Коэффициенты стехиометрические. Стехиометрия - это основа для химических расчетов. Стехиометрические уравнения. Стехиометрические вещества Стехиометрия - это теоретическая основа химических производств

При составлении уравнения окислительно-восстановительной реакции необходимо определить восстановитель, окислитель и число отдаваемых и принимаемых электронов. Применяются в основном два метода составления уравнений окислительно-восстановительных реакций:
1) электронного баланса – основан на определении общего количества электронов, перемещающихся от восстановителя к окислителю;
2) ионно-электронного баланса – предусматривает раздельное составление уравнений для процесса окисления и восстановления с последующим суммированием их в общее ионное уравнение-метод полуреакции. В этом методе следует найти не только коэффициенты для восстановителя и окислителя, но и для молекул среды. В зависимости от характера среды число электронов, принимаемых окислителем или теряемых восстановителем, может изменяться.
1) Электронный баланс - метод нахождения коэффициентов в уравнениях окислительно-восстановительных реакций, в котором рассматривается обмен электронами между атомами элементов, изменяющих свою степень окисления. Число электронов, отданное восстановителем равно числу электронов, получаемых окислителем.

Уравнение составляется в несколько стадий:

1. Записывают схему реакции.

KMnO 4 + HCl → KCl + MnCl 2 + Cl 2 + H 2 O

2. Проставляют степени окисления над знаками элементов, которые меняются.

KMn +7 O 4 + HCl -1 → KCl + Mn +2 Cl 2 + Cl 2 0 + H 2 O

3. Выделяют элементы, изменяющие степени окисления и определяют число электронов, приобретенных окислителем и отдаваемых восстановителем.

Mn +7 + 5ē = Mn +2

2Cl -1 - 2ē = Cl 2 0

4. Уравнивают число приобретенных и отдаваемых электронов, устанавливая тем самым коэффициенты для соединений, в которых присутствуют элементы, изменяющие степень окисления.

Mn +7 + 5ē = Mn +2 2

2Cl -1 - 2ē = Cl 2 0 5

––––––––––––––––––––––––

2Mn +7 + 10Cl -1 = 2Mn +2 + 5Cl 2 0

5. Подбирают коэффициенты для всех остальных участников реакции. При этом 10 молекул HCl участвуют в восстановительном процессе, а 6 в - ионообменном (связывание ионов калия и марганца).

2KMn +7 O 4 + 16HCl -1 = 2KCl + 2Mn +2 Cl 2 + 5Cl 2 0 + 8H 2 O

2) Метод ионно-электронного баланса.

1. Записывают схему реакции.

K 2 SO 3 + KMnO 4 + H 2 SO 4 → K 2 SO 4 + MnSO 4 + H 2 O

2. Записывают схемы полуреакций, с использованием реально присутствующих частиц (молекул и ионов) в растворе. При этом подводим материальный баланс, т.е. количество атомов элементов участвующих в полуреакции в левой части должно быть равно их количеству в правой. Окисленная и восстановленная формы окислителя и восстановителя часто отличаются по содержанию кислорода (сравните Cr 2 O 7 2− и Cr 3+). Поэтому при составлении уравнений полуреакций методом электронно-ионного баланса в них включают пары Н + /Н 2 О (для кислотной среды) и ОН − /Н 2 О (для щелочной среды). Если при переходе от одной формы к другой исходная форма (обычно − окисленная ) теряет свои оксид-ионы (ниже показаны в квадратных скобках), то последние, так как они не существуют в свободном виде, должны быть в кислотной среде соединены с катионами водорода, а в щелочной среде − с молекулами воды, что приводит к образованию молекул воды (в кислотной среде) и гидроксид-ионов (в щелочной среде):

кислотная среда + 2H + = H 2 O пример: Cr 2 O 7 2− + 14H + = 2Cr 3+ + 7H 2 O
щелочная среда + H 2 О = 2 ОН − пример: MnO 4 - +2H 2 O = MnO 2 + 4ОH -

Недостаток кислорода в исходной форме (чаще − в восстановленной) по сравнению с конечной формой компенсируется добавлением молекул воды кислотной среде) или гидроксид-ионов щелочной среде):

кислотная среда H 2 O = + 2H + пример: SO 3 2- + H 2 O = SO 4 2- + 2H +
щелочная среда 2 ОН − = + H 2 О пример: SO 3 2− + 2OH − = SO 4 2− + H 2 O

MnO 4 - + 8H + → Mn 2+ + 4H 2 O восстановление

SO 3 2- + H 2 O → SO 4 2- + 2H + окисление

3. Подводим электронный баланс, следуя необходимости равенства суммарного заряда в правой и левой частях уравнений полуреакций.

