Металл рений свойства. Металлургия рения. Происхождение и месторождения рения

ПРИМЕНЕНИЕ РЕНИЯ В КАЧЕСТВЕ ЛЕГИРУЮЩЕГО ЭЛЕМЕНТА В СПЛАВАХ И МЕТАЛЛИЧЕСКИХ МАТЕРИАЛАХ

Позитивное влияние на рост производ-ства рения в 1970-1980-х годах оказало его широкое и крупномас-штабное использование в жаропрочных никелевых сплавах и в платинорениевых катализаторах различного назначения. Вместе с тем и потребности в новых материалах традиционных областей применения рения - электроники и специальной металлургии -стимулируют интерес к этому металлу со стороны промышлен-ности и науки. По технической классификации рений - типичный тугоплавкий металл, однако по ряду свойств он значительно от-личается от других тугоплавких металлов, таких как молибден или вольфрам. По характеристикам рений в некоторой степени приближается к благородным металлам типа платины, осмия, иридия. Условно можно считать, что рений занимает промежу-точное положение между тугоплавкими металлами, с одной сто-роны, и металлами платиновой группы с другой. Например, в отличие от вольфрама, рений не вступает в так называемый водя-ной цикл - негативное явление, вызывающее повреждение нити накала вакуумных ламп . Именно поэтому вакуумная лампа, изготовленная с рениевой нитью, является практически «вечной» (срок ее службы - до 100 лет).

По аналогии с платиновыми металлами рений обладает высо-кой коррозионной стойкостью во влажной атмосфере и в агрес-сивных средах. Он почти не взаимодействует при обычных темпе-ратурах с соляной и серной кислотами. Как вольфрам и молиб-ден, рений парамагнитен, но его удельное электросопротивление в ~3,5 раза больше, чем у этих металлов.

Особенно отличаются механические свойства рения. Он харак-теризуется высокой пластичностью при комнатной температуре и по величине модуля нормальной упругости занимает третье ме-сто после осмия и иридия. Это связано со структурой металла: ре-ний - единственный элемент среди тугоплавких металлов пятой и шестой групп Периодической системы Д.И. Менделеева (вана-дий, ниобий, тантал, хром, вольфрам, молибден), имеющий гекса-гональную плотноупакованную решетку (ГПУ), аналогичную ре-шетке благородных металлов, например осмия или рутения. Дру-гие тугоплавкие металлы (вольфрам, молибден) характеризуют-ся иным структурным типом на базе объемноцентрированной ку-бической решетки (ОЦК).

Свойства рения при повышенных температурах также выгод-но отличаются от свойств других тугоплавких металлов. Так, хо-тя с повышением температуры твердость рения, как у вольфрама и молибдена, уменьшается, однако размягчение идет не столь бы-стро и при температуре 1000 °С рений имеет твердость в ~2 раза большую, чем вольфрам в подобных условиях. Кроме того, при высоких температурах рений характеризуется повышенной дли-тельной прочностью по сравнению с вольфрамом и особенно молибденом и ниобием. По прочности на истирание рений стоит на втором месте после осмия.

Эти уникальные свойства рения, а также ряд других подробно рассмотрены в работах . Они определяют эффек-тивность легирования рением различных металлов и сплавов с целью повышения их пластичности, износостойкости и иных па-раметров.

В научно-технической литературе описано большое число двойных и многокомпонентных сплавов рения с различными метал-лами . Это широко известные сплавы типа никель-ре-ний, вольфрам-рений, молибден-рений, никель-молибден-рений, никель-тантал-рений, никель-вольфрам-рений и ряд других.

В настоящее время наибольшее распространение по масшта-бам производства получили сплавы никель-рений, вольфрам-ре-ний и молибден-рений, причем по некоторым свойствам сплавы рения с вольфрамом и молибденом превосходят свойства индиви-дуальных металлов. Такие сплавы обладают высокими механиче-скими характеристиками при комнатной и повышенной темпера-турах, формоустойчивостью и вибропрочностью, не охрупчиваются после кристаллизации, хорошо свариваются, образуя плот-ный пластичный шов. Их отличает высокая коррозионная стой-кость в агрессивных средах.

Сплавы рения применяют как конструкционный материал в различных условиях эксплуатации при высоких температурах (>1800 °С) и напряжении, в качестве ответственных деталей электровакуумных устройств, материала электроконтактов, упругих элементов различных приборов и механизмов и т.п. Свойства рениевых сплавов с тугоплавкими металлами и никелем описаны выше (см. табл. 9), а в табл. 88 обобщены некоторые фи-зико-механические свойства сплавов вольфрам-рений и молиб-ден-рений.

