то выделение чистого изотопа и использование его в качестве детектора нейтрино способно повысить чувствительность регистрации в 2,5 раза.


Химические свойства

Галлий дорог, в 2005 году на мировом рынке тонна галлия стоила 1,2 млн долларов США, и в связи с высокой ценой и в то же время с большой потребностью в этом металле очень важно наладить его полное извлечение при алюминиевом производстве и переработке каменных углей на жидкое топливо.


Галлий имеет ряд сплавов, жидких при комнатной температуре, и один из его сплавов имеет температуру плавления 3 °C (эвтектика In-Ga-Sn), но с другой стороны галлий (сплавы в меньшей степени) весьма агрессивен к большинству конструкционных материалов (растрескивание и размывание сплавов при высокой температуре). Например, по отношению к алюминию и его сплавам галлий является мощным понизителем прочности, (см. адсорбционное понижение прочности, эффект Ребиндера). Это свойство галлия было ярчайше продемонстрировано и детально изучено П. А. Ребиндером и Е. Д. Щукиным при контакте алюминия с галлием или его эвтектическими сплавами (жидкометаллическое охрупчивание). Как теплоноситель галлий малоэффективен, а зачастую просто неприемлем.


Галлий - превосходный смазочный материал

На основе галлия и никеля, галлия и скандия созданы очень важные в практическом плане металлические клеи.

Металлическим галлием также заполняют кварцевые термометры (вместо ртути) для измерения высоких температур. Это связано с тем, что галлий имеет значительно более высокую температуру кипения по сравнению с ртутью.

Оксид галлия входит в состав ряда стратегически важных лазерных материалов группы гранатов - ГСГГ, ИАГ, ИСГГ и др.







Галлий – это химический элемент с атомным номером 31. Относится к группе легких металлов и обозначается символом “Ga”. Галлий в чистом виде не встречается в природе, однако его соединения в ничтожно малых количествах содержатся в бокситах и цинковых рудах. Галлий – мягкий пластичный металл серебристого цвета. При низких температурах находится в твердом состоянии, но плавится уже при температуре, не намного превышающей комнатную (29,8°C). На видео ниже можно увидеть, как ложка из галлия плавится в чашке с горячим чаем.

1. С момента открытия элемента в 1875 году и до наступления эры полупроводников, галлий в основном использовался для создания легкоплавких сплавов.

2. В настоящее время весь галлий используется в микроэлектронике.

3. Арсенид галлия, основное используемое соединение элемента, применяется в микроволновых схемах и инфракрасных приложениях.

4. Нитрид галлия используется меньше, при создании полупроводниковых лазеров и светодиодов синего и ультрафиолетового диапазона.

5. У галлия нет известной науке биологической роли. Но, так как соединения галлия и соли железа сходно ведут себя в биологических системах, ионы галлия часто заменяют ионы железа в медицинском применении.

6. В настоящее время разработаны фармацевтические и радиофармацевтические препараты, содержащие галлий.


.

Химия

Галлий №31

Подгруппа галлия. Содержание каждого из членов данной подгруппы в земной коре по ряду галлий (4-10~4%) -индий (2-10~6) - таллий (8-10-7) уменьшается. Все три" элемента чрезвычайно распылены, и нахождение в виде определенных минералов для них не характерно. Напротив, незначительные примеси их соединений содержат руды многих металлов. Получают Ga, In и Тi из отходов при переработке подобных руд.
В свободном состоянии галлий, индий и таллий представляют собой серебристо-белые металлы. Их важнейшие константы сопоставлены ниже:
Ga In Tl

Физические свойства галлия

Плотность, g/cjH3 5,9 7,3 11,9
Температура плавления, °С. . . 30 157 304
Температура кипения, °С... . 2200 2020 1475
Электропроводность (Hg = 1) . . 2 11 6