В приведенном примере в правой части уравнения полуреакции восстановления суммарный заряд ионов равен +7, в левой - +2, значит в правой части необходимо добавить пять электронов:

MnO 4 - + 8H + + 5ē → Mn 2+ + 4H 2 O

В уравнении полуреакции окисления суммарный заряд в правой части равен -2, в левой 0, значит в правой части необходимо вычесть два электрона:

SO 3 2- + H 2 O – 2ē → SO 4 2- + 2H +

Таким образом, в обоих уравнениях осуществлен ионно-электронный баланс и можно в них вместо стрелок поставить знаки равенства:

MnO 4 - + 8H + + 5ē = Mn 2+ + 4H 2 O

SO 3 2- + H 2 O – 2ē = SO 4 2- + 2H +

4. Следуя правилу о необходимости равенства количества электронов принятых окислителем и отданных восстановителем, находим наименьшее общее кратное для количеств электронов в обоих уравнениях (2∙5 = 10).

5. Умножаем на коэффициенты (2,5) и суммируем оба уравнения сложив левые и правые части обоих уравнений.

MnO 4 - + 8H + + 5ē = Mn 2+ + 4H 2 O 2

SO 3 2- + H 2 O – 2ē = SO 4 2- + 2H + 5

–––––––––––––––––––––––––––––––––––––––––––––––––––

2MnO 4 - + 16H + + 5SO 3 2- + 5H 2 O = 2Mn 2+ + 8H 2 O + 5SO 4 2- + 10H +

2MnO 4 - + 6H + + 5SO 3 2- = 2Mn 2+ + 3H 2 O + 5SO 4 2-

или в молекулярной форме:

5K 2 SO 3 + 2KMnO 4 + 3H 2 SO 4 = 6K 2 SO 4 + 2MnSO 4 + 3H 2 O

В этом методе рассматривают переход электронов от одних атомов или ионов к другим с учетом характера среды (кислая, щелочная или нейтральная), в которой протекает реакция. В кислой среде в уравнениях полуреакций для уравнивания числа атомов водорода и кислорода должны использоваться ионы водорода Н + и молекулы воды, в основной – гидроксид-ионы ОН - и молекулы воды. Соответственно и в получаемых продуктах в правой части электронно-ионного уравнения будут находиться ионы водорода (а не гидроксид-ионы) и молекулы воды (кислая среда) или гидроксид-ионы и молекулы воды (щелочная среда). Так, например, уравнение полуреакции восстановления перманганат-иона в кислой среде нельзя составлять с наличием гидроксид-ионов в правой части:

MnO 4 - + 4H 2 O + 5ē = Mn 2+ + 8ОH - .

Правильно : MnO 4 - + 8H + + 5ē = Mn 2+ + 4H 2 O

Т. е. при написании электронно-ионных уравнений нужно исходить из состава ионов, действительно имеющихся в растворе. Кроме того, как и при составлении сокращенных ионных уравнений, вещества малодиссоциирующие, плохо растворимые или выделяющиеся в виде газа следует писать в молекулярной форме.

Составление уравнений окислительно-восстановительных реакций с помощью метода полуреакций приводит к тому результату, что и метод электронного баланса.

Сопоставим оба метода. Достоинство метода полуреакций по сравнению с методом электронного баланса в том. что в нем применяются не гипотетические ионы, а реально существующие.