Сплавы никель-рений применяют в авиации, используют в качестве кернов оксидных катодов, отличающихся повышенной надежностью и долговечностью. Легирование никеля рением приводит к улучшению его прочностных характеристик при со-хранении пластичности. Данные сплавы обладают также высо-кой жаропрочностью, вибропрочностью и формоустойчивостью.

В последние годы российскими учеными разработаны новые супержаропрочные ренийсодержащие никелевые сплавы с уни-кальными свойствами для рабочих лопаток и дисков авиацион-ных и энергетических газовых турбин. Это три группы никель-рениевых сплавов.

1. Жаропрочные никелевые сплавы, содержащие 9-12% Re , для изготовления рабочих лопаток турбин, работающих при тем-пературах до 1100 °С.

2. Интерметаллидные никелевые сплавы (1-2% Re ) на основе соединения Ni 3 Al для изготовления лопаток турбин, работающих при температурах до 1250 °С.

3. Жаропрочные никелевые сплавы (1-2% Re ) для изготовле-ния дисков турбин, работающих при температурах 850-950 °С.

Таблица 88

Некоторые физико-механические свойства сплавов рения с вольфрамом и молибденом

Показатель

Сплав Mo-Re

Сплав W-Re

(47% Re)

(27% Re)

Кристаллическая решетка

ОЦК

ОЦК

Плотность, г/см 3

13,3

19,8

Температура начала рекристаллизации, °С

1350

1500

Температура плавления, °С

2500

3000

Коэффициент линейного термического

расширения, КГ 6 * 1/град (0-1000 °С)

В конце 20-х годов нашего века крупная зарубежная фирма обратилась к директору одного из заводов цветных металлов в Сибири с выгодным, казалось бы, предложением: продать ей за довольно солидную сумму отвалы пустой породы, скопившиеся около заводской территории.

«Неспроста, должно быть, иностранцы заинтересовались отходами производства», — подумали работники завода. О том, что фирма действовала, как говорится, не корысти ради, а лишь обуреваемая желанием улучшить финансовое положение советского предприятия, разумеется, не могло быть и речи. Значит, нужно было найти, гдв собака зарыта. И заводские химики принялись тщательно исследовать старые отвалы.

А уже вскоре все стало ясно: оказалось, что «пустая» порода содержала редчайший металл рений, открытый за несколько лет до описываемых событий. Поскольку мировое производство рения измерялось в то время буквально граммами, цена на него была поистине фантастической. И немудрено, что представители зарубежной фирмы готовы были раскошелиться, лишь бы заполучить драгоценные отвалы. Но к их великому огорчению сделка по вполне понятным причинам не состоялась.

Что же представляет собой рений и чем был вызван повышенный интерес к нему? Приоритет открытия этого металла принадлежит немецким ученым супругам Иде и Вальтеру Ноддак, однако у них было немало предшественников, стремившихся ускорить торжества по поводу нового элемента.

Дело в том, что еще в 1871 году Д. И. Менделеев предсказал, что в природе «обязаны» существовать два химических аналога марганца, которые в периодической системе должны располагаться под ним, занимая пустовавшие в то время клетки № 43 и 75. Менделеев условно назвал эти элементы эка-марганцем и дви-марганцем.

Претендентов на появившиеся вакансии оказалось более чем достаточно. История химии хранит множество сообщений об открытиях новых элементов, которые после тщательной проверки приходилось «закрывать». Так было и с аналогами марганца. В роли первооткрывателей этих загадочных незнакомцев непрочь были выступить многие химики разных стран, но «открытым» ими элементам (ильмению, дэвию, люцию, ниппонию) суждено было лишь попасть в историю науки, но не заполнить вакансии периодической таблицы.

Правда, один из них — дэвий, открытый в 1877 году русским ученым С. Керном и названный в честь знаменитого английского химика Г. Дэви, давал реакцию, которую в наше время используют в аналитической химии для определения рения. Может быть, Керну и в самом деле довелось держать в руках крупицы темно-серебристого металла, того, что спустя полвека официально появился на свет под названием рений? Но как бы то ни было в клетках № 43 и 75 продолжали торчать унылые вопросительные знаки.

Период неизвестности длился до тех пор, пока в поиски неуловимых элементов не включились немецкие химики Вальтер Ноддак и Ида Такке, которые вскоре, видимо, решили, что работа пойдет успешнее, если они скрепят свой научный союз еще и брачными узами.

Первым объектом их исследований, начатых в 1922 году, стала платиновая руда, однако экспериментировать с ней было довольно накладно, и ученым пришлось переключиться на материалы «попроще». К тому же теоретические работы, которые параллельно с экспериментами вели супруги, убеждали их в том, что, вероятнее всего, искомые элементы № 43 и 75 прячутся в природе в минералах типа колумбитов.

