Важнейшие соединения галогенов их свойства. Галогены: физические свойства, химические свойства. Применение галогенов и их соединений. Объяснение внешнего вида

Галогены – элементы VII группы – фтор, хлор, бром, йод, астат (астат мало изучен в связи с его радиоактивностью). Галогены – ярко выраженные неметаллы. Лишь йод в редких случаях обнаруживает некоторые свойства, схожие с металлами.

В невозбужденном состоянии атомы галогенов имеют общие электронную конфигурацию: ns2np5 . Это значит, что галогены имеют 7 валентных электронов, кроме фтора.

Физические свойства галогенов: F2 – бесцветный, трудно сжижающийся газ; Cl2 – желто-зеленый, легко сжижающийся газ с резким удушливым запахом; Br2 – жидкость красно-бурого цвета; I2 – кристаллическое вещество фиолетового цвета.

Водные растворы галогеноводородов образуют кислоты. НF – фтороводородная (плавиковая); НCl – хлороводородная (соляная); НBr – бромоводородная; НI – йодоводородная. Силы кислот сверху вниз снижаются. Плавиковая кислота является самой слабой в ряду галогеново-дородных кислот, а йодоводородная – самой сильной. Это объясняется тем, что энергия связи Нг сверху уменьшается. В том же направлении уменьшается и прочность молекулы Н Г, что связано с ростом межъядерного расстояния. Растворимость малорастворимых солей в воде тоже уменьшается:

Слева направо растворимость галогенидов уменьшается. АgF хорошо растворим в воде. Все галогены в свободном состоянии – окислители . Сила их как окислителей снижается от фтора к йоду. В кристаллическом, жидком и газообразном состоянии все галогены существуют в виде отдельных молекул. Атомные радиусы возрастают в том же направлении, что приводит к повышению температуры плавления и кипения. Фтор диссоциирует на атомы лучше йода. Электродные потенциалы при переходе вниз по подгруппе галогенов снижаются. У фтора самый высокий электродный потенциал. Фтор – самый сильный окислитель . Любой вышестоящий свободный галоген вытеснит нижестоящий, находящийся в состоянии отрицательного однозарядного иона в растворе.

20. Хлор. Хлороводород и соляная кислота

Хлор (Cl) – стоит в 3-м периоде, в VII группе главной подгруппы периодической системы, порядковый номер 17, атомная масса 35,453; относится к галогенам.

Физические свойства: газ желто-зеленого цвета с резким запахом. Плотность 3,214 г/л; температура плавления -101 °C; температура кипения -33,97 °C, При обычной температуре легко сжижается под давлением 0,6 МПа. Растворяясь в воде, образует хлорную воду желтоватого цвета. Хорошо растворим в органических растворителях, особенно в гексане (C6H14), в четырех-хлористом углероде.

Химические свойства хлора: электронная конфигурация: 1s22s22p63s22p5. На внешнем уровне 7 электронов. До завершения уровня нужен 1 электрон, который хлор принимает, проявляя степень окисления -1. Существуют и положительные степени окисления хлора вплоть до + 7. Известны следующие оксиды хлора: Cl2O, ClO2, Cl2O6 и Cl2O7. Все они неустойчивы. Хлор – сильный окислитель. Он непосредственно реагирует с металлами и неметаллами:

Реагирует с водородом. При обычных условиях реакция идет медленно, при сильном нагревании или освещении – со взрывом, по цепному механизму:

Хлор взаимодействует с растворами щелочей, образуя соли – гипохлориты и хлориды:

При пропускании хлора в раствор щелочи образуется смесь растворов хлорида и гипохлорита:

Хлор – восстановитель: Cl2 + 3F2 = 2ClF3.

Взаимодействие с водой:

Хлор не взаимодействует непосредственно с углеродом, азотом и кислородом.

Получение: 2NaCl + F2 = 2NaF + Cl2.

Электролиз: 2NaCl + 2H2O = Cl2 + H2 + 2NaOH.

Нахождение в природе: содержится в составе минералов: галит (каменная соль), сильвин, бишофит; морская вода содержит хлориды натрия, калия, магния и других элементов.

Хлороводород HCl . Физические свойства: бесцветный газ, тяжелее воздуха, хорошо растворим в воде с образованием соляной кислоты.

Получение: в лаборатории:

В промышленности: сжигают водород в струе хлора. Далее хлороводород растворяют в воде, и получают соляную кислоту (см. выше).

Химические свойства : соляная кислота – сильная, одноосновная, взаимодействует с металлами, стоящими в ряду напряжений до водорода: Zn + 2HCl = ZnCl2 + H2.

Как восстановитель реагирует с оксидами и гидроксидами многих металлов.

Лекция 3. Кислородные соединения галогенов

    Оксиды галогенов.

    Применение галогенов и их соединений.

1. Оксиды галогенов

Галогены образуют ряд соединений с кислородом. Но эти соединения неустойчивы, ∆G o >0, они легко взрываются при нагревании и в присутствии органических соединений. Их получают только косвенным путем.

Относительно устойчивы следующие кислородные соединения галогенов:

Свойства

Внешний вид при н.у.

Желтый газ

Желто-коричн. газ. Ядовит

Желто-зелен. газ.

Темно-красная жидкость

Бесцветная жидкость. Взрывоопасна

Бесцв. крист. вещество

Темп. пл., о С

(устойчивее остальных оксидов)

Разл. при t>350 o C

∆G o , кДж/моль

Строение молекул

→ Усиление окислительной активности →

Также известны Cl 2 O 3 , Br 2 O 3 , BrO 2 , Br 2 O 5 , I 2 O 4 , I 2 O 6 .

Получение.

OF 2 (оксид фтора, или правильнее – фторид кислорода) – сильнейший окислитель. Его получают действием F 2 на охлажденный разбавленный раствор щелочи:

Оксиды хлора и йода можно получить по реакциям:

Химические свойства:

    Термически неустойчивы:

    Все соединения галогенов с кислородом (кроме OF 2) – кислотные оксиды.