По твердости галлий близок к свинцу , In и Тi - еще мягче 6-13.
В сухом воздухе галлий и индий не изменяются , а таллий покрывается серой пленкой окисла. При накаливании все три элемента энергично соединяются с кислородом и серой . С хлором и бромом они взаимодействуют уже при обычной температуре, с иодом -лишь при нагревании. Располагаясь в ряду напряжений около железа , Ga, In и Тi растворимы в кислотах.14’ 15
Обычная валентность галлия и индия равна трем. Таллий дает производные, в которых он трех- и одновалентен. 18
Окиси галлия и его аналогов - белая Ga 2 O 3 , желтая 1п203 и коричневая Т1203 - в воде нерастворимы - отвечающие им гидроокиси Э (ОН)3 (которые могут быть получены исходя из солей) представляют собой студенистые осадки, практически нерастворимые в воде, но растворяю-щиеся в кислотах. Белые гидроокиси Ga и In растворимы также в растворах сильных щелочей с образованием аналогичных алюминатам галлатов и индатов. Они имеют, следовательно, амфотерный характер, причем кислотные свойства выражены у 1п(ОН) 3 слабее, а у Ga(OH) 3 сильнее, чем у Аl(ОН) 3 . Так, помимо сильных щелочей, Ga(OH) 3 растворима в крепких растворах NH 4 OH. Напротив, краснокоричневая Ti(ОН) 3 в щелочах не растворяется.
Ионы Ga"" и In" бесцветны, ион Тi" имеет желтоватую окраску. Производящиеся от них соли большинства кислот хорошо растворимы в воде, но сильно гидролизованы; Из растворимых солей слабых кислот многие подвергаются практически полному гидролизу. В то время как производные низших валентностей Ga и In для них не типичны, для таллия наиболее характерны именно те соединения, в которых он одновалентен. Поэтому соли Т13+ имеют заметно выраженные окислительные свойства.

Закись таллия (Т120) образуется в результате взаимодействия элементов при высоких температурах. Она представляет собой черный гигроскопичный порошок. С водой закись таллия образует желтый гидрат закиси (Т10Н), который при нагревании легко отщепляет воду и переходит обратно в Т120.
Гидрат закиси таллия хорошо растворим в воде и является сильным основанием. Образуемые им соли в большинстве бесцветны и
кристаллизуются без воды. Хлорид, бромид и иодид почти нерастворимы, но некоторые другие ] соли растворимы в воде. Произволные TiOН и слабых кислот вследствие гидролиза дают в растворе щелочную реакцию. При дей- : ствии сильных окислителей (например, хлорной воды) одновалентный таллий окисляется до трехвалентного.57-66
По химическим свойствам элементов и их соединений подгруппа галлия во многом похожа " на подгруппу германия. Так, для Ge и Ga более устойчива высшая валентность, для РЬ и Т1 низшая, химический характер гидроокисей в рядах Ge-Sn-РЬ и Ga-In-Тi изменяется однотипно. Иногда проявляются далее более тонкие ‘ черты сходства, например малая растворимость галоидных (Cl, Br, I) солей как РЬП, так и Тi . При всем том между элементами обеих подгрупп имеются и существенные различия (частично обусловленные их разной валентностью) : кислотный характер гидроокисей Ga и его аналогов выражен значительно слабее, чем у соответствующих элементов подгруппы германия , в противополжность PbF 2 фтористый таллий хорошо растворим и т. д.