Кроме того, теория позволила ученым рассчитать и приблизительное содержание в земной коре этих не поддающихся открытию элементов: оказалось, что на каждый их атом приходятся миллиарды атомов других представителей химического мира. Стоило ли при этом удивляться, что так долго пустовали «квартиры» № 43 и 75, а их будущие обитатели тем временем водили за нос не одно поколение химиков?

1 Эксперименты супругов Ноддак поражали своим размахом: в течение года они, пользуясь разработанным незадолго до этого рентгеноспектральным методом, «прощупали» 1600 земных минералов и 60 пришельцев из космоса — метеоритов. Титанический труд увенчался успехом: в 1925 году ученые объявили о том, что нашли в колумбите два новых элемента- мазурий (№ 43) и рений (№ 75).

Но объявить об открытии — еще не все. Нужно суметь доказать свою правоту тем, кто поставит под сомнение рождение новых элементов. Одним из таких ученых, усомнившихся в том, что пришла, наконец, пора на место знаков вопроса поставить в таблицу Д. И. Менделеева символы Ма и Re, был известный немецкий химик Вильгельм Прандтль. Крупный теоретик и блестящий экспериментатор, он вступил в ожесточенную дискуссию с супругами Ноддак.

Те, в свою очередь, готовы были любой ценой защищать свой престиж. В конце концов «схватка», за ходом которой с интересом следил научный мир, закончилась вничью: убедительных доказательств в отношении мазурия супруги Ноддак представить не смогли, зато рений к этому моменту существовал уже не только на рентгеноспектрограммах: в 1926 году было выделено 2 миллиграмма нового металла, а спустя год — 120 миллиграммов!

Да и работы других ученых — англичанина Ф. Лоринга, чехов И. Друце, Я. Гейровского и В. Долейжека (они независимо от супругов Ноддак, но лишь на несколько месяцев позже обнаружили элемент № 75 в марганцевых рудах) -свидетельствовали о том, что нашелся истинный владелец соответствующего «апартамента» периодической таблицы.

Рений оказался практически «последним из могикан» — элементов, обнаруженных в природных материалах.

В дальнейшем удалось заполнить еще несколько остававшихся пустыми клеток периодической системы элементов Д. И. Менделеева, но их обитатели были уже получены искусственным путем — с помощью ядерных реакций. Первым среди них суждено было стать бывшему мазурию — элементу № 43, который открывшие его в 1937 году итальянские ученые Э. Сегре и К. Перье назвали технецием (что по-гречески означает «искусственный»).

Но вернемся к рению. Своим именем металл обязан реке Рейн. Рейнская область — родина Иды Ноддак; здесь же и сам рений впервые увидел свет. (Заметим, что ни одной другой реке нашей планеты химики и физики не оказали столь высокой чести.) Промышленное производство нового металла развернулось в начале 30-х годов в Германии, где были найдены молибденовые руды с большим содержанием рения — 100 граммов на тонну.

Всего одна щепотка на гору руды, но для рения и такую концентрацию можно считать необычайно высокой: ведь его среднее содержание в земной коре в десятки тысяч раз ниже. Немного найдется элементов, которые встречаются в природе еще реже, чем рений.

Распространенность химических элементов часто для наглядности изображают в виде пирамиды. Ее широкое основание составляют кислород, кремний, алюминий, железо, кальций, которыми богата Земля, а рений располагается в «поднебесье» — на самом острие вершины.

Как полагал академик А. Е. Ферсман, для рения характерно «тяготение» к тем зонам земного шара, которые прилегают к его ядру. Возможно, со временем геологи сумеют проникнуть в самые недра нашей планеты и газеты всего мира опубликуют сенсационное сообщение об открытии там богатейшего рениевого месторождения…

В 1930 году мировое производство рения составляло всего… 3 грамма (зато каждый из этих граммов стоил ни мало, ни много — 40 тысяч марок!). Но уже спустя 10 лет только в одной Германии было получено примерно 200 килограммов этого металла.

С тех пор интерес к рению растет как на дрожжах. Он оказался одним из самых тяжелых металлов — чуть ли не в три раза тяжелее железа. Только осмий, иридий и платина по плотности немного превосходят рений. Характерная его черта — необычайная тугоплавкость: по температуре плавления (3180°С) он уступает лишь вольфраму. А температура его кипения настолько высока, что до сих пор ее не удалось определить с большой степенью точности. Можно лишь сказать, что она близка к 6000°С (только вольфрам кипит примерно при такой же температуре).