Cl 2 O, Cl 2 O 7 , I 2 O 5 при взаимодействии с водой образуют кислоты:

ClO 2 , Cl 2 O 6 (С.О.=+4, +6 – неустойчивы) при взаимодействии с водой диспропорционируют:

    Оксиды галогенов – окислители:

OF 2 содержит O +2 – очень сильный окислитель:

    Оксиды с промежуточной степени окисления галогена диспропорционируют:

    Кислородсодержащие кислоты галогенов

Все кислородсодержащие кислоты галогенов хорошо растворимы в воде. HClO 4 , HIO 3 и H 5 IO 6 известны в свободном виде, остальные нестойки, существуют только в разбавленный водных растворах. Наиболее стабильны соединения в С.О. -1 и +5.

Внешний вид

Кисл.-осн. свойства

Названия кислот

Названия солей

Существуют только в растворе

Слабые кислоты

Амфотерное соед.

Фторноватистая

Хлорноватистая

Бромноватистая

Иодноватистая

Гипофториты

Гипохлориты

Гипобромиты

Гипоиодиты

Кислота средн. силы

Хлористая

Бесцв. кристаллы

Сильные кислоты

Хлорноватая

Бромноватая

Иодноватая

Бесцв. жидкость

Бесцв. кристаллы

Самая сильная кислота

Слабая кислота

Ортоодная

Перхлораты

Перброматы

Периодаты

Сравнение силы кислот

Строение кислородных кислот хлора:

Изменение свойств в ряду кислородных кислот хлора можно показать схемой:

Эта закономерность характерна не только для хлора, но и для брома и иода.

При возрастании степени окисления галогена увеличивается заряд иона, это усиливает притяжение его к O 2- , и затрудняет диссоциацию по типу основания. Вместе с этим увеличивается отталкивание положительный ионов H + и Э n + , это облегчает диссоциацию по типу кислоты.

Рис. 1. Схема фрагмента молекулы Э(ОН) n

HOCl – амфотерное соединение: может диссоциировать и по типу кислоты, и по типу основания:

В ряду ClO - - ClO 2 - - ClO 3 - - ClO 4 - увеличивается устойчивость кислот и анионов. Это объясняется увеличением числа электронов, принимающих участие в образовании связей:

Кратность связи =1 Кратность связи=1,5

d(Cl-O)=0,170 нм d(Cl-O)=0,145 нм

С увеличением количества атомов кислорода в кислотах, увеличивается экранирование Cl, поэтому окислительная способность палает.

Таким образом, в ряду НClO → НClO 2 → НClO 3 → HClO 4

    усиливается сила кислот;

    увеличивается устойчивость кислот;

    уменьшается окислительная способность.

Сила кислородсодержащих кислот в ряду HOCl-HOBr-HOI уменьшается из-за увеличения ковалентного радиуса и ослабления связи O-Hal:

К д 5∙10 -8 2∙10 -9 2∙10 -10

Окислительные свойства уменьшаются

В ряду HCO-HBrO-HIO увеличивается устойчивость кислот. Например, при нагревании или действии света они разлагаются:

, ∆G о (кДж) HClO, HBrO, HIO

Получение.

    Фторноватистую кислоту получают при помощи реакций:

. (при н.у.)!!!

Хлорноватистую кислоту получают гидролизом хлора (НСl удаляют действием СaCO 3):

Равновесие устанавливается, когда прореагирует 30% хлора.

HClO и HBrO получают разложением гипохлоритов и гипобромитов:

2. HClO 2 получают из солей:

3. HHalO 3 получают:

Из солей:

Окислением галогенов сильными окислителями:

4. HClO 4 , H 5 IO 6 из солей:

Химические свойства

    Разлагаются при нагревании и на свету:

    Сильные окислители (все кислоты - более сильные окислители, чем их соли):

Хлорная кислоты – слабый окислитель только в концентрированных растворах:

Соли оксокислот более устойчивы, чем кислоты. Их устойчивость растет с увеличением степени окисления.

Химические свойства солей:

1. Хлораты и перхлораты распадаются только при нагревании:

2. Они, как и кислоты, являются окислителями (но более слабыми, чем их кислоты):

Получение солей:

МеHalO получают пропусканием галогегенов через холодный раствор щелочи, соды, поташа:

МеHalO 3 получают пропусканием галогенов через горячие (60-70 о С) растворы щелочей:

МеClO 4 и Ме 5 IO 6 окислением хлоратов и иодатов при электролизе или слабым нагреванием:

7. Применение

Фтор

Плавиковая кислота используется для травления стекла, удаления остатков песка с металлического литья, в химическом синтезе.

В ядерной промышленности применяют UF 6 .

В качестве хладагентов используют CF 2 Cl 2 .

В металлургии применяют CaF 2 .

Фторопроизводное этилена тетрафторэтилен в результате полимеризации дает ценный полимер – тефлон, устойчив к химическим реагентам и незаменим в производстве веществ особой чистоты, для изготовления аппаратуры.

Фторопроизводные материалы – в медицине, заменители кровеносных сосудов и сердечных клапанов. Изделия из фторопластов широко применяются в авиационной, электротехнической, атомной и др. отраслях.

Хлор

Хлор необходим для синтеза в органическом и полимерном синтезе. Методом хлорной металлургии получают кремний и тугоплавкие цветные металлы (титан, ниобий, тантал и др.).

Применяется как окислитель и для стерилизации питьевой воды.

Соляная кислота и галогениды используется в металлургической, текстильной и пищевой промышленности.