Галлий дополнения

  1. Все три члена рассматриваемой подгруппы открыты при помощи спектроскопа: 1 таллий - в 1861 г., индий - в 1863 г. и галлий - в 1875 г. Последний из этих элементов за 4 года до его открытия был предсказан и описан Д. И. Менделеевым (VI § 1). Природный галлий слагается из изотопов с массовыми числами 69 (60,2%) и 71 (39,8); индий-113 (4,3) и 115 (95,7); таллий - 203 (29,5) и 205 (70,5%).
  2. В основном состоянии атомы элементов подгруппы галлия имеют строение внешних электронных оболочек 4s2 34p (Ga), 5s25p (In), 6s26p (Tl) и одновалентны, i Возбуждение трехвалентных состояний требует затраты 108 (Ga), 100 (In) или 129 , (Тi) ккал/г-атом. Последовательные энергии ионизации равны 6,00; 20,51; 30,70 для Ga; 5,785; 18,86; 28,03 для In: 6,106; 20,42; 29,8 эв для Т1. Сродство атома таллия к электрону оценивается в 12 ккал/г-атом.
  3. Для галлия известен редкий минерал галлит (CuGaS 2). Следы этого элемента постоянно содержатся в цинковых рудах. Значительно большие его количества: Е (до 1,5%) были обнаружены в золе некоторых каменных углей. Однако основным сырьем для промышленного получения галлия служат бокситы, обычно содержащие незначительные его примеси (до 0,1%). Извлекается он электролизом из щелочных жидкостей, являющихся промежуточным продуктом переработки природных бокситов на технический глинозем. Размеры ежегодной мировой выработки галлия исчисляются пока немногими тоннами, но могут быть значительно увеличены.
  4. Индий получают главным образом в качестве побочного продукта при комплексной переработке сернистых руд Zn, Pb и Си. Его ежегодная мировая выработка составляет несколько десятков тонн.
  5. Таллий концентрируется главным образом в пирите (FeS2). Поэтому шламы сернокислотного производства являются хорошим сырьем для получения этого элемента. Ежегодная мировая выработка таллия меньше, чем индия, но также исчисляется десятками тонн.
  6. Для выделения Ga, In и Т1 в свободном состоянии применяется или электролиз растворов их солей, или накаливание окислов в токе водорода. Теплоты плавления и испарения металлов имеют следующие значения: 1,3 и 61 (Ga), 0,8 и 54 (In), 1,0 и 39 ккал/г-атом (Т1). Теплоты их возгонки (при 25 °С) составляют 65 (Ga), 57 (In) и 43 ккал/г-атом (Т1). В парах все три элемента состоят почти исключительно из одноатомных молекул.
  7. Кристаллическая решетка галлия образована не отдельными атомами (как обычно для металлов), а двухатомными молекулами (rf = 2,48A). Она представляет собой, таким образом, интересный случай сосуществования молекулярной и металлической структур (III § 8). Молекулы Ga2 сохраняются и в жидком галлии, плотность которого (6,1 г/см) больше плотности твердого металла (аналогия с водой и висмутом). Повышение давления сопровождается снижением температуры плавления галлия. При высоких давлениях, помимо обычной модификации (Gal), установлено существование двух других его форм. Тройные точки (с жидкой фазой) лежат для Gal - Gall при 12 тыс. ат и 3 °С, а для Gall - Galll - при 30 тыс. ат и 45 °С.
  8. Галлий весьма склонен к переохлаждению, и его удавалось удерживать в жидком состоянии до -40 °С. Многократное повторение быстрой кристаллизации переохлажденного расплава может служить методом очистки галлия. В очень чистом состоянии (99,999%) он был получен и путем электролитического рафинирования, а также восстановлением водородом тщательно очищенного GaCl3. Высокая точка кипения и довольно равномерное расширение при нагревании делают галлий ценным материалом для заполнения высокотемпературных термометров. Несмотря на его внешнее сходство с ртутью, взаимная растворимость обоих металлов сравнительно невелика (в интервале от 10 до 95 °С она изменяется от 2,4 до 6,1 атомного процента для Ga в Hg и от 1,3 до 3,8 атомного процента для Hg в Ga). В отличие от ртути жидкий галлий не растворяет щелочные металлы и хорошо смачивает многие неметаллические поверхности. В частности, это относится к стеклу, нанесением на которое галлия могут быть получены зеркала, сильно отражающие свет (однако имеется указание на то, что очень чистый галлий, не содержащий примеси индия, стекло не смачивает). Нанесение галлия на пластмассовую основу используется иногда для быстрого получения радиосхем. Сплав 88% Ga и 12% Sn плавится при 15 °С, а некоторые другие содержащие галлий сплавы (например, 61,5% Bi, 37,2 - Sn и 1,3 - Ga) были предложены для пломбирования зубов. Они не изменяют своего объема с температурой и хорошо держатся. Галлий можно использовать также как уплотнитель для вентилей в вакуумной технике. Однако следует иметь в виду, что при высоких температурах он агрессивен по отношению и к стеклу, и ко многим металлам.
  9. В связи с возможностью расширения производства галлия становится актуальной проблема ассимиляции (т. е. освоения практикой) этого элемента и его соединений, что требует проведения исследовательских работ для изыскания областей их рационального использования. По галлию имеются обзорная статья и монографии.
  10. Сжимаемость индия несколько выше, чем у алюминия (при 10 тыс. ат объем составляет 0,84 исходного). С повышением давления уменьшается его электросопротивление (до 0,5 от исходного при 70 тыс. ат) и растет температура плавления (до 400°С при 65 тыс. ат). Палочки металлического индия при сгибании хрустят, подобно оловянным. На бумаге он оставляет темную черту. Важное применение индия связано с изготовлением германиевых выпрямителей переменного тока (X § 6 доп. 15). Благодаря своей легкоплавкости он может играть роль смазки в подшипниках.
