Определение степеней свободы молекул газа. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул. Температура и ее измерение

Важной характеристикой термодинамиче­ской системы является ее внутренняя энергия U - энергия хаотического (тепло­вого) движения микрочастиц системы (молекул, атомов, электронов, ядер и т. д.) и энергия взаимодействия этих частиц. Из этого определения следует, что к внутрен­ней энергии не относятся кинетическая энергия движения системы как целого и потенциальная энергия системы во внешних полях.

Внутренняя энергия - однозначная функция термодинамического состояния системы, т. е. в каждом состоянии система обладает вполне определенной внутренней энергией (она не зависит от того, как система пришла в данное состояние). Это

означает, что при переходе системы из одного состояния в другое изменение внут­ренней энергии определяется только раз­ностью значений внутренней энергии этих состояний и не зависит от пути перехода. В § 1 было введено понятие числа степеней свободы - числа независимых переменных (координат), полностью опре­деляющих положение системы в простран­стве. В ряде задач молекулу одноатомного газа (рис. 77, а) рассматривают как мате­риальную точку, которой приписывают три

степени свободы поступательного движе­ния. При этом энергию вращательного движения можно не учитывать (r->0, J= mr 2 ®0, T вр =Jw 2 /2®0).

В классической механике молекула двухатомного газа в первом приближении рассматривается как совокупность двух материальных точек, жестко связанных недеформируемой связью (рис. 77,б). Эта система кроме трех степеней свободы по­ступательного движения имеет еще две степени свободы вращательного движе­ния. Вращение вокруг третьей оси (оси, проходящей через оба атома) лишено смысла. Таким образом, двухатомный газ обладает пятью степенями свободы (i=5). Трехатомная (рис. 77,0) и многоатомная нелинейные молекулы имеют шесть степе­ней свободы: три поступательных и три вращательных. Естественно, что жесткой связи между атомами не существует. По­этому для реальных молекул необходимо учитывать также степени свободы колеба­тельного движения.

Независимо от общего числа степеней свободы молекул три степени свободы всегда поступательные. Ни одна из по­ступательных степеней свободы не имеет преимущества перед другими, поэтому на каждую из них приходится в среднем оди­наковая энергия, равная 1 / 3 значения

В классической статистической физике выводится закон Больцмана о равномер­ном распределении энергии по степеням свободы молекул: для статистической системы, находящейся в состоянии термо­динамического равновесия, на каждую по­ступательную и вращательную степени свободы приходится в среднем кинетиче­ская энергия, равная kT/2, а на каждую колебательную степень свободы - в сред­нем энергия, равная kT. Колебательная степень «обладает» вдвое большей энер­гией потому, что на нее приходится не только кинетическая энергия (как в слу­чае поступательного и вращательного дви­жений), но и потенциальная, причем сред­ние значения кинетической и потенциальной энергий одинаковы. Таким образом, средняя энергия молекулы



где i - сумма числа поступатель­ных, числа вращательных и удвоенного числа колебательных степеней свободы молекулы:

i =i пост +i вращ +2i колеб.

В классической теории рассматривают молекулы с жесткой связью между атома­ми; для них i совпадает с числом степеней свободы молекулы.

Так как в идеальном газе взаимная потенциальная энергия молекул равна ну­лю (молекулы между собой не взаимодей­ствуют), то внутренняя энергия, отнесен­ная к одному молю газа, будет равна сумме кинетических энергий N A молекул:

Внутренняя энергия для произвольной массы т газа

где М - молярная масса, v - количе­ство вещества.

Теплоёмкость тела характеризуется количеством теплоты, необходимой для нагревания этого тела на один градус:

Дж/(моль×К).

Из п. 1.2 известно, что молярная масса – масса одного моля:

где А – атомная масса; m ед - атомная единица массы; N А - число Авогадро; моль μ – количество вещества, в котором содержится число молекул, равное числу атомов в 12 г изотопа углерода 12 С.



Теплоёмкость термодинамической системы зависит от того, как изменяется состояние системы при нагревании.

Если газ нагревать при постоянном объёме , то всё подводимое тепло идёт на нагревание газа, то есть изменение его внутренней энергии. Теплоёмкость при этом обозначается С V .

С Р – теплоемкость при постоянном давлении. Если нагревать газ при постоянном давлении Р в сосуде с поршнем, то поршень поднимется на некоторую высоту h , то есть газ совершит работу (рис. 4.2).


Рис. 4.2

Следовательно, проводимое тепло затрачивается и на нагревание и на совершение работы. Отсюда ясно, что .