При использовании метода полуреакций не нужно знать степень окисления атомов. Написание отдельных ионных уравнений полуреакций необходимо для понимания химических процессов в гальваническом элементе и при электролизе. При этом методе видна роль среды как активного участника всего процесса. Наконец, при использовании метода полуреакций не нужно знать все получающиеся вещества, они появляются в уравнении реакции при выводе его. Поэтому методу полуреакций следует отдать предпочтение и применять его при составлении уравнений всех окислительно-восстановительных реакций, протекающих в водных растворах

В этом методе сравнивают степени окисления атомов в исходных и конечных веществах, руководствуясь правилом: число электронов, отданных восстановителем, должно равняться числу электронов, присоединенных окислителем. Для составления уравнения надо знать формулы реагирующих веществ и продуктов реакции. Последние определяются либо опытным путем, либо на основе известных свойств элементов.

Метод ионно-электронного баланса более универсален по сравнению с методом электронного баланса и имеет неоспоримое преимущество при подборе коэффициентов во многих окислительно-восстановительных реакциях, в частности, с участием органических соединений, в которых даже процедура определения степеней окисления является очень сложной.

Рассмотрим, например, процесс окисления этилена, происходящий при пропускании его через водный раствор перманганата калия. В результате этилен окисляется до этиленгликоля НО-CH 2 -СН 2 -ОН, а перманганат восстанавливается до оксида марганца (IV), кроме того, как будет очевидно из итогового уравнения баланса, справа образуется также гидроксид калия:

KMnO 4 + C 2 H 4 + Н 2 О → C 2 H 6 O 2 + MnO 2 + KOH

Уравнение полуреакций восстановления и окисления:

MnO 4 - +2H 2 O + 3е = MnO 2 + 4ОH - 2 восстановление

С 2 Н 4 + 2ОН - - 2е = C 2 H 6 O 2 3 окисление

Суммируем оба уравнения, вычитаем имеющиеся в левой и правой части гидроксид-ионы.

Получаем итоговое уравнение:

2KMnO 4 + 3C 2 H 4 + 4Н 2 О → 3C 2 H 6 O 2 + 2MnO 2 + 2KOH

При использовании метода ионно-электронного баланса для определения коэффициентов в реакциях с участием органических соединений удобно считать степени окисления атомов водорода равными +1, кислорода -2, а углерода высчитать, используя баланс положительных и отрицательных зарядов в молекуле (ионе). Так, в молекуле этилена, суммарный заряд равен нулю:

4 ∙ (+1) + 2 ∙ Х = 0,

значит степень окисления двух атомов углерода – (-4), а одного (Х) – (-2).

Аналогично в молекуле этиленгликоля C 2 H 6 O 2 находим степень окисления углерода (Х):

2 ∙ Х + 2 ∙ (-2) + 6 ∙ (+1) = 0, Х = -1

В некоторых молекулах органических соединений такой расчет приводит к дробному значению степени окисления углерода, например, у молекулы ацетона (С 3 Н 6 О) она равна -4/3. В электронном уравнении оценивается общий заряд атомов углерода. В молекуле ацетона он равен -4.


Похожая информация.


Для каждого вещества реакции существуют следующие количества вещества:

Начальное количество i-го вещества (количество вещества до начала реакции);

Конечное количество i-го вещества (количество вещества по окончании реакции);

Количество прореагировавшего (для исходных веществ) или образовавшегося вещества (для продуктов реакции).

Так как количество вещества не может быть отрицательно, то для исходных веществ

Так как >.

Для продуктов реакции >, следовательно, .

Стехиометрические соотношения - соотношения между количествами, массами или объемами (для газов) реагирующих веществ или продуктов реакции, рассчитанные на основе уравнения реакции. В основе расчетов по уравнениям реакций лежит основной закон стехиометрии: отношение количеств реагирующих или образовавшихся веществ (в молях) равно отношению соответствующих коэффициентов в уравнении реакции (стехиометрических коэффициентов).

Для реакции алюмотермии, описываемой уравнением:

3Fe 3 O 4 + 8Al = 4Al 2 O 3 + 9Fe,

количества прореагировавших веществ и продуктов реакции относятся как

Для расчетов удобнее применять другую формулировку этого закона: отношение количества прореагировавшего или образовавшегося вещества в результате реакции к своему стехиометрическому коэффициенту - есть константа для данной реакции.