HClO применяется как бактерицидное и отбеливающее средство. Выделяющийся при растворении кислоты атомарный кислород обесцвечивает красители и убивает микробы:

Жавелевая вода – это смесь хлорида и гипохлорита калия, ее получают действием щелочи на «хлорную воду», она обладает отбеливающими свойствами:

Белильная или хлорная известь – белый порошок с резким запахом, применяется как отбеливающее и дезинфицирующее средство:

Бром

Используется в органическом синтезе.

В фотографическом деле используется AgBr.

Соединения брома применяются для производства лекарств.

I 2 необходим для металлургии, его применяют как антисептическое и дезинфицирующее средство. Йод замещает атомы водорода в молекулах белков микроорганизмов, что приводит к их гибели:

Для деревообработки применяют KI.

Cоединения иода применяются для производства лекарств, в пищевых добавках (NaI), для синтеза и в химическом анализа (иодометрия).

Галогены фтор F, хлор С1, бром Вг, иод I являются элемен­тами группы VILA. Электронная конфигурация валентной обо­лочки атомов галогенов в основном состоянии ns 2 np 5 . Наличие пяти электронов на внешней р-орбитали, в том числе одного неспаренного, является причиной высокого сродства галогенов к электрону. Присоединение электрона приводит к образованию галогенид-анионов (F-, С1-, Вг-, I-) с устойчивой 8-электронной оболочкой ближайшего благородного газа. Галогены - ярко выраженные неметаллы.

Самый электроотрицательный элемент фтор имеет в соедине­ниях только одну степень окисления - 1, так как всегда является акцептором электронов. Другие галогены в соединениях могут иметь степень окисления от -1 до +7. Положительные степени окисления галогенов вызваны переходом их валентных электро­нов на свободные d-орбитали внешнего уровня (разд. 2.1.3) при образовании связей с более электроотрицательными элементами.

Молекулы галогенов двухатомные: F 2 , С1 2 , Вг 2 , I 2 . При стан­дартных условиях фтор и хлор - газы, бром - летучая жидкость (Tкип = 59 °С), а иод - твердый, но он легко возгоняется (пере­ходит в газообразное состояние, минуя жидкое).

Окислительно-восстановительные свойства. Галогены явля­ются сильными окислителями, вступая во взаимодействие почти со всеми металлами и многими неметаллами:

Особенно высокую химическую активность проявляет фтор, ко­торый при нагревании реагирует даже с благородными газами ксеноном, криптоном и радоном:

Химическая активность галогенов уменьшается от фтора к ио­ду, так как с увеличением радиуса атома способность галогенов присоединять электроны уменьшается:

Более активный галоген всегда вытесняет менее активный из его соединений с металлами. Так, фтор вытесняет все другие галогены из их галогенидов, а бром - только иод из иодидов:

Различная окислительная способность галогенов проявляет­ся и в их действии на организм. Газообразные хлор и фтор из-за очень сильных окислительных свойств являются мощными отравляющими веществами, вызывающими тяжелые поражения легких и слизистых оболочек глаз, носа и гортани. Иод - более мягкий окислитель, проявляющий антисептические свойства, по­этому он широко используется в медицине.

Различия в окислительно-восстановительных свойствах га­логенов проявляются и при их взаимодействии с водой. Фтор окисляет воду, при этом восстановителем выступает атом ки­слорода молекулы волы:


Взаимодействие остальных галогенов с водой сопровождается окислительно-восстановительной дисмутацией их атомов. Так, при реакции хлора с водой один из атомов молекулы хлора, присоединяя электрон от другого атома, восстанавливается, а другой атом хлора, отдавая электрон, окисляется. При этом об­разуется хлорная вода, содержащая хлористый водород (соля­ную кислоту) и гипохлористую (хлорноватистую) кислоту:
Реакция является обратимой, а ее равновесие сильно смещено влево. Гипохлористая кислота неустойчива и легко распадается, особенно на свету, с образованием очень сильного окислителя -атомарного кислорода:

Таким образом, хлорная вода содержит в различных концен­трациях три окислителя с разной окислительной способностью: молекулярный хлор, гипохлористую кислоту и атомарный кислород, сумму которых часто называют "активный хлор" .

Образующийся атомарный кислород обесцвечивает красите­ли и убивает микробы, что объясняет отбеливающее и бактери­цидное действие хлорной воды.

Гипохлористая кислота - более сильный окислитель, чем га­зообразный хлор. Она реагирует с органическими соединениями RH и как окислитель, и как хлорирующий реагент:

Поэтому при хлорировании питьевой воды, содержащей в каче­стве примесей органические вещества, они могут превратиться в более токсичные хлорорганические соединения RC1. Это обя­зательно следует учитывать при разработке способов очистки воды и их применении.


При добавлении к хлорной воде щелочи равновесие смеща­ется вправо вследствие нейтрализации гипохлористой и соля­ной кислот:
Полученный раствор смеси солей, называемый жавелевой водой, используется как отбеливающее и дезинфицирующее средство. Эти свойства обусловлены тем, что гипохлорит калия под дей­ствием СО2 + Н 2 0 и в результате гидролиза превращается в неустойчивую гипохлористую кислоту, образующую атомарный кислород. В результате жавелевая вода разрушает красящие вещества и убивает микробы.
При действии газообразного хлора на влажную гашеную из­весть Са(ОН) 2 получают смесь солей СаСl 2 и Са(0С1) 2 , называе­мую хлорной известью:
Хлорную известь можно рассматривать как смешанную кальцие­вую соль соляной и гипохлористой кислот CaCl(OCl). Во влажном воздухе хлорная известь, взаимодействуя с водой и углекислым газом, постепенно выделяет гипохлористую кислоту, которая обеспечивает ее отбеливающее, дезинфицирующее и дегазирующие свойства:

При действии на хлорную известь соляной кислоты происходит выделение свободного хлора:

При нагревании гипохлористая кислота в результате окис­лительно-восстановительного диспропорционирования разлагает­ся с образованием соляной и хлорноватой кислот:

При пропускании хлора через горячий раствор щелочи, напри­мер КОН, образуются хлорид калия и хлорат калия КClO 3 (бер­толетова соль):

Окислительная способность анионов кислородсодержащих кислот хлора в водных растворах в ряду СlO - - СlO4(-) уменьша­ется несмотря на возрастание в них степени окисления хлора:

Это объясняется повышением устойчивости анионов в указанном ряду вследствие усиления делокализации их отрицательного заря­да. В то же время перхлораты LiC10 4 , КСlO 4 в сухом состоянии при высоких температурах являются сильными окислителями и используются для минерализации различных биоматериалов при определении в них содержащихся неорганических компонентов.