Итак, проводимое тепло и теплоёмкость зависят от того, каким путём осуществляется передача тепла. Значит, Q и С не являются функциями состояния.

Величины С Р и С V оказываются связанными простыми соотношениями. Найдём их.

Пусть мы нагреваем один моль идеального газа при постоянном объёме(dA = 0). Тогда первое начало термодинамики запишем в виде:

В общем случае

При изобарическом процессе, кроме увеличения внутренней энергии, происходит совершение работы газом:

Это уравнение Майера для одного моля газа.

Из этого следует, что физический смысл универсальной газовой постоянной в том, что R – численно равна работе, совершаемой одним молем газа при нагревании на один градус в изобарическом процессе.

Используя это соотношение, Роберт Майер в 1842 г. вычислил механический эквивалент теплоты: 1 кал = 4,19 Дж.

Полезно знать формулу Майера для удельных теплоёмкостей:

.
. (4.2.9)

Внутренняя энергия

Любая термодинамическая система состоит из атомов и молекул, находящихся в непрерывном движении. Количественной характеристикой движения является энергия.

Внутренняя энергия (U) характеризует общий запас энергии системы. Она включает все виды движения и взаимодействия частиц, составляющих систему: кинетическую энергию молекулярного движения, межмолекулярную энергию притяжения и отталкивания частиц, внутримолекулярную или химическую энергию, энергию электронного возбуждения, внутриядерную и лучистую энергию.

Величина внутренней энергии зависит от природы вещества , его массы и параметров состояния системы .

Определение полного запаса внутренней энергии вещества невозможно, т.к. нельзя перевести систему в состояние, лишенное внутренней энергии. Поэтому в термодинамике рассматривают изменение внутренней энергии (∆U), которое представляет собой разность величин внутренней энергии системы в конечном и начальном состояниях:

∆U = U koh . – U нач.

Бесконечно малое изменение внутренней энергии обозначают через du т.к. внутренняя энергия является функцией состояния и ее изменение не зависит от пути процесса, а определяется только начальным и конечным состоянием системы, то du будет полным дифференциалом. Величины ∆U и du считают положительными, если внутренняя энергия при протекании процесса возрастает, а отрицательными если убывает.

Теплота и работа

Передача энергии от системы к окружающей среде и наоборот осуществляется в виде теплоты (Q) и работы (А).

Система
-Q +Q
Окружающая среда

Форма передачи энергии от одной части системы к другой вследствие неупорядоченного движения молекул, зависящая лишь от температуры частей системы и не связанная с перекосом вещества в системе называется теплотой .

Теплота связана с процессом, а не с состоянием системы, т.е. теплота является функцией состояния она зависит от пути процесса поэтому бесконечно малое количество теплоты обозначается δQ и не является полным дифференциалом. Теплота, подводимая к системе, считаетсяположительной, а отданная ею - отрицательной .

Работа процесса - это энергия, передаваемая одним телом другому при их взаимодействии, не зависящая от температуры этих тел и не связанная с переносом вещества от одного тела к другому.

Работа, как и теплота, связана с процессом и не является свойством системы, т.е. функцией состояния. Paбoту, совершаемую системой против внешних сил. принято считать положительной, а совершаемую над системой - отрицательной .

Первый закон термодинамики

Первый закон имеет несколько формулировок:

1. Внутренняя энергия изолированной системы постоянна.

2. Работа и теплота эквивалентны.

3. Вечный двигатель I рода невозможен. (Двигатель I рода дает работу без затраты энергии из окружающей среды.)

Математическое выражение I закона:

Q = ∆U + A, (1)

где Q - количество сообщенной системе теплоты;

∆U - изменение внутренней энергии;

А - суммарная работа, совершаемая системой.

Для бесконечно малых элементарных процессов уравнение (1) имеет вид:

δQ = du – δА = du - pdV + δА,

где pdV - работа расширения;

δА - сумма всех остальных видов элементарных работ (магнитная, электрическая и др.).

Величину δА называют полезной работой. В химической термодинамике принимают во внимание только работу расширения, а работу δА считают равной 0. Поэтому

δА = pdV, тогда δQ= du + pdV (2)

Из уравнений (1.2) следует, что количество, теплоты подведенное к системе или отведенное от нее идет на изменение внутренней энергии и на работу, совершаемую системой или совершаемую над системой.

Первый закон термодинамики позволяет вычислить изменение параметров идеального газа при тепловых и механических процессах.