Еще одно важное свойство этого металла — высокое электросопротивление. Не менее любопытны и химические свойства рения. Ни один другой элемент периодической системы не может похвастать тем, что, подобно рению, имеет восемь различных окислов. Кроме этого «октета» окислов, где валентность рения меняется от 8 до 1, он — единственный среди всех металлов- способен образовать ионы (так называемые «ренид-ионы»), в которых металл отрицательно одновалентен.

Рений весьма устойчив на воздухе: при комнатной температуре его поверхность остается блестящей десятки лет. В этом с ним могут конкурировать, пожалуй, лишь золото, платина и другие представители «благородного семейства». Если оценить все металлы с точки зрения их коррозионной стойкости, то в этой «табели о рангах» рению по праву должно быть предоставлено одно из самых почетных мест. Ведь самые «злые» кислоты — плавиковая, соляная, серная — не в силах с ним справиться, хотя перед азотной кислотой он пасует.

Как видите, свойства рения достаточно разнообразны. Многогранна и его деятельность в современной технике. Пожалуй, наиболее важную роль рений играет в создании различных кислотоупорных и жаропрочных сплавов. Техника XX века предъявляет к конструкционным материалам все более и более жесткие требования.

Возможно, старику Хоттабычу для получения сплава с любыми заданными свойствами понадобилось бы лишь вырвать два-три волоска из своей бороды. Ученым обладающим даром волшебства, приходится тратить на это долгие годы, да и «расход» волос при этом порой бывает значительно выше.

Можно с полным основанием сказать, что с тех пор, как создатели сплавов взяли на вооружение, рений, им удалось добиться немалых успехов. Во всяком случае жаропрочные сплавы этого металла с вольфрамом и танталом уже успели завоевать признание конструкторов. Еще бы: мало какому материалу по плечу сохранять при «адских» температурах — до 3000°С! — ценные механические свойства, а для рениевых сплавов — это не проблема.

Особый интерес металловедов вызывает «рениевый эффект»- благотворное влияние рения на свойства вольфрама и молибдена. Дело в том, что эти тугоплавкие металлы, которые не только не боятся высоких температур, но и стойко переносят при этом значительные нагрузки, в обычных условиях (не говоря даже о легком морозе) ведут себя весьма капризно: они хрупки и от удара могут разлететься на кусочки, как стекло. Но оказалось, что в сочетании с рением вольфрам и молибден образуют прочные сплавы, сохраняющие пластичность даже при низких температурах.

Природа «рениевого эффекта» еще недостаточно изучена. Как полагают ученые, суть его в следующем. В процессе производства в вольфрам и молибден иногда проникает «инфекция» — углерод. Поскольку в твердом состоянии эти металлы совершенно не растворяют углерод, ему ничего не остается, как расположиться в виде тончайших карбидных пленок по границам кристаллов. Именно эти пленки и делают металл хрупким.

У рения же с углеродом иные «взаимоотношения»: если его добавить к вольфраму или молибдену, то ему удается удалить углерод с пограничных участков и перевести в твердый раствор, где тот практически безвреден. Теперь уже для хрупкости у металла нет оснований и он становится вполне пластичным. Вот почему из сплавов вольфрама и молибдена с рением можно изготовить фольгу или проволоку в несколько раз тоньше человеческого волоса.

Для сверхточных навигационных приборов, которыми пользуются космонавты, летчики, моряки, необходимы так называемые торсионы — тончайшие (диаметром всего несколько десятков микрон!), но удивительно прочные металлические нити. Лучшим материалом для них считается молибденорени-евый сплав (50% рения). Оценить его прочность можно по такому факту: проволочка из него сечением в 1 квадратный миллиметр способна выдержать нагрузку в несколько сот килограммов!

Сегодня трудно найти на земле уголок, куда бы не проникло еще электричество. В промышленности и сельском хо-20 зяйстве, на транспорте и в быту постоянно трудится несчетное число электроприборов. Множество приборов — это множество выключателей, множество контактов. При работе выключателя в нем иногда проскакивает крохотная искорка, которую не следует считать безобидной: медленно, но верно она разрушает электрический контакт, а это приводит к непредусмотренной потере электроэнергии.

Какой бы мизерной ни была это потеря, но помноженная на миллиарды контактов, она становится огромной. Особенно важно обеспечить стойкость контактов в тех случаях, когда они работают в условиях повышенной температуры или влажности, где вероятность их разрушения возрастает. Вот почему ученые постоянно ищут все более стойкие — прочные и тугоплавкие — материалы для изготовления контактов.