Анионы галогенов (кроме F-) способны отдавать электроны, поэтому они являются восстановителями. Восстановительная способность галогенид-анионов по мере возрастания их радиуса увеличивается от хлорид-аниона к иодид-аниону:

Так, иодоводородная кислота окисляется кислородом воздуха уже при обычной температуре:

Соляная кислота не окисляется кислородом, и поэтому хлорид-анион устойчив в условиях организма, что очень важно с пози­ции физиологии и медицины.

Кислотно-основные свойства. Водородгалогениды HF, НС1, HBr, HI вследствие полярности их молекул хорошо растворяются в воде. При этом происходит гидратация молекул, приводящая к их диссоциации с образованием гидратированных протонов и галогенид-анионов. Сила кислот в ряду HF, НС1, HBr, HI возраста­ет вследствие увеличения радиуса и поляризуемости анионов от F- к I-.

Соляная кислота как компонент желудочного сока играет важную роль в процессе пищеварения. В основном за счет со­ляной кислоты, массовая доля которой в желудочном соке со­ставляет 0,3 %, его рН поддерживается в интервале от 1 до 3. Соляная кислота способствует переходу фермента пепсина в ак­тивную форму, что обеспечивает переваривание белков за счет гидролитического расщепления пептидных связей с образова­нием различных аминокислот:

Определение содержания соляной кислоты и других кислот в желудочном соке было рассмотрено в разд. 8.3.3.

В ряду кислородсодержащих кислот хлора по мере увеличе­ния его степени окисления сила кислот увеличивается.

Это связано с увеличением полярности связи О-Н из-за смеще­ния ее электронной плотности к атому хлора, а также из-за по­вышения устойчивости анионов.


Комплексообразующие свойства. Анионы галогенов склонны к комплексообразованию в качестве лигандов. Устойчивость галогенидных комплексов обычно уменьшается в ряду F- > Сl- > Вr- > > I-. Именно процессом комплексообразования объясняется ток­сическое действие фторид-анионов, которые, образуя фторидные комплексы с катионами металлов, входящих в активные цен­тры ферментов, подавляют их активность.
Интересные комплексообразующие свойства проявляет моле­кула иода. Так, растворимость молекулярного иода в воде резко возрастает в присутствии иодида калия, что связано с образова­нием комплексного аниона

Невысокая устойчивость этого комплексного иона обеспечивает наличие молекулярного иода в растворе. Поэтому в медицине используется в качестве бактерицидного средства водный рас­твор иода с добавлением KI. Кроме того, молекулярный иод об­разует комплексы включения с крахмалом (разд. 22.3) и поливиниловым спиртом (синий иод). В этих комплексах молекулы иода или их ассоциаты с иодид-анионами заполняют каналы, образованные спиралевидной структурой соответствующих полигидроксиполимеров. Комплексы включения не очень устойчивы и способны постепенно отдавать молекулярный иод. Поэтому такой препарат, как синий иод, является эффективным, но мяг­ким бактерицидным средством пролонгированного действия.

Биологическая роль и применение галогенов и их соедине­ний в медицине. Галогены в виде различных соединений входят в состав живых тканей. В организме все галогены имеют степень окисления - 1. При этом хлор и бром существуют в виде гидратированных анионов Сl- и Вr-, а фтор и иод входят в состав нерас­творимых в воде биосубстратов:.

Соединения фтора являются компонентами костной ткани, ногтей и зубов. Биологическое действие фтора прежде всего связано с проблемой болезней зубов. Фторид-анион, замещая в гидроксиапатите гидроксид-ион, образует слой защитной эмали из твердого фторапатита:

Фторирование питьевой воды до концентрации фторид-иона 1 мг/л и добавление фторида натрия в зубную пасту значитель­но снижают кариес зубов у населения. В то же время при концентрации фторид-аниона в питьевой воде выше 1,2 мг/л по­вышается хрупкость костей, зубной эмали и появляется общее истощение организма, называемое флуорозом.

Хлорид-анионы обеспечивают ионные потоки через клеточ­ные мембраны, участвуют в поддержании осмотического гомеостаза, создают благоприятную среду для действия и активации протолитических ферментов желудочного сока.

Бромид-анионы в организме человека локализуются преиму­щественно в гипофизе и других железах внутренней секреции. Установлено наличие динамической связи между содержанием в организме бромид- и хлорид-анионов. Так, повышенное содер­жание в крови бромид-анионов способствует быстрому выделе­нию почками хлорид-анионов. Бромиды локализуются в основ­ном в межклеточной жидкости. Они усиливают тормозные про­цессы в нейронах коры головного мозга, в связи с чем бромиды калия, натрия и бромкамфора применяются в фармакологии.

Иод и его соединения влияют на синтез белков, жиров и гормонов. Больше половины количества иода находится в щи­товидной железе в связанном состоянии в виде тиреоидных гормонов. При недостаточном поступлении иода в организм развивается эндемический зоб. С целью профилактики этого заболевания к поваренной соли добавляют NaI или KI (1-2 г на 1 кг NaCl). Таким образом, все галогены необходимы для нор­мального функционирования живых организмов.



Глава 13

Из учебника химии многие знают, что к галогенам относятся химические элементы периодической системы Менделеева из 17 группы в таблице.