  11. Введение небольшого количества индия в сплавы меди сильно повышает их устойчивость к действию морской воды, а присадка индия к серебру усиливает его блеск и предупреждает потускнение на воздухе. Сплавам для пломбирования зубов добавка индия придает повышенную прочность. Электролитическое покрытие индием других металлов хорошо предохраняет их от коррозии. Сплав индия с оловом (1:1 по массе) хорошо спаивает стекло со стеклом или металлом, а сплав состава 24% In и 76% Ga плавится при 16°С. Плавящийся при 47 °С сплав 18,1% In с 41,0 - Bi, 22,1 - РЬ, 10,6 - Sn и 8,2 - Cd находит медицинское использование при сложных переломах костей (вместо гипса). По химии индия имеется монография
  12. Сжимаемость таллия примерно такова же, как индия, но для него известны две аллотропические модификации (гексагональная и кубическая), точка перехода между которыми лежит при 235 °С. Под высоким давлением возникает еще одна. Тройная точка всех трех форм лежит при 37 тыс. ат и 110°С. Этому давлению соответствует скачкообразное уменьшение примерно в 1,5 раза электросопротивления металла (которое при 70 тыс. ат составляет около 0,3 от обычного). Под давлением в 90 тыс. ат третья форма таллия плавится при 650 °С.
  13. Таллий используется главным образом для изготовления сплавов с оловом и свинцом, обладающих высокой кислотоупорностью. В частности, сплав состава 70% РЬ, 20% Sn и 10% Т1 хорошо выдерживает действие смесей серной, соляной и азотной кислот. По таллию имеется монография.
  14. По отношению к воде галлий и компактный индий устойчивы, а таллий в присутствии воздуха медленно разрушается ею с поверхности. С азотной кислотой галлий реагирует лишь медленно, а таллий весьма энергично. Напротив, серная, и особенно соляная, кислота легко растворяет Ga и In, тогда как Т1 взаимодействует с ними значительно медленнее (вследствие образования на поверхности защитной пленки труднорастворимых солей). Растворы сильных щелочей легко растворяют галлий, лишь медленно действуют на индий и не реагируют с таллием. Галлий заметно растворяется также в NH4OH. Летучие соединения всех трех элементов окрашивают бесцветное пламя в характерные цвета: Ga - в почти незаметный для глаза темно-фиолетовый (Л. = 4171 А), In -в темно-синий (Л, = 4511 А), Т1 - в изумрудно-зеленый (А, = = 5351 А).
  15. Галлий и индий, по-видимому, не ядовиты. Напротив, таллий сильно ядовит, причем по характеру действия похож на РЬ и As. Поражает он нервную систему, пищеварительный тракт и почки. Симптомы острого отравления проявляются не сразу, а через 12-20 часов. При медленно развивающемся хроническом отравлении (в том числе и через кожу) наблюдается прежде всего возбуждение и расстройство сна. В медицине препаратами таллия пользуются для удаления волос (при лишаях и т. п.). Соли таллия нашли применение в светящихся составах как вещества, увеличивающие продолжительность свечения. Они оказались также хорошим средством против мышей и крыс.
  16. В ряду напряжений галлий располагается между Zn и Fe, а индий и таллий - между Fe и Sn. Переходам Ga и In по схеме Э+3 + Зе = Э отвечают нормальные потенциалы: -0,56 и -0,33 в (в кислой среде) или -1,2 и -1,0 в (в щелочной среде). Таллий переводится кислотами в одновалентное состояние (нормальный потен- пиал -0,34 в). Переход Т1+3 + 2е = Т1+ характеризуется нормальным потенциалом + 1,28 в в кислой среде или +0,02 в - в щелочной.
  17. Теплоты образования окислов Э203 галлия и его аналогов уменьшаются по ряду 260 (Ga), 221 (In) и 93 ккал/моль (Т1). При нагревании на воздухе галлий практически окисляется только до GaO. Поэтому Ga203 обычно получают обезвоживанием Ga (ОН) з. .Индий при нагревании на воздухе образует 1п203, а таллий - смесь Т1203 и Т120 с тем большим содержанием высшего окисЛа, чем ниже температура. Нацело до Т1203 таллий может быть окислен действием озона.
  18. Растворимость окислов Э203 в кислотах увеличивается по ряду Ga - In - Tl. В том же ряду уменьшается прочность связи элемента с кислородом: Ga203 плавится при 1795°С без разложения, 1п203 переходит в 1п304 лишь выше 850 °С, а мелко раздробленная Т1203 начинает отщеплять кислород уже около 90 °С. Однако для полного перевода Т1203 в Т120 необходимы гораздо более высокие температуры. Под избыточным давлением кислорода 1п203 плавится при 1910 °С, а Т1203 - при 716 °С.
  19. Теплоты гидратации окислов по схеме Э203 + ЗН20 = 2Э(ОН)3 составляют +22 ккал (Ga), +1 (In) и -45 (Т1). В соответствии с этим легкость отщепления гидроокисями воды возрастает от Ga к Т1: если Ga(OH)3 полностью обезвоживается лишь при прокаливании, то Т1(ОН)3 переходит в Т1203 даже при стоянии под жидкостью, из которой она была выделена.
  20. При нейтрализации кислых растворов солей галлия его гидроокись осаждается приблизительно в интервале pH = 3-4. Свежеосажденная Ga(OH)3 хорошо растворима в крепких растворах аммиака, но по мере ее старения растворимость все более снижается. Ее изоэлектрическая точка лежит при pH = 6,8, а ПР = 2 10~37. Для 1п(ОН)3 было найдено ПР = 1 10-31, а для Т1(ОН)3- 1 10~45.
  21. Для вторых и третьих констант диссоциации Ga(OH)3 по кислотному и основному типам были определены следующие значения:

H3Ga03 /С2 = 5-10_И К3 = 2-10-12
Ga(OH)3 К2“2. Ю-П /Сз = 4 -10 12
Таким образом, гидроокись галлия представляет собой случай электролита, очень близкого к идеальной амфотерности.

  1. Различие кислотных свойств гидроокисей галлия и его аналогов отчетливо проявляется при их взаимодействии с растворами сильных щелочей (NaOH, КОН). Гидроокись галлия легко растворяется с образованием галлатов типа M, устойчивых и в растворе, и в твердом состоянии. При нагревании они легко теряют воду (соль Na - при 120, соль К - при 137 °С) и переходят в соответствующие безводные соли типа MGa02. Для получаемых из растворов галлатов двухвалентных металлов (Са, Sr) характерен другой тип - M3 ■ 2Н20, которые тоже почти нерастворимы. Водой они полностью гидролизуются.
    Гидроокись таллия легко пептизируется сильными щелочами (с образованием отри-цательного золя), но нерастворима в них и таллатов не дает. Сухим путем (сплавлением окислов с соответствующими карбонатами) производные типа МЭ02 были получены для всех трех элементов подгруппы галлия. Однако в случае таллия они оказались смесями окислов.

    1. Эффективные радиусы ионов Ga3+, In3* и Т13* равны соответственно 0,62, 0,92 и 1,05 А. В водной среде они непосредственно окружены, по-видимому, шестью молекулами воды. Такие гидратированные ионы несколько диссоциированы по схеме Э(ОН2)а Г * Э (ОН2)5 ОН + Н, причем их константы диссоциации оцениваются в 3 ■ 10-3°(Ga) и 2 10-4 (In).
    2. Галоидные соли Ga3+, In3* и Т13*’ в общем похожи на соответствующие соли А13*. Кроме фторидов, они сравнительно легкоплавки и хорошо растворимы не только в воде, но и в ряде органических растворителей. Окрашены из них лишь желтые Gal3