В общем случае для реакции вида

аА + bB = cC + dD,

где маленькие буквы обозначают коэффициенты, а большие - химические вещества, количества реагирующих веществ связаны соотношением:

Любые два члена этого соотношения, связанные равенством, образуют пропорцию химической реакции: например,

Если для реакции известна масса образовавшегося или прореагировавшего вещества реакции, то можно найти его количество по формуле

а затем, используя пропорцию химической реакции, можно найти для остальных веществ реакции. Вещество, по массе или количеству которого находят массы, количества или объемы других участников реакции, иногда называют опорным веществом.

Если даны массы нескольких реагентов, то расчет масс остальных веществ ведут по тому из веществ, которое находится в недостатке, т. е. полностью расходуется в реакции. Количества веществ, которые точно соответствуют уравнению реакции без избытка или недостатка, называют стехиометрическими количествами.

Таким образом, в задачах, связанных со стехиометрическими расчетами, основным действием является нахождение опорного вещества и расчет его количества, которое вступило или образовалось в результате реакции.

Расчет количества индивидуального твердого вещества

где - количество индивидуального твердого вещества А;

Масса индивидуального твердого вещества А, г;

Молярная масса вещества А, г/моль.

Расчет количества природного минерала или смеси твердых веществ

Пусть дан природный минерал пирит, основной компонент которого FeS 2 . Кроме него в состав пирита входят примеси. Содержание основного компонента или примесей указывается в массовых процентах, например, .

Если известно содержание основного компонента, то

Если известно содержание примесей, то

где - количество индивидуального вещества FeS 2 , моль;

Масса минерала пирита, г.

Аналогично рассчитывается количество компонента в смеси твердых веществ, если известно его содержание в массовых долях.

Расчет количества вещества чистой жидкости

Если известна масса, то расчет аналогичен расчету для индивидуального твердого вещества.

Если известен объем жидкости, то

1. Найти массу этого объема жидкости:

m ж = V ж ·с ж,

где m ж - масса жидкости г;

V ж - объем жидкости, мл;

с ж - плотность жидкости, г/мл.

2. Найти число молей жидкости:

Эта методика подходит для любого агрегатного состояния вещества.

Определить количества вещества Н 2 О в 200 мл воды.

Решение: если температура не оговаривается, то плотность воды принимается 1 г/мл, тогда:

Расчет количества растворенного вещества в растворе, если известна его концентрация

Если известна массовая доля растворенного вещества, плотность раствора и его объем, то

m р-ра = V р-ра ·с р-ра,

где m р-ра - масса раствора, г;

V р-ра - объем раствора, мл;

с р-ра - плотность раствора, г/мл.

где - масса растворенного вещества, г;

Массовая доля растворенного вещества, выраженная в %.

Определить количество вещества азотной кислоты в 500 мл 10 % раствора кислоты плотностью 1,0543 г/мл.

Определить массу раствора

m р-ра = V р-ра ·с р-ра = 500·1,0543 = 527,150 г.

Определить массу чистой HNO 3

Определить число молей HNO 3

Если известна молярная концентрация растворенного вещества и вещества и объем раствора, то

где - объем раствора, л;

Молярная концентрация i-го вещества в растворе, моль/л.

Расчет количества индивидуального газообразного вещества

Если дана масса газообразного вещества, то рассчитывается по формуле (1).

Если дан объем, измеренный при нормальных условиях, - то по формуле (2), если объем газообразного вещества измерен при любых других условиях, - то по формуле (3),формулы приведены на страницах 6-7.

Стехиометрия - количественные соотношения между вступающими в реакцию веществами.

Если реагенты вступают в химическое взаимодействие в строго определенных количествах, а в результате реакции образуются вещества, количество которых можно расчитать, то такие реакции называются стехиометрическими .

Законы стехиометрии:

Коэффициенты в химических уравнениях перед формулами химических соединений называются стехиометрическими .

Все расчёты по химическим уравнениям основаны на использовании стехиометрических коэффициентов и связаны с нахождением количеств вещества (чисел молей).