С греческого переводится как рождение, происхождение. Практически все они высокоактивны, благодаря чему бурно реагируют с простыми веществами за исключением нескольких неметаллов. Что же такое галогены и каковы их свойства?

Вконтакте

Перечень галогенов

Галогены являются хорошими окислителями, по этой причине в природе их можно встретить только в каких-либо соединениях. Чем выше порядковый номер, тем химическая активность элементов этой группы меньше. К группе галогенов относятся нижеперечисленные элементы:

  • хлор (Cl);
  • фтор (F);
  • иод (I);
  • бром (Br);
  • астат (At).

Последний разработан в институте ядерных исследований, который расположен в городе Дубна. Фтор относится к ядовитым газам бледно-жёлтого цвета. Хлор также ядовит. Это газ, имеющий довольно резкий и неприятный запах светло-зелёного цвета. Бром имеет красно-бурый окрас, это ядовитая жидкость, которая может даже поражать обоняние. Он очень летуч, поэтому его хранят в ампулах. Йод — кристаллическое легко возгоняющееся вещество тёмно-фиолетового цвета. Астат радиоактивен, цвет кристаллов: чёрный с синевой, период полураспада составляет 8,1 часа.

Высокая активность окисления галогенов падает от фтора к иоду. Самым активным из собратьев является фтор, который имеет свойство вступать в реакцию с любыми металлами, образуя соли , некоторые из них при этом самовоспламеняются, при этом выделяется огромное количество тепла. Без нагрева этот элемент реагирует почти со всеми неметаллами , реакции сопровождаются выделением некоторого количества теплоты (экзотермические).

С инертными газами фтор вступает во взаимодействие, при этом облучаясь (Хе + F 2 = XeF 2 + 152 кДж). Нагреваясь, фтор влияет на другие галогены, окисляя их. Имеет место формула: Hal 2 + F 2 = 2НalF, где Hal = Cl, Br, I, At, в случае, когда HalF степени окисления хлора, брома, иода и астата равны + 1.

Со сложными веществами фтор также взаимодействует довольно энергично. Следствием является окисление воды. При этом происходит взрывная реакция, которая коротко записывается формулой: 3F 2 + ЗН 2 О = OF 2 + 4HF + Н 2 О 2.

Хлор

Активность свободного хлора несколько меньше, в сравнении со фтором, но он также имеет хорошую способность вступать в реакцию. Это может происходить при взаимодействии со многими простыми веществами, за редким исключением в виде кислорода, азота, инертных газов. Он может бурно реагировать со сложными веществами , создавая реакции замещения, свойство присоединения углеводородов — это тоже присуще хлору. При нагреве происходит вытеснение брома или йода из соединений с водородом или металлами.

Своеобразные отношения у этого элемента с водородом. При комнатной температуре и без попадания света, хлор никак не реагирует на этот газ, но стоит его лишь нагреть или направить свет, произойдёт взрывная цепная реакция. Формула приведена ниже:

Cl 2 + h ν → 2Cl , Cl + Н 2 → HCl + Н, Н + Cl 2 → HCl + Cl , Cl + Н 2 → HCl + Н и т. д.

Фотоны, возбуждаясь, вызывают разложение на атомы молекул Cl 2, при этом возникает цепная реакция, вызывая появление новых частиц, которые инициируют начало следующей стадии. В истории химии это явление было исследовано. Русский химик и лауреат Нобелевской премии Семёнов Н.Н. в 1956 году занимался изучением цепной фотохимической реакции и внёс тем самым большой вклад в науку.

Хлор реагирует со многими сложными веществами, это реакции замещения и присоединения. Он хорошо растворяется в воде.

Cl 2 + Н 2 О = HCl + HClO - 25 кДж.

Со щелочами при нагреве хлор может диспропорционировать .

Бром, йод и астат

Химическая активность брома чуть меньше, чем у вышеназванных фтора или хлора, однако она тоже довольно велика. Бром часто применяют в жидком виде. Он, как и хлор, очень хорошо растворяется в воде. Происходит частичная реакция с ней, позволяющая получать «бромную воду».

Химическая активность йода заметно отличается от остальных представителей этого ряда. Он почти не взаимодействует с неметаллами, а с металлами реакция идёт очень медленно и только при нагреве . При этом происходит большое поглощение тепла (эндотермическая реакция), которая сильно обратима. К тому же йод нельзя никаким образом растворить в воде , этого не достичь даже при нагреве, поэтому в природе не бывает «йодной воды». Йод можно растворить только в растворе йодида. При этом образуются комплексные анионы . В медицине такое соединение называется раствором Люголя.

Астат реагирует с металлами и водородом. В ряду галогенов химическая активность уменьшается по направлению от фтора к астату. Каждый галоген в ряду F - At способен вытеснять после­дующие элементы из соединений с металлами или водородом. Астат — самый пассивный среди этих элементов. Но ему присуще взаимодействие с металлами.

Применение

Химия прочно входит в нашу жизнь, внедряясь во все сферы. Человек научился применять галогены, а также его соединения на своё благо. Биологическое значение галогенов неоспоримо. Области применения их различны:

  • медицина;
  • фармакология;
  • производство различных пластмасс, красителей и т. д.;
  • сельское хозяйство.

Из природного соединение криолита, химическая формула которого выглядит следующим образом: Na3AlF6, получают алюминий . Соединения фтора нашли широкое распространение при производстве зубных паст . Фтор, как известно, служит для профилактики кариеса. Спиртовую настойку йода применяют для дезинфекции и обеззараживания ран .