Долгое время для этой цели не без успеха применяли вольфрам. Когда же стали известны характеристики рения, выяснилось, что рениевые контакты лучше вольфрамовых. Так, например, вольфрамовые контакты выдерживали совместное «наступление» тропической коррозии и вибрации лишь несколько суток, а затем полностью выходили из строя; рениевые же контакты успешно работают в таких условиях месяцы и даже годы.

Но где же напастись столько рения, чтобы удовлетворить им электротехническую промышленность? Опыты показали, что вовсе не обязательно делать контакт из чистого рения. Достаточно добавить к вольфраму немного этого металла, и эффект будет почти тот же. Зато расходы рения сократятся во много раз: одного килограмма его хватает на десятки тысяч контактов.

Один из вольфраморениевых сплавов, выпускаемый нашей промышленностью, уже нашел применение более чем в 50 электровакуумных приборах. Использование этого материала в катодном узле электроннолучевой трубки повысило его долговечность до 16 тысяч часов. Это значит, что если экран телевизора светится в наших домах в среднем по четыре часа в день, то его катодный узел сможет безупречно работать не менее 12 лет.

Замечательные свойства продемонстрировали и другие сплавы рения — с ниобием, никелем, хромом, палладием. Даже небольшие добавки рения повышают, например, температуру плавления хромоникелевого сплава примерно на 200-250 градусов.

Широким диапазоном свойств рениевых сплавов объясняется и многообразие сфер их применения: от высокочувствительных термопар, не боящихся жарких объятий расплавленной стали, до кончиков вечных перьев, опор компасных стрелок и других деталей, которые должны долгое время сохранять большую твердость, прочность, износостойкость.

Число сплавов рения с другими металлами постоянно растет, причем сегодня в подборе «партнеров» для него значительную помощь металловедам оказывает электронная вычислительная техника. С помощью1 ЭВМ уже предсказаны свойства многих двойных сплавов рения.

Для борьбы с коррозией — вечным врагом металла — ученые разработали немало способов. Хромирование, никелирование, цинкование взяты на вооружение много лет назад, а вот ренирование — процесс сравнительно новый. Тончайшие рениевые покрытия по стойкости не знают себе равных. Они надежно защищают детали от действия кислот, щелочей, морской воды, сернистых соединений и многих других опасных для металла веществ.

Цистерны и баки, изготовленные из ренированных стальных листов, применяют, например, для перевозки соляной кислоты.

Ренирование позволяет в несколько раз продлить срок службы вольфрамовых нитей в электролампах, электронных трубках, электровакуумных приборах. После откачки воздуха в баллоне электролампы неизбежно остаются следы кислорода и водяных паров; они же всегда присутствуют и в газонаполненных лампах.

На вольфрам эти непрошеные гости действуют разрушающе, но если покрыть нити рениевой «рубашкой», то водород и пары воды уже не в силах причинить вольфраму вред. При этом расход рения совсем невелик: из одного грамма можно получить сотни метров ренированной вольфрамовой нити.

Новая, но очень важная область применения рения — катализ. Металлический рений, а также многие его сплавы и соединения (окислы, сульфиды, перренаты) оказались отличными катализаторами различных процессов — окисления аммиака и метана, превращения этилена в этан, получения альдегидов и кетонов из спиртов, крекинга нефти.

Самый многообещающий катализатор — порошкообразный рений, способный поглощать большие количества водорода и других газов. По мнению специалистов, в ближайшие годы на катализацион-ные «нужды» будет расходоваться половина рения, добываемого во всем мире.

Как вы убедились, «безработица» рению не грозит. Однако шлагбаумами на пути широкого использования его в технике оказались редкость и рассеянность этого элемента в природе. В земной коре золота, например, содержится в пять раз больше, чем рения, серебра-в сто раз, вольфрама — в тысячу, марганца — почти в миллион, а железа — в 50 миллионов раз больше. О чрезвычайной рассеянности рения говорит тот факт, что этот элемент не имеет собственных месторождений.

Практически единственный минерал, который можно назвать рениевым, -джезказганит (он найден вблизи казахского города Джезказган). Обычно же рений встречается в качестве примеси, например, в молибдените (до 1,88%), колумбите, колчедане и других минералах. Рения в них очень мало — всего от миллиграммов до нескольких граммов на тонну.

Стоит ли удивляться, что супругам Ноддак, чтобы получить первый грамм сравнительно чистого металлического рения, пришлось переработать более 600 килограммов норвежского молибденита. По подсчетам специалистов, рениевые запасы всех месторождений капиталистических стран оцениваются всего в тысячу тонн.

Еще один крупный «недостаток» рения-его высокая стоимость: он значительно дороже золота. Тем не менее спрос на этот металл все время растет, особенно в последние годы, когда им заинтересовались творцы ракетной техники.