Количество вещества в уравнении реакции (число молей) = коэффициенту перед соответствующей молекулой.

N A =6,02×10 23 моль -1 .

η - отношение реальной массы продукта m p к теоретически возможной m т, выраженное в долях единицы или в процентах.

Если в условии выход продуктов реакции не указан, то в расчетах его принимают равным 100% (количественный выход).

Схема расчёта по уравнениям химических реакций:

  1. Составить уравнение химической реакции.
  2. Над химическими формулами веществ написать известные и неизвестные величины с единицами измерения.
  3. Под химическими формулами веществ с известными и неизвестными записать соответствующие значения этих величин, найденные по уравнению реакций.
  4. Составить и решить пропорцию.

Пример. Вычислить массу и количество вещества оксида магния, образовавшегося при полном сгорании 24 г магния.

Дано:

m (Mg ) = 24 г

Найти:

ν ( MgO )

m ( MgO )

Решение:

1. Составим уравнение химической реакции:

2Mg + O 2 = 2MgO.

2. Под формулами веществ укажем количество вещества (число молей), которое соответствует стехиометрическим коэффициентам:

2Mg + O 2 = 2MgO

2 моль 2 моль

3. Определим молярную массу магния:

Относительная атомная масса магния Ar (Mg) = 24.

Т.к. значение молярной массы равно относительной атомной или молекулярной массе, то M (Mg) = 24 г/моль.

4. По массе вещества, заданной в условии, вычислим количество вещества:

5. Над химической формулой оксида магния MgO , масса которого неизвестна, ставим x моль , над формулой магния Mg пишем его молярную массу:

1 моль x моль

2Mg + O 2 = 2MgO

2 моль 2 моль

По правилам решения пропорции:

Количество оксида магния ν (MgO) = 1 моль.

7. Вычислим молярную массу оксида магния:

М (Mg) =24 г/моль,

М (О) =16 г/моль.

M (MgO) = 24 + 16 = 40 г/моль.

Рассчитываем массу оксида магния:

m (MgO) = ν (MgO) ×M (MgO) = 1 моль×40 г/моль = 40 г.

Ответ: ν (MgO) = 1 моль; m (MgO) = 40 г.

Стехиометрия включает нахождение химических формул , составление уравнений химических реакций , расчёты, применяемые в препаративной химии и химическом анализе .

В то же время многие неорганические соединения в силу разных причин могут иметь переменный состав (бертоллиды). Вещества, для которых наблюдаются отклонения от законов стехиометрии, называют нестехиометрическими . Так, оксид титана(II) имеет переменный состав , в котором на один атом титана может приходиться от 0,65 до 1,25 атомов кислорода. Натриевольфрамовая бронза (относящийся к оксидным бронзам вольфрамат натрия) по мере удаления из неё натрия меняет свой цвет от золотисто-жёлтого (NaWO 3) до тёмного сине-зелёного (NaO 3WO 3), проходя через промежуточные красный и фиолетовый цвета . И даже хлорид натрия может иметь нестехиометрический состав, приобретая синий цвет при избытке металла . Отклонения от законов стехиометрии наблюдаются для конденсированных фаз и связаны с образованием твёрдых растворов (для кристаллических веществ), с растворением в жидкости избытка компонента реакции или термической диссоциацией образующегося соединения (в жидкой фазе, в расплаве).

Если исходные вещества вступают в химическое взаимодействие в строго определённых соотношениях, а в результате реакции образуются продукты, количество которых поддаётся точному расчёту, то такие реакции называются стехиометрическими, а описывающие их химические уравнения - стехиометрическими уравнениями . Зная относительные молекулярные массы различных соединений, можно рассчитать, в каких соотношениях эти соединения будут реагировать. Мольные соотношения между веществами - участниками реакции показывают коэффициенты, которые называют стехиометрическими (они же коэффициенты химических уравнений, они же коэффициенты уравнений химических реакций) . Если вещества реагируют в соотношении 1:1, то их стехиометрические количества называют эквимолярными .