Наиболее широкое применение в нашей жизни нашёл хлор. Область его применения довольно многообразна. Примеры использования:

  1. Производство пластмасс.
  2. Получение соляной кислоты.
  3. Производство синтетического волокна, растворителей, каучуков и др.
  4. Отбеливание тканей (льняных и хлопчатобумажных), бумаги.
  5. Обеззараживание питьевой воды. Но всё чаще для этой цели используется озон, так как применение хлора вредно для организма человека.
  6. Дезинфекция помещений

Нужно помнить, что галогены — очень токсичные вещества. Особенно ярко это свойство выражено у фтора. Галогены могут оказывать удушающее и воздействие на органы дыхания и поражать биологические ткани.

Огромную опасность могут иметь пары хлора, а также аэрозоль фтора, имеющий слабый запах, он может ощутиться при большой концентрации. Человек может получить эффект удушья. При работе с такими соединениями нужно соблюдать меры предосторожности.

Методы производства галогенов сложные и многообразные. В промышленности к этому подходят с определёнными требованиями, соблюдение которых неукоснительно соблюдаются.

Галогены в периодической таблице расположены слева от благородных газов. Эти пять токсических неметаллических элементов входят в 7 группу периодической таблицы. К ним относятся фтор, хлор, бром, йод и астат. Хотя астат радиоактивен и имеет только короткоживущие изотопы, он ведет себя, как йод, и его часто причисляют к галогенам. Поскольку галогенные элементы имеют семь валентных электронов, им необходим лишь один дополнительный электрон для образования полного октета. Эта характеристика делает их более активными, чем другие группы неметаллов.

Общая характеристика

Галогены образуют двухатомные молекулы (вида Х 2 , где Х обозначает атом галогена) - устойчивую форму существования галогенов в виде свободных элементов. Связи этих двухатомных молекул являются неполярными, ковалентными и одинарными. позволяют им легко вступать в соединение с большинством элементов, поэтому они никогда не встречаются в несвязанном виде в природе. Фтор - наиболее активный галоген, а астат - наименее.

Все галогены образуют соли I группы с похожими свойствами. В этих соединениях галогены присутствуют в виде галоидных анионов с зарядом -1 (например, Cl - , Br -). Окончание -ид указывает на наличие галогенид-анионов; например Cl - называется «хлорид».

Кроме того, химические свойства галогенов позволяют им действовать в качестве окислителей - окислять металлы. Большинство химических реакций, в которых участвуют галогены - окислительно-восстановительные в водном растворе. Галогены образуют одинарные связи с углеродом или азотом в где степень их окисления (СО) равна -1. Когда атом галогена замещён ковалентно-связанным атомом водорода в органическом соединении, префикс гало- может быть использован в общем смысле, или префиксы фтор-, хлор-, бром- , йод- - для конкретных галогенов. Галогенные элементы могут иметь перекрёстную связь с образованием двухатомных молекул с полярными ковалентными одинарными связями.

Хлор (Cl 2) стал первым галогеном, открытым в 1774 г., затем были открыты йод (I 2), бром (Br 2), фтор (F 2) и астат (At, обнаружен последним, в 1940 г.). Название «галоген» происходит от греческих корней hal- («соль») и -gen («образовывать»). Вместе эти слова означают «солеобразующий», подчёркивая тот факт, что галогены, вступая в реакцию с металлами, образуют соли. Галит - это название каменной соли, природного минерала, состоящего из хлорида натрия (NaCl). И, наконец, галогены используются в быту - фторид содержится в зубной пасте, хлор обеззараживает питьевую воду, а йод содействует выработке гормонов щитовидной железы.

Химические элементы

Фтор - элемент с атомным номером 9, обозначается символом F. Элементарный фтор впервые был обнаружен в 1886 г. путем выделения его из плавиковой кислоты. В свободном состоянии фтор существует в виде двухатомной молекулы (F 2) и является наиболее распространенным галогеном в земной коре. Фтор - наиболее электроотрицательный элемент в периодической таблице. При комнатной температуре является бледно-жёлтым газом. Фтор также имеет относительно небольшой атомный радиус. Его СО - -1, за исключением элементарного двухатомного состояния, в котором его степень окисления равна нулю. Фтор чрезвычайно химически активен и непосредственно взаимодействует со всеми элементами, кроме гелия (He), неона (Ne) и аргона (Ar). В растворе H 2 O, плавиковой кислоты (HF) является слабой кислотой. Хотя фтор сильно электроотрицателен, его электроотрицательность не определяет кислотность; HF является слабой кислотой в связи с тем, что ион фтора основной (рН> 7). Кроме того, фтор производит очень мощные окислители. Например, фтор может вступать в реакцию с инертным газом ксеноном и образует сильный окислитель дифторид ксенона (XeF 2). У фтора множество применений.

Хлор - элемент с атомным номером 17 и химическим символом Cl. Обнаружен в 1774 г. путём выделения его из соляной кислоты. В своём элементарном состоянии он образует двухатомную молекулу Cl 2 . Хлор имеет несколько СО: -1, +1, 3, 5 и 7. При комнатной температуре он является светло-зеленым газом. Так как связь, которая образуется между двумя атомами хлора, является слабой, молекула Cl 2 обладает очень высокой способностью вступать в соединения. Хлор реагирует с металлами с образованием солей, которые называются хлориды. Ионы хлора являются наиболее распространенными ионами, они содержатся в морской воде. Хлор также имеет два изотопа: 35 Cl и 37 Cl. Хлорид натрия является наиболее распространенным соединением из всех хлоридов.

Бром - химический элемент с атомным номером 35 и символом Br. Впервые был обнаружен в 1826 г. В элементарной форме бром является двухатомной молекулой Br 2 . При комнатной температуре представляет собой красновато-коричневую жидкость. Его СО - -1, + 1, 3, 4 и 5. Бром более активен, чем йод, но менее активен, чем хлор. Кроме того, бром имеет два изотопа: 79 Вг и 81 Вг. Бром встречается в бромида, растворённых в морской воде. За последние годы производство бромида в мире значительно увеличилось благодаря его доступности и продолжительному времени жизни. Как и другие галогены, бром является окислителем и очень токсичен.