До недавнего времени рений в нашей стране получали только из медного и молибденового сырья. В конце 70-х годов ученые Института металлургии и обогащения АН Казахской ССР создали технологию извлечения этого ценнейшего металла из полупродуктов свинцового производства. В основе новой технологии лежат ионообменные процессы, позволяющие получать очень чистый металл, обладающий высокими физико-химическими свойствами.

…В 1960 году в Институт металлургии имени А. А. Бай-кова Академии наук СССР приехали иностранные гости. Казалось бы, для работников института, имеющего мировое значение, в этом факте не было ничего примечательного — здесь привыкли к визитам зарубежных коллег любого ранга. Однако гости, о которых идет речь, — убеленная сединами супружеская пара — вызывали особое уважение: это были приехавшие в Москву супруги Ноддак.

Долго ходили они по комнатам лаборатории редких и тугоплавких металлов и сплавов. Их интерес был понятен: ученые лаборатории под руководством члена-корреспондента Академии наук СССР Е. М. Савицкого уже несколько лет занимались исследованием рения и сумели получить весьма важные результаты. Замечательному металлу предстояло в стенах института раскрыть новые грани своего дарования, обрести новые профессии, и, конечно же, супругов Ноддак не могла не волновать дальнейшая судьба их детища.

Атомный номер – 75, Re. Название берёт от Рейна – реки в Германии. Открыт металл в 1925 г. Получение первой партии рения произошло в 1928г. Последний из открытых элементов с известным стабильным изотопом.

Рений – металл с белым оттенком. Порошок рения имеет напротив чёрный окрас. Это очень твёрдый и плотный по структуре металл. Плавление — 3186º С, кипение — 5596º С. Имеет парамагнитные свойства.

Природный минерал рений фото ниже:

При температурном режиме свыше 300º С, металл начинает интенсивно окислятся, в зависимости от повышения температуры. Реакции рения более устойчивы к окислу, чем например, у вольфрама. Реакций с водородом и азотом почти не происходит, лишь адсорбция с водородом.

Во время нагревания начинает происходить взаимодействие с хлором, фтором и бромом. Не растворяется в кислотах, кроме азотной кислоты. При взаимодействии рения с образуется амальгама.

Взаимодействуя с пероксидом водорода (а точнее его водным раствором), образует рениевую кислоту. Единственный элемент, представляющий тугоплавкие металлы, не образующий карбидов.

Известно, что рений не задействован в биохимии. О его возможном воздействии имеется довольно малок количество фактов, но достоверна его токсичность, поэтому в любом случае он ядовит для живых существ.

Добыча и происхождение рения

Это крайне редкий металл. В природных залежах наиболее часто встречается сочетание вольфрам – рений – молибден. Примесь этого элемента также содержится в минералах его соседей. Основная добыча рения идёт из залежей, где он извлекается попутно.

Также рений извлекается из редчайшего природного минерала, именующимся джезказганит — по названию казахского города, вблизи которого он был найден. Также рений содержится в колумбите (ниобии), колчедане, цирконе и некоторых редкоземельных минералах.

Рений рассредоточен по всему миру, в ничтожных концентрациях. Достоверно известно лишь одно серьёзное месторождение этого метала – Итуруп, маленький остров на Курилах, Россия. Открыто в 1992 г. Рений там представлен минералом рениитом ReS2, имеющим строение схожее с молибденитом.

Месторождение представляет собой небольшую площадку на вершине спящего вулкана, где активно действуют термальные источники. Это говорит, что месторождение продолжает свой рост, и по предварительным оценкам оно ежегодно выкидывает в атмосферу около 37 тонн этого металла.

Вторым более или менее пригодным для промышленной разработки источником рения, можно считать месторождение Хитура, находящееся в Финляндии. Там рений содержится в минерале таркианите.

Как получают рений? Производство этого метала происходит посредством обработки первичного сырья с довольно низким процентом металла. В основном используются обрабатываются медные и молибденовые сульфиды.

Этапы пирометаллургического процесса, применяющегося при работе с содержащими рений рудами, включают в себя процедуру плавления, конвертирования и окислительного обжига.

При огромных температурах плавления сначала получается высший оксид Re2O7, задерживающийся специальными улавливателями. Нередко часть рения остаётся в саже после обжига, из которой его можно получить с помощью водорода. Далее полученный порошок переплавляют в рения.

При плавлении из руды возгоняется большая часть рения, остаток оседает в штейне. В процессе конвертации штейна, содержащийся в нём рений выделяется посредством газа.