Так, если в газе протекают изопроцессы, первый закон термодинамики может быть записан в частном виде.

При изотермическом процессе изменения внутренней энергии в идеальном газе не происходит и все подводимое к газу количество теплоты идет на совершение им работы.

(Индекс V означает, что процесс протекает при постоянном объеме).

Если при теплообмене происходит изменение температуры газа на ΔT , то Q V = c V m ΔT .

c V – удельная теплоемкость газа при постоянном объеме.

Подставляя это выражение в уравнение первого закона термодинамики для изохорного процесса, имеем: ΔU = c V m ΔT .

С другой стороны, для одноатомного идеального газа

Приравняв правые части уравнений и произведя соответствующие преобразования, имеем:

При изобарном процессе изменение внутренней энергии газа происходит как за счет теплообмена, так и за счет совершения механической работы. Если к газу подводится некоторое количество теплоты, то оно частично расходуется на увеличение внутренней энергии газа, частично на совершение газом работы при его расширении.

p = const, A = p ΔV , Q p = ΔU + p ΔV .

(Индекс p означает, что процесс протекает при постоянном давлении).

Давление газа остается постоянным за счет соответствующего изменения объема. Так как ΔU = Q V , то Q p = Q V + p ΔV .

Таким образом оказывается, что для повышения температуры газа на одно и то же количество градусов при постоянном давлении надо сообщить ему большее количество теплоты, чем при постоянном объеме, так часть теплоты расходуется на совершение работы.

Если обозначить удельную теплоемкость при постоянном давлении c p , то первый закон термодинамики для изобарного процесса примет вид: или:

Из уравнения Менделеева–Клапейрона следует, что

Таким образом,

С учетом того, что

Наряду с удельными теплоемкостями газа при постоянном объеме и постоянном давлении c V и c p , можно ввести молярные теплоемкости C V = c V M при постоянном объеме и C p = c p M при постоянном давлении. Сделав это, имеем: C p = C V + R .

Полученное уравнение носит название уравнения Майера.

Кроме рассмотренных, возможен еще вариант, когда термодинамическая система не обменивается теплотой с окружающей средой. Процесс, происходящий при этом с газом, называется адиабатным. При адиабатном процессе работа совершается газом за счет убыли его внутренней энергии, либо наоборот, за счет совершения над газом работы, увеличивается его внутренняя энергия. Q = 0; A = –ΔU .

ниверсальная газовая постоянная (R) – это одна из основных физических констант, используемая при решении задач в различных разделах химии.

Согласно системе СИ эта постоянная выражается в Дж/К·моль и имеет значение 8,314 .

Универсальная газовая по­стоянная входит в уравнение Менделеева – Клапейрона:

где n – число молей газа, р – давление, V и Т – соответственно, объем и температура в градусах по шкале Кельвина.

Выразим универсальную газовую постоянную:

R = pV/nT

Примем количество вещества за 1 моль, тогда объём будет равен 22,4 л/моль. Произведение рV – это работа раcширения идеального гaзa. Физичеcкий смысл универсальной газoвoй пoстоянной в тoм, чтo R показывает работу которую выпoлняет 1 моль идеального газа при расширении за счет нагревания на 1 К (при р = const). R также показывает среднюю энергию теплового движения 1 моля частиц.

Pv y = const УРАВНЕНИЕ АДИАБАТЫ

Политропный процесс

Материал из Википедии - свободной энциклопедии

Политропный процесс, политропический процесс - термодинамический процесс, во время которого удельная теплоёмкость газа остаётся неизменной.

В соответствии с сущностью понятия теплоёмкости , предельными частными явлениями политропного процесса являютсяизотермический процесс () иадиабатный процесс ().

В случае идеального газа, изобарный процесс и изохорный процесс также являются политропными (удельные теплоёмкости идеального газа при постоянном объёме и постоянном давлении соответственно равны и ( и не меняются при изменении термодинамических параметров).

Показатель политропы[править | править исходный текст]

Кривая на термодинамических диаграммах, изображающая политропный процесс, называется «политропа». Для идеального газа уравнение политропы может быть записано в виде:

где р - давление, V - объем газа, n - «показатель политропы».

Здесь - теплоёмкость газа в данном процессе, и - теплоемкости того же газа, соответственно, при постоянном давлении и объеме.