Йод - химический элемент с атомным номером 53 и символом I. Йод имеет степени окисления: -1, +1, +5 и +7. Существует в виде двухатомной молекулы, I 2 . При комнатной температуре является твёрдым веществом фиолетового цвета. Йод имеет один стабильный изотоп - 127 I. Впервые обнаружен в 1811 г. с помощью морских водорослей и серной кислоты. В настоящее время ионы йода, могут быть выделены в морской воде. Несмотря на то что йод не очень хорошо растворим в воде, его растворимость может возрасти при использовании отдельных йодидов. Йод играет важную роль в организме, участвуя в выработке гормонов щитовидной железы.

Астат - радиоактивный элемент с атомным номером 85 и символом At. Его возможные степени окисления: -1, +1, 3, 5 и 7. Единственный галоген, не являющийся двухатомной молекулой. В нормальных условиях является металлическим твёрдым веществом чёрного цвета. Астат является очень редким элементом, поэтому о нём известно немного. Кроме того, астат имеет очень короткий период полураспада, не дольше нескольких часов. Получен в 1940 г. в результате синтеза. Полагают, что астат похож на йод. Отличается

В таблице ниже показано строение атомов галогенов, структура внешнего слоя электронов.

Подобное строение внешнего слоя электронов обусловливает то, что физические и химические свойства галогенов похожи. Вместе с тем при сопоставлении этих элементов наблюдаются и различия.

Периодические свойства в группе галогенов

Физические свойства простых веществ галогенов изменяются с повышением порядкового номера элемента. Для лучшего усвоения и большей наглядности мы предлагаем вам несколько таблиц.

Точки плавления и кипения в группе возрастают по мере роста размера молекулы (F

Таблица 1. Галогены. Физические свойства: точки плавления и кипения

Галоген

Т плавления (˚C)

Т кипения (˚C)

  • Атомный радиус увеличивается.

Размер ядра увеличивается (F < Cl < Br < I < At), так как увеличивается число протонов и нейтронов. Кроме того, с каждым периодом добавляется всё больше уровней энергии. Это приводит к большей орбитали, и, следовательно, к увеличению радиуса атома.

Таблица 2. Галогены. Физические свойства: атомные радиусы

Ковалентный радиус (пм)

Ионный (X -) радиус (пм)

  • Энергия ионизации уменьшается.

Если внешние валентные электроны не находятся вблизи ядра, то для их удаления от него не потребуется много энергии. Таким образом, энергия, необходимая для выталкивания внешнего электрона не столь высока в нижней части группы элементов, так как здесь больше энергетических уровней. Кроме того, высокая энергия ионизации заставляет элемент проявлять неметаллические качества. Йод и дисплей астат проявляют металлические свойства, потому что энергия ионизации снижается (At < I < Br < Cl < F).

Таблица 3. Галогены. Физические свойства: энергия ионизации

  • Электроотрицательность уменьшается.

Число валентных электронов в атоме возрастает с увеличением уровней энергии при прогрессивно более низких уровнях. Электроны прогрессивно дальше от ядра; Таким образом, ядро ​​и электроны не как притягиваются друг к другу. Увеличение экранирования наблюдается. Поэтому Электроотрицательность уменьшается с ростом периода (At < I < Br < Cl < F).

Таблица 4. Галогены. Физические свойства: электроотрицательность

  • Сродство к электрону уменьшается.

Так как размер атома увеличивается с увеличением периода, сродство к электрону, как правило, уменьшается (В < I < Br < F < Cl). Исключение - фтор, сродство которого меньше, чем у хлора. Это можно объяснить меньшим размером фтора по сравнению с хлором.

Таблица 5. Сродство галогенов к электрону

  • Реактивность элементов уменьшается.

Реакционная способность галогенов падает с ростом периода (At

Водород + галогены

Галогенид образуется, когда галоген реагирует с другим, менее электроотрицательным элементом с образованием бинарного соединения. Водород реагирует с галогенами, образуя галогениды вида НХ:

  • фтороводород HF;
  • хлороводород HCl;
  • бромоводород HBr;
  • иодоводород HI.

Галогениды водорода легко растворяются в воде с образованием галогенводородной (плавиковой, соляной, бромистоводородной, иодистоводородной) кислоты. Свойства этих кислот приведены ниже.

Кислоты образуются следующей реакцией: HX (aq) + H 2 O (l) → Х - (aq) + H 3 O + (aq).

Все галоидоводороды образуют сильные кислоты, за исключением HF.

Кислотность галогеноводородных кислот увеличивается: HF

Плавиковая кислота способна гравировать стекло и некоторые неорганические фториды длительное время.

Может показаться нелогичным, что HF является самой слабой галогенводородной кислотой, так как фтор обладает самой высокой электроотрицательностью. Тем не менее связь Н-F очень сильна, в результате чего кислота очень слабая. Сильная связь определяется короткой длиной связи и большой энергией диссоциации. Из всех галогенидов водорода HF имеет самую короткую длину связи и самую большую энергию диссоциации связи.

Галогенные оксокислоты

Галогенные оксокислоты представляют собой кислоты с атомами водорода, кислорода и галогена. Их кислотность может быть определена с помощью анализа структуры. Галогенные оксокислоты приведены ниже:

  • Хлорноватистая кислота HOCl.
  • Хлористая кислота HClO 2 .
  • Хлорноватая кислота HClO 3 .
  • Хлорная кислота HClO 4 .
  • Бромноватистая кислота HOBr.
  • Бромноватая кислота HBrO 3 .
  • Бромная кислота HBrO 4 .
  • Иодноватистая кислота HOI.
  • Йодноватая кислота HIO 3 .
  • Метайодная кислота HIO4, H5IO6.