Термин «стехиометрия» ввёл И. Рихтер в книге «Начала стехиометрии, или Искусство измерения химических элементов» (J. B. Richter. Anfangsgründe der Stöchyometrie oder Meßkunst chymischer Elemente . Erster, Zweyter und Dritter Theil. Breßlau und Hirschberg, 1792–93), обобщивший результаты своих определений масс кислот и оснований при образовании солей.

В основе стехиометрии лежат законы сохранения массы , эквивалентов , закон Авогадро , Гей-Люссака , закон постоянства состава , закон кратных отношений . Открытие законов стехиометрии, строго говоря, положило начало химии как точной науки. Правила стехиометрии лежат в основе всех расчётов, связанных с химическими уравнениями реакций и применяются в аналитической и препаративной химии, химической технологии и металлургии .

Законы стехиометрии используют в расчётах, связанных с формулами веществ и нахождением теоретически возможного выхода продуктов реакции. Рассмотрим реакцию горения термитной смеси :

Fe 2 O 3 + 2Al → Al 2 O 3 + 2Fe. (85.0 g F e 2 O 3 1) (1 m o l F e 2 O 3 160 g F e 2 O 3) (2 m o l A l 1 m o l F e 2 O 3) (27 g A l 1 m o l A l) = 28.7 g A l {\displaystyle \mathrm {\left({\frac {85.0\ g\ Fe_{2}O_{3}}{1}}\right)\left({\frac {1\ mol\ Fe_{2}O_{3}}{160\ g\ Fe_{2}O_{3}}}\right)\left({\frac {2\ mol\ Al}{1\ mol\ Fe_{2}O_{3}}}\right)\left({\frac {27\ g\ Al}{1\ mol\ Al}}\right)=28.7\ g\ Al} }

Таким образом, для проведения реакции с 85,0 граммами оксида железа (III), необходимо 28,7 граммов алюминия .