В зависимости от вида процесса, можно определить значение n:

Различные значения показателя политропы
Значение показателя политропы Уравнение Описание процесса
- Хотя этот случай не имеет практического значения для наиболее распространённых технических приложений, показатель политропы может принимать отрицательные значения в некоторых специальных случаях, рассматриваемых, например, в некоторых состояниях плазмы в астрофизике.
Это изобарный процесс (протекающий при постоянном давлении)
Это изотермический процесс (протекающий при постоянной температуре)
- Это квазиадиабатические процессы, протекающие, например, в двигателях внутреннего сгорания во время расширения газа
- -- это показатель адиабаты, используемый при описании адиабатического процесса (происходит без теплообмена газа с окружающей средой)
- Это изохорный процесс (протекающий при постоянном объёме)

Когда показатель n лежит в пределах между любыми двумя значениями из указанных выше (0, 1, γ, или ∞), то это означает, что график политропного процесса заключён между графиками соответствующих двух процессов.

Заметим, что , так как .

Молекулы идеального газа не взаимодействуют друг с другом и, следовательно, не обладают потенциальной энергией. Поэтому вся энергия молекул идеального газа состоит только из кинетической энергии поступательного и вращательного движений. Среднюю кинетическую энергию поступательного движения молекулы мы определили в предыдущем параграфе [формула (17)]. Для учета средней кинетической энергии вращательного движения молекулы необходимо ввести в рассмотрение понятие числа степеней свободы тела.

Числом степеней свободы тела называется число независимых координат, определяющих положение тел в пространстве.

Поясним данное определение. Если тело перемещается в пространстве совершенно произвольно, то это перемещение всегда можно составить из шести одновременных независимых движений: трех поступательных (вдоль трех осей прямоугольной системы координат) и трех вращательных (вокруг трех взаимно перпендикулярных осей, проходящих через центр тяжести тела) (рис. 75). Иными словами, положение тела в пространстве определяется в этом случае шестью независимыми координатами: тремя линейными и тремя угловыми Следовательно, согласно определению, число степеней свободы произвольно движущегося в пространстве тела равно шести (три поступательных и три вращательных степени свободы). Если свобода движения тела ограничена, то его число степеней свободы меньше шести. Например, тело движется только по плоскости, имея при этом возможность произвольного вращения (катящийся мяч). Тогда число его степеней свободы равно пяти (две поступательных и три вращательных). Железнодорожный вагон имеет одну степень свободы (поступательную), так как он движется только по линии. Колесо вагона имеет две степени свободы: одну поступательную (вместе с гагоном) и одну вращательную (вокруг горизонтальной оси).

Вернемся теперь к вопросу о кинетической энергии молекулы газа. Ввиду полной хаотичности движения молекул все виды их движений (и поступательные, и вращательные) одинаково возможны (равновероятны). Поэтому на каждую степень свободы молекулы приходится в среднем одинаковое количество энергии (теорема Больцмана о равномерном распределении энергии по степеням свободы).

Поскольку молекулы движутся совершенно произвольно, они должны были бы иметь по шесть степеней свободы. Однако здесь надо принять во внимание следующее обстоятельство.

Молекулу одноатомного газа (например, Не) можно представить как материальную точку, вращение которой вокруг собственных осей не изменяет ее положения в пространстве. Значит, для определения положения одноатомной молекулы достаточно задать только ее линейные координаты. Поэтому одноатомной молекуле следует приписать число степеней свободы, равное трем (поступательным). С физической точки зрения это обстоятельство можно пояснить так. Кинетическая энергия вращательного движения тела (см. § 23) равна

где - угловая скорость вращения, I - момент инерции тела. Для материальной точки

где масса материальной точки, ее расстояние от оси вращения. Если материальная точка вращается вокруг своей оси, то Но тогда и Следовательно, у одноатомной молекулы на вращательнсе движение (на вращательные степени свободы) приходится бесконечно малая энергия, которой можно пренебречь. Строгое доказательство этого положения возможно только на основе квантовой механики.

Молекулу двухатомного газа (например, ) можно представить как совокупность двух материальных точек - атомов, жестко связанных между собой химическими связями (рис. 76, а). Вращение такой молекулы вокруг оси, проходящей через оба атома, не меняет положения молекулы в пространстве. С физической же точки зрения энергия, приходящаяся на вращение молекулы вокруг оси, проходящей через атомы, близка к нулю. Поэтому двухатомной молекуле следует приписать пять степеней свободы (три поступательных и две вращательных).

Что касается трехатомной молекулы (рис. 76, б), то она, очевидно, имеет все шесть степеней свободы (три поступательных и три вращательных). Столько же степеней свободы имеют и другие многоатомные молекулы (четырехатомные, пятиатомные и т. д.).