В каждой из этих кислот протон связан с атомом кислорода, поэтому сравнение длин связей протонов здесь бесполезно. Доминирующую роль здесь играет электроотрицательность. Активность кислотны возрастает с увеличением числа атомов кислорода, связанный с центральным атомом.

Внешний вид и состояние вещества

Основные физические свойства галогенов кратко можно выразить в следующей таблице.

Состояние вещества (при комнатной температуре)

Галоген

Внешний вид

фиолетовый

красно-коричневый

газообразное

бледно-жёлто-коричневый

бледно-зелёный

Объяснение внешнего вида

Цвет галогенов является результатом поглощения видимого света молекулами, что вызывает возбуждение электронов. Фтор поглощает фиолетовый свет, и, следовательно, выглядит светло-жёлтым. Йод, наоборот, поглощает жёлтый свет и выглядит фиолетовым (жёлтый и фиолетовый - дополняющие цвета). Цвет галогенов становится темнее с ростом периода.

В закрытых ёмкостях жидкий бром и твёрдый йод находятся в равновесии со своими парами, которые можно наблюдать в виде цветного газа.

Хотя цвет астата неизвестен, предполагается, что он должен быть темнее йода (т. е. черным) в соответствии с наблюдаемой закономерностью.

Теперь, если вас попросят: «Охарактеризуйте физические свойства галогенов», вам будет что сказать.

Степень окисления галогенов в соединениях

Степень окисления часто используется вместо понятия "валентность галогенов". Как правило, степень окисления равна -1. Но если галоген связан с кислородом или другим галогеном, он может принимать другие состояния: СО кислорода -2 имеет приоритет. В случае двух различных атомов галогена, соединенных вместе, более электроотрицательный атом превалирует и принимает СО -1.

Например, в хлориде йода (ICl) хлор имеет СО -1, и йод +1. Хлор является более электроотрицательным, чем йод, поэтому его СО равна -1.

В бромной кислоте (HBrO 4) кислород обладает СО -8 (-2 х 4 атома = -8). Водород имеет общую степень окисления +1. Сложение этих значений даёт СО -7. Так как конечное СО соединения должно быть нулевым, то СО брома равна +7.

Третьим исключением из правила является степень окисления галогена в элементарной форме (X 2), где его СО равна нулю.

Галоген

СО в соединениях

1, +1, +3, +5, +7

1, +1, +3, +4, +5

1, +1, +3, +5, +7

Почему СО фтора всегда -1?

Электроотрицательность увеличивается с ростом периода. Поэтому фтор имеет самую высокую электроотрицательность из всех элементов, что подтверждается его положением в периодической таблице. Его электронная конфигурация 1s 2 2s 2 2p 5 . Если фтор получает еще один электрон, крайние р-орбитали полностью заполнены и составляют полный октет. Поскольку фтор имеет высокую электроотрицательность, он может легко отобрать электрон у соседнего атома. Фтор в этом случае изоэлектронен инертному газу (с восемью валентными электронами), все его внешние орбитали заполнены. В таком состоянии фтор гораздо более стабилен.

Получение и применение галогенов

В природе галогены находятся в состоянии анионов, поэтому свободные галогены получают методом окисления путём электролиза или с помощью окислителей. Например, хлор вырабатывается гидролизом раствора поваренной соли. Применение галогенов и их соединений многообразно.

  • Фтор . Несмотря на то что фтор очень реактивен, он используется во многих областях промышленности. Например, он является ключевым компонентов политетрафторэтилена (тефлона) и некоторых других фторполимеров. Хлорфторуглероды представляют собой органические которые ранее использовались в качестве хладагентов и пропеллентов в аэрозолях. Их применение прекратилось из-за возможного их воздействия на окружающую среду. Их заменили гидрохлорфторуглероды. Фтор добавляют в зубную пасту (SnF 2) и питьевую воду (NaF) для предотвращения разрушения зубов. Этот галоген содержится в глине, используемой для производства некоторых видов керамики (LiF), используется в ядерной энергетике (UF 6), для получения антибиотика фторхинолона, алюминия (Na 3 AlF 6), для изоляции высоковольтного оборудования (SF 6).
  • Хлор также нашёл разнообразное применение. Он используется для дезинфекции питьевой воды и плавательных бассейнов. (NaClO) является основным компонентом отбеливателей. Соляная кислота широко используется в промышленности и лабораториях. Хлор присутствует в поливинилхлориде (ПВХ) и других полимерах, которые используются для изоляции проводки, труб и электроники. Кроме того, хлор оказался полезен и в фармацевтической промышленности. Лекарственные средства, содержащие хлор, используются для лечения инфекций, аллергии и диабета. Нейтральная форма гидрохлорида - компонент многих препаратов. Хлор используется также для стерилизации больничного оборудования и дезинфекции. В сельском хозяйстве хлор является компонентом многих коммерческих пестицидов: ДДТ (дихлородифенилтрихлорэтан) использовался в качестве сельскохозяйственного инсектицида, но его использование было прекращено.

  • Бром , благодаря своей негорючести, применяется для подавления горения. Он также содержится в бромистом метиле, пестициде, используемом для хранения урожая и подавления бактерий. Однако чрезмерное использование было прекращено из-за его воздействия на озоновый слой. Бром применяют при производстве бензина, фотоплёнки, огнетушителей, лекарств для лечения пневмонии и болезни Альцгеймера.
  • Йод играет важную роль в надлежащем функционировании щитовидной железы. Если организм не получает достаточного количества йода, происходит увеличение щитовидной железы. Для профилактики зоба данный галоген добавляют в поваренную соль. Йод также используется в качестве антисептического средства. Йод содержится в растворах, используемых для очистки открытых ран, а также в дезинфицирующих спреях. Кроме того, йодид серебра имеет важное значение в фотографии.
  • Астат - радиоактивный и редкоземельный галоген, поэтому ещё нигде не используется. Тем не менее полагают, что этот элемент может помочь йоду в регуляции гормонов щитовидной железы.