Концентрация рения производится с помощью серной кислоты, после чего получается рениевая кислота. Используя определённые методы очистки, рений выделяется из кислотного раствора.

Исходя из довольно низкой продуктивности данного метода – выход может составить не более 65% содержащегося в руде металла, постоянно проводятся научные изыскания на предмет выявления более продуктивных альтернативных методов производства металла.

Современные технологии уже подразумевают применение водного раствора, вместо кислотного. Это позволит улавливать гораздо больше металла при во время очистки.

Применение рения

К основным преимуществам рения, за что его так ценят во всём мире, считаются тугоплавкость, малая коррозия при воздействии различных химических веществ и т.д. В виду высоких на этот металл, его стараются использовать только в крайних и исключительных случаях.

Ещё не так давно, основной областью его применения были жаростойкие сплавы рения с различными металлами, используемые в ракетостроении и авиастроительной промышленности.

В частности, сплавы шли на производство запчастей для сверхзвуковых истребителей. Подобные сплавы включают в свой состав, по меньшей мере, 6% металла рения.

Этот аспект быстро сделал реактивные двигатели крупным источником потребления мировых запасов рения. К тому же за счёт этого он стал считаться военно-стратегическим запасом.

Специальные термопары, содержащие рений позволяют измерять огромные температуры. Рений позволяет платиновым металлам продлить их срок службы. Также из рения делаются пружины для точной аппаратуры и нити накаливания для спектрометров и манометров.

Если точнее, то там используется с рениевым покрытием. За счёт его устойчивости к химическим воздействиям, рений используется для создания защитных покрытий против кислотной и щелочной среды.

Рений нашёл применение при изготовлении специальных контактов, которые самоочищаются после кратковременного короткого замыкания. На обычных контактах остаётся окисел, который порой не пропускает ток. На рении он тоже остаётся, но вскоре улетучивается. Поэтому контакты из рения имеют очень долгий срок службы.

Но особо важным аспектом его применения стало использование рения в специальных катализаторах, с помощью которых производят определённые компоненты . Участие в процессе переработки нефтепродуктов, повысило спрос на рений в несколько раз. Мировой рынок уже не на шутку заинтересовался этим редкоземельным металлом.

Цена рения

Мировой запас этого металла составляет порядком 13 тысяч тонн по большей части в молибденовых и медных залежах. Они являются его основными источниками в металлургической промышленности.

В принципе это не удивительно, более 2/3 всего рения на планете содержится именно в них. А оставшаяся треть представляет собой вторичный материал.

По некоторым подсчётам этих запасов хватит ещё лет на триста не меньше. Причём в этом отчёте вторичное использование не учитывалось. А подобные проекты разрабатывались достаточно давно, и некоторые проекты на практике доказали свою состоятельность.

Цены на любой продукт устанавливаются основываясь на доступность товара. Как становиться ясным, рений, купить который по карману не каждому, отнюдь не доступный металл. К тому же имеется активный спрос на рений. Цена у него естественно соответствующая.

По данным на 2011 г. чтобы приобрести рений, цена за грамм составляла около 4,5 $. Значительных тенденций к понижению цен не наблюдалось. К тому цена зависит от степени очистки металла, поэтому рений может стоить как 1000 $ за целый килограмм, так и в десять раз дороже.

Серебристо-белый метал с атомной массой 186.2, валентностью 3, 4, 6, 7, плотностью 21 0 г / см3, с температурой плавления 3170 C, с удельным электросопротивлением 0,193 Ом-ми.

Металл редкий и дорогой. Из него делают лишь особо ответственные и, как правило, малогабаритные детали.

относится к довольно редким и рассеянным элементам земной коры. Значительные его концентрации довольно редки - максимальная (2 - 3 %) обнаружена в минералах молибденита. Молибдениты встречаются в кварцевых рудных жилах и отдельных пегматитах, в которых первичный осмий практически отсутствует. Таким образом, в молибденитах накапливается только радиогенный осмий.

не растворяется ни на холоду, ни при нагревании в соляной и фтористоводородной кислотах.

Находящийся в виде порошка или мелкой стружки, можно сплавить со щелочами.

не встречается в природе в виде самостоятельных минералов, однако он в очень незначительных количествах встречается в различных рудах и минералах других элементов.

в обычных условиях не взаимодействует с серной кислотой, а марганец не реагирует с пероксидом водорода.

Свойства

получают спеканием в вакууме в виде штабиков, который затем подвергают холодной прокатке.