Для подсчета средней кинетической энергии, приходящейся на одну степень свободы молекулы, воспользуемся формулой (17):

Так как эта энергия получена для одноатомной молекулы (как материальной точки), имеющей три степени свободы, то на одну степень свободы молекулы приходится энергия

Тогда, согласно упомянутой теореме Больцмана, молекула, имеющая степеней свободы, будет обладать полной кинетической энергией

Следовательно, полная кинетическая энергия молекулы газа пропорциональна его абсолютной температуре и зависит только от нее.

Из формулы (19) вытекает физический смысл абсолютного нуля температуры: при будет и т. е. при абсолютном нуле прекращается движение молекул газа.

Согласно формуле (19), одноатомная молекула имеет полную энергию

двухатомная молекула имеет полную энергию

трехатомная и многоатомная молекулы имеют полную энергию

Тогда внутренняя энергия некоторой массы газа равна произведению числа молекул, содержащихся в этой массе, на полную кинетическую энергию одной молекулы:

Так как для моля газа то для внутренней энергии моля получим (учитывая, что

Основные понятия термодинамики.

В отличие от МКТ термодинамика изучает макроскопические свойства тел и явлений природы, не интересуясь их микроскопической картиной. Не вводя в рассмотрение атомы и молекулы, не входя в микроскопическое рассмотрение процессов, термодинамика позволяет делать целый ряд выводов относительно их протекания.

В основе термодинамики лежит несколько фундаментальных законов (называемых началами термодинамики), установленных на основании обобщения большой совокупности опытных фактов.

Подходя к рассмотрению изменений состояния вещества с различных точек зрения, термодинамика и МКТ взаимно дополняют друг друга, образуя по существу одно целое.

Термодинамика - раздел физики, изучающий общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия и процессы перехода между этими состояниями.

Термодинамический метод основан на введении понятия энергии и рассматривает процессы с энергетической точки зрения, т. е. основываясь на законе сохранения энергии и превращении её из одного вида в другой.

Термодинамическая система - совокупность тел, которые могут обмениваться энергией друг с другом и с внешней средой.

Для описания термодинамической системы вводятся физические величины, которые называются термодинамическими параметрами или параметрами состояния системы: р,V,T.

Физические величины, характеризующие состояние термодинамической системы, называются термодинамическими параметрами .

Давлением называется физическая величина, численно равная силе, действующей на единицу площади поверхности тела по направлению нормали к этой поверхности: , .

Нормальное атмосферное давление 1атм=10 5 Па.

Абсолютная температура - мера средней кинетической энергии молекул.

.

Состояния, в которых находится термодинамическая система, могут быть различными.

Если один из параметров в различных точках системы неодинаков и изменяется с течением времени, то такое состояние системы называется неравновесным .

Если все термодинамические параметры остаются постоянными во всех точках системы сколь угодно долго, то такое состояние называется равновесным , или состоянием термодинамического равновесия.

Любая замкнутая система по истечении определенного времени самопроизвольно переходит в равновесное состояние.

Всякое изменение состояния системы, связанное с изменением хотя бы одного из её параметров, называется термодинамическим процессом. Процесс, в котором каждое последующее состояние бесконечно мало отличается от предыдущего, т.е. представляет собой последовательность равновесных состояний, называется равновесным.

Очевидно, что все равновесные процессы протекают бесконечно медленно.

Равновесный процесс может быть проведен в обратном направлении, причем система будет проходить через те же состояния, что и при прямом ходе, но в обратной последовательности. Поэтому равновесные процессы называют обратимыми .

Процесс, при котором система после ряда изменений возвращается в исходное состояние, называется круговым процессом или циклом .

Все количественные выводы термодинамики строго применимы только к равновесным состояниям и обратимым процессам.

Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы.

Число степеней свободы – число независимых координат, полностью определяющих положение системы в пространстве. Молекулу одноатомного газа можно рассматривать как материальную точку, обладающую тремя степенями свободы поступательного движения.

Молекула двухатомного газа – совокупность двух материальных точек (атомов), жестко связанных недеформируемой связью; кроме трех степеней свободы поступательного движения имеет еще две степени свободы вращательного движения (рис. 1).

Трех- и многоатомные молекулы имеют 3+3=6 степеней свободы (рис. 1).

Естественно, что жесткой связи между атомами не существует. Поэтому для реальных молекул следует учитывать и степени свободы колебательного движения (кроме одноатомных).