Энциклопедичный YouTube

    1 / 3

    Стехиометрия

    Химия 11 Стехиометрические химические законы

    Задачи по химии. Смеси веществ. Стехиометрические цепочки

    Субтитры

    Мы знаем, что такое химическое уравнение, и мы узнали, как его сбалансировать. Теперь мы готовы изучать стехиометрию. Это чрезвычайно причудливое слово часто заставляет людей думать, что стехиометрия трудна. В действительности она просто занимается изучением или расчетом соотношений между различными молекулами в реакции. Вот какое определение дает Википедия: Стехиометрия – это расчет количественных или измеряемых соотношений реагентов и продуктов. Вы увидите, что в химии часто используют слово реагенты. Для большинства наших целей вы можете использовать слово реагенты и реактанты как синонимы. Они оба являются реактантами в реакции. Термин «реагенты» иногда используют для определенных типов реакций, где вы хотите добавить реагент и посмотреть, что при этом произойдет. И проверить, верно ли ваше предположение о веществе или нет. Но для наших целей реагент и реактант – это одинаковые понятия. Имеется соотношение между реактантами и продуктами в сбалансированном химическом уравнении. Если нам дано несбалансированное уравнение, то мы знаем как получить сбалансированное. Сбалансированное химическое уравнение. Давайте займемся стехиометрией. Итак, чтобы получить опыт в балансировании уравнений, я всегда буду начинать с несбалансированных уравнений. Допустим, у нас есть триоксид железа. Запишу его. В нем два атома железа связаны с тремя атомами кислорода. Плюс алюминий... алюминий. В результате получается Al2O3 плюс железо. Напомню, что когда мы занимаемся стехиометрией, в первую очередь мы должны сбалансировать уравнения. Большое количество задач стехиометрии будет даваться с использованием уже сбалансированного уравнения. Но я считаю полезной практикой нахождение баланса самих уравнений. Давайте попытаемся сбалансировать его. У нас есть два атома железа здесь, в этом триоксиде железа. Сколько атомов железа мы имеем в правой части уравнения? У нас только один атом железа. Давайте умножим его на 2 вот здесь. Отлично, теперь у нас три кислорода в этой части. И три кислорода в этой части уравнения. Это выглядит хорошо. Алюминий в левой части уравнения. У нас только один атом алюминия. В правой части уравнения у нас два атома алюминия. Мы должны поставить 2 здесь. Мы сбалансировали это уравнение. Теперь мы готовы заняться стехиометрией. Приступим. Существует не один тип стехиометрических задач, но все они следуют таким схемам: если мне дано икс граммов этого, сколько граммов алюминия необходимо добавить, чтобы произошла реакция? Или если я дам вам игрек граммов этих молекул и зэт граммов этих молекул, то какие из них израсходуются первыми? Все это стехиометрия. Мы займемся именно этими двумя задачами в данном видеоуроке. Предположим, что нам было дано 85 граммов триоксида железа. Запишем это. 85 граммов триоксида железа. Мой вопрос к вам: сколько граммов алюминия нам нужно? Сколько грамм алюминия нам нужно? Это просто. Если вы посмотрите на уравнение, то вы сразу увидите мольное отношение. На каждый моль этого, итак, на каждый моль этого... на каждый используемый атом триоксида железа нам нужно два атома алюминия. Так что нам необходимо вычислить, сколько молей этой молекулы содержится в 85 граммах. И затем нам нужно иметь удвоенное количество молей алюминия. Потому что на каждый моль триоксида железа у нас приходится два моля алюминия. Мы просто смотрим на коэффициенты, мы просто смотрим на числа. Одна молекула триоксида железа соединяется с двумя молекулами алюминия, чтобы произошла реакция. Давайте сначала вычислим, сколько молей содержится в 85 граммах. Какова атомная масса или массовое число всей этой молекулы? Позвольте мне сделать это ниже здесь. Итак, у нас два железа и три кислорода. Давайте я выпишу атомные массы железа и кислорода. Железо вот здесь, 55,85. И я думаю вполне достаточно округлить до 56. Представим, что мы имеем дело с разновидностью железа, точнее говоря с изотопом железа, который имеет 30 нейтронов. Он имеет атомное массовое число 56. Железо имеет атомное массовое число 56. Тогда как у кислорода, как мы уже знаем, оно равно 16. Железо было 56. Эта масса будет... будет 2, умноженное на 56, плюс 3, умноженное на 16. Мы можем это проделать в уме. Но это не урок математики, так что вычислю все на калькуляторе. Посмотрим, 2, умноженное на 56... 2, умноженное на 56, плюс 3, умноженное на 16, равно 160. Это верно? Это 48 плюс 112, верно, 160. Итак, одна молекула триоксида железа будет иметь массу, равную ста шестидесяти атомным единицам массы. Ста шестидесяти атомным единицам массы. Итак, один моль или... один моль или 6,02, умноженное на 10 в 23 степени, молекул оксида железа будет иметь массу... железо, диоксид железа, да... будет иметь массу 160 граммов. В нашей реакции мы сказали, что мы начинаем с 85 граммов оксида железа. Сколько это молей? 85 граммов триоксида железа... 85 граммов триоксида железа равно дроби 85/160 моля. Это равно 85, деленному на 160, то есть 0,53. 0,53 моля. Все, с чем мы работали до сих пор, что изображалось зеленым и голубым, нужно было, чтобы определить сколько молей содержится в 85 граммах триоксида железа. Мы определили, что это равно 0,53 моля. Потому что целый моль был бы 160 граммов. Но мы имеем только 85. Мы знаем из сбалансированного уравнения, что на каждый моль триоксида железа нам нужно два моля алюминия. Если у нас 0,53 моля молекул железа, точнее триоксида железа, то нам будет необходимо удвоенное количество алюминия. Нам потребуется 1,06 моля алюминия. Я просто возьму 0,53, умноженное на 2. Потому что соотношение равно 1:2. На каждую молекулу одного вещества нам нужно две молекулы другого. На каждый моль одного вещества нам необходимо два моля другого. Если у нас 0,53 моля, вы умножаете это на 2, и получается 1,06 моля алюминия. Отлично, итак, мы просто вычислили, сколько граммов содержит моль алюминия и затем, умножив его, получили 1,06 и на этом закончили. Алюминий. В Великобритании это слово произносят немного по-другому. Вообще-то мне нравится британское произношение. Алюминий имеет атомный вес 26,98. Представим, что алюминий, с которым мы имеем дело, имеет массу 27 атомных единиц массы. Так. Один алюминий имеет массу 27 атомных единиц массы. Один моль алюминия будет составлять 27 граммов. Или 6,02, умноженное на 10 в 23 степени, атомов алюминия, которые дают 27 граммов. Если нам нужно 1,06 моля, то сколько это будет? 1,06 моля алюминия равно 1,06, умноженному на 27 граммов. Сколько это? Давайте посчитаем. 1,06, умноженное на 27, равно 28,62. Нам нужно 28,62 грамма алюминия... алюминия, чтобы до конца использовать наши 85 граммов триоксида железа. Если бы у нас было больше, чем 28,62 грамма алюминия, то они остались бы после того, как реакция произошла. Предположим, что мы смешиваем все как нужно, и реакция протекает до конца. Мы поговорим больше об этом в дальнейшем. В ситуации, где у нас имеется больше 28,63 грамма алюминия, эта молекула будет лимитирующем реагентом. Так как у нас избыток этого, вот что будет лимитировать этот процесс. Если мы имеем меньше 28,63 грамма, алюминия, то алюминий будет лимитирующим реагентом, потому что мы не сможем использовать все 85 граммов наших молекул железа, точнее триоксида железа. В любом случае, я не хочу вас запутать этими лимитирующими реагентами. В следующем видеоуроке мы рассмотрим задачу, целиком посвященную лимитирующим реагентам. Subtitles by the Amara.org community