присутствует в разнообразных природных и промышленных материалах, которые различаются между собой числом и содержанием сопутствующих элементов. Концентрация рения в природных и промышленных объектах изменяется в широком диапазоне и составляет от 10 - 7 до десятков процентов. Для определения рения в природных и промышленных объектах применяются различные методы: химические, физико-химические и физические. Из-за высокой летучести соединений рения и малого его содержания в природных материалах необходимо уделять особое внимание операциям, связанным с разложением проб, выпариванием растворов и его выделением.

выделяют из отходов переработки руд молибдена и других металлов, причем вследствие очень малого содержания Re предварительно проводят ряд операций концентрирования.

выделяется в виде мелкого пирофорного порошка, который отделяют от КОН промыванием водой. Компактный металл получают методами порошковой металлургии. Ежегодное производство рения измеряется тоннами.

определяют методом добавок. Результаты анализа совпадают с данными потенциометрического титрования.

Полученный методом горячего вакуумного прессования, имеет мелкозернистую структуру. На границе раздела рений-графит промежуточных фаз не обнаружено. Об отсутствии взаимодействия между графитом и рением при давлении 250 кгс / см2 и температуре 2100 С свидетельствуют и измерения микротвердости рения. Такое высокое значение может быть объяснено значительной деформацией рения, а также наличием в нем твердого раствора углерода.

может быть извлечен и из другого полупродукта молибденового производства - из растворов, получаемых при выщелачивании молибденового огарка.

не имеет собственных минералов. Наиболее интересными носителями концентраций рения являются высокотемпературные сульфиды медно-молибденовых руд. Поддается прокатке и вытяжке только при красном калении.

способен сплавляться со многими металлами, причем сплавы в большинстве случаев обладают большой твердостью. Использование рения в технике все время расширяется благодаря его свойствам.

в растворах обычно находится в семивалентном состоянии. Поэтому во многих случаях перед определением рения анализируемый раствор обрабатывают восстановителем, При этом основной трудностью является восстановление рения до определенного валентного состояния.

растворяется в азотной кислоте, образуя HReO4, с разбавленными соляной и серной кислотами не взаимодействует.

Нанесенный на оксид алюминия без платины, восстанавливается до металлического состояния более легко при значительных концентрациях и трудно при малых. Это может быть обусловлено высокой дисперсностью низкопроцентных рениевых контактов, при которой возможно сильное взаимодействие рения и его оксидов с акцепторными участками поверхности носителя, что и препятствует восстановлению.

Применение

применяется в вакуумных электронных и полупроводниковых приборах. Используется в качестве высокоизбирательного катализатора в процессах гидрирования и дегидрирования. Антитела, меченные рением, использовались в экспериментах по лечению аденокарциномы ободочной кишки, легких и яичника. применяется в медицинских инструментах, оборудовании для получения глубокого вакуума и в сплавах для изготовления электрических контактов и термопар. Кроме того, его применяют для покрытия ювелирных изделий.

используется в радиоэлектронике, при производстве специальных сплавов. Рениевые катализаторы весьма эффективны для процессов гидрирования.

может найти применение в самых различных областях, однако из-за высокой стоимости и редкости в настоящее время этот металл не применяется в широком промышленном масштабе. Описан сплав, содержащий вольфрам , молибден и рений, из которого изготовляются электрические контакты.

и сплавы на его основе также применяются для нанесения покрытий на металлы.

Являющийся относительно редким материалом, в последние годы находит применение в качестве технологического материала в различных областях. Он пpименяется для изготовления электрических контактов, термопар, катодов.

Применение рения - очень дорогого и редкого металла может быть оправдано только в том случае, если он обеспечивает значительные преимущества перед другими металлами и сплавами. В настоящее время не ставится вопрос об использовании рения для работы в окислительных средах.

Применение рения ограничено малой доступностью металла. И все же в настоящее время рений используют в сплавах с платиной для термопар. Рений применяют для изготовления нитей накаливания электрических ламп, он входит в состав сплавов, из которых делают перья для автоматических ручек.

Применение рения пока еще ограничено малым масштабом его производства, но он относится к перспективным металлам, обладая химической инертностью, хорошими механическими свойствами и высокой температурой плавления.

Высокие цены на рений ограничивают возможность его промышленного использования. Поэтому применение рения ограничивается изготовлением изделий, где небольшие количества металла обеспечивают высокие эксплуатационные характеристики.

В последнее время значительно возрос интерес к рению, его сплавам и соединениям в связи с их уникальными физическими и химическими свойствами, позволяющими создавать материалы, отвечающие высоким требованиям различных областей новой техники. Широко осваивается применение рения и его соединений в качестве катализаторов в химической промышленности.

Они распадаются в основном на два класса, а именно: патенты по применению рения в качестве катализатора и патенты по использованию некоторых свойств рения и его сплавов для электротехнических и других целей.