Как было показано, средняя кинетическая энергия поступательного движения молекулы равна

До сих пор мы пользовались представлением о молекулах как об очень маленьких упругих шариках, средняя кинетическая энергия которых полагалась равной средней кинетической энергии поступательного движения (см. формулу 6.7). Такое представление о молекуле справедливо только для одноатомных газов. В случае многоатомных газов вклад в кинетическую энергию вносит еще и вращательное, а при высокой температуре – колебательное движение молекул.

Для того, чтобы оценить, какая доля энергии молекулы приходится на каждое из этих движений, введем понятие степеней свободы . Под числом степеней свободы тела (в данном случае молекулы) понимают число независимых координат , полностью определяющих положение тела в пространстве. Число степеней свободы молекулы обозначим буквойi.

Если молекула одноатомная (инертные газы Не, Ne,Arи др), то молекулу можно рассматривать как материальную точку. Так как положение материальной определяется тремя координатами х, у,z(рис.6.2, а), то одноатомная молекула обладает тремя степенями свободы поступательного движения (i= 3).

Молекулу двухатомного газа (Н 2 ,N 2 , О 2) можно представить как совокупность двух жестко связанных материальных точек – атомов (рис.6.2, б). Для определения положения двухатомной молекулы линейных координат х, у,zнедостаточно, так как молекула может вращаться вокруг центра координат. Очевидно, что такая молекула обладает пятью степенями свободы (i=5): - тремя – поступательного движения и двумя – вращения вокруг осей координат (из трех углов 1 , 2 , 3 независимы только два).

Если молекула состоит из трех и более атомов, не лежащих на одной прямой (СО 2 ,NH 3), то она, (рис.6.2, в) имеет шесть степеней свободы (i= 6): три – поступательного движения и три – вращения вокруг осей координат.

Выше было показано (см. формулу 6.7), что средняя кинетическая энергия поступательного движения молекулы идеального газа, принимаемой заматериальную точку , равна 3/2kТ. Тогда на одну степень свободы поступательного движения приходится энергия, равная 1/2kТ. Этот вывод в статистической физике обобщается в виде закона Больцмана о равномерном распределении энергии молекул по степеням свободы: статистически в среднем на любую степень свободы молекул приходится одинаковая энергия, ε i , равная:

Таким образом, полная средняя кинетическая энергия молекулы

(6.12)

Реально молекулы могут совершать еще и колебательные движения, причем на колебательную степень свободы приходится в среднем энергия в два раза большая, чем на поступательную или вращательную, т.е. kТ. Кроме того, рассматривая модель идеального газа, мы по определению не учитывали потенциальную энергию взаимодействия молекул.

Среднее число столкновений и средняя свободного пробега молекул

Процесс столкновения молекул удобно характеризовать величиной эффективного диаметра молекул d, под которым понимается минимальное расстояние, на которое могут сблизиться центры двух молекул.

Среднее расстояние, которое проходит молекула между двумя последовательными столкновениями, называется средней длиной свободного пробега молекулы.

Вследствие хаотичности теплового движения траектория молекулы представляет собой ломаную линию, точки изломов которой соответствуют точкам столкновений ее с другими молекулами (рис.6.3). За одну секунду молекула проходит путь, равный средней арифметической скорости . Если- среднее число столкновений за 1 секунду, то средняя длина свободного пробега молекулы между двумя последовательными соударениями

=/(6.13)

Для определения молекулу представим шариком с диаметромd(другие молекулы будем считать неподвижными). Длина пути, пройденного молекулой за 1 с, будет равна. Молекула на этом пути столкнется только с теми молекулами, центры которых лежат внутри ломанного цилиндра радиусомd(рис.6.3). Это молекулы А, В, С.

Среднее число столкновений за 1 с будет равно числу молекул в этом цилиндре:

=n 0 V,

где n 0 – концентрация молекул;

V– объем цилиндра, равен:

V = πd 2

Таким образом, среднее число столкновений

= n 0 πd 2

При учете движения других молекул более точно

=
πd 2 n 0 (6.14)

Тогда средняя длина свободного пробега согласно (6.13) равна:

(6.15)

Таким образом, длина свободного пробега зависит только от эффективного диаметра молекулы dи их концентрацииn 0 . Для примера оценими. Пустьd~10 -10 м,~500 м/с,n 0 = 3·10 25 м -3 , то3·10 9 с –1 и7 ·10 - 8 м при давлении ~10 5 Па. При уменьшении давления (см. формулу 6.8)возрастает и достигает величины в несколько десятков метров.