Составлении уравнения окислительно-восстановительной реакции (ОВР) необходимо определить восстановитель, окислитель и число отдаваемых и принимаемых электронов. Стехиометрические коэффициенты ОВР подбирают, используя либо метод электронного баланса, либо метод электронно-ионного баланса (последний называют также методом полуреакций). Рассмотрим несколько примеров. В качестве примера составления уравнений ОВР и подбора стехиометрических коэффициентов проанализируем процесс окисления дисульфида железа (II) (пирита) концентрированной азотной кислотой: В первую очередь определим возможные продукты реакции. Азотная кислота - сильный окислитель, поэтому сульфид-ион может быть окислен либо до максимальной степени окисления S (H2S04), либо до S (SO2), a Fe - до Fe, при этом HN03 может восстанавливаться до N0 или N02 (набор конкретных продуктов определяется концентрациями реагентов, температурой и т. п.). Выберем следующий возможный вариант: В левой или правой части уравнения будет находиться Н20, мы пока не знаем. Известно два основных метода подбора коэффициентов. Применим сначала метод электронно-ионного баланса. Суть этого метода в двух очень простых и очень важных утверждениях. Во-первых, в этом методе рассматривают переход электронов от одних частиц к другим с обязательным учетом характера среды (кислая, щелочная или нейтральная). Во-вторых, при составлении уравнения электронно-ионного баланса записываются только те частицы, которые реально существуют в ходе проте- кания данной ОВР - в виде ионов записываются только реально существующие катионы или анноны; вещества малодиосоцииру-ющне, нерастворимые или выделяющиеся в виде газа пишут в молекулярной форме. При составлении уравнения процессов окисления и восстановления для уравнивания числа атомов водорода и кислорода вводят (в зависимости от среды) или молекулы воды и ионы водорода (если среда кислая), или молекулы воды и гидро-ксид-ионы (если среда щелочная). Рассмотрим для нашего случая полуреакцию окисления. Молекулы FeS2 (плохо растворимого вещества) превращаются в ионы Fe3+ (нитрат железа (П1) полностью диссоциирует на ионы) и сульфат-ионы S042" (диссоциация H2SO4): Рассмотрим теперь полуреакцию восстановления нитрат-иона: Чтобы уравнять кислород, в правую часть добавляем 2 молекулы воды, а в левую - 4 иона Н+: Для уравнивания заряда к левой части (заряд +3) добавим 3 электрона: Окончательно имеем: Сократив обе части на 16Н+ и 8Н20, получим итоговое, сокращенное ионное уравнение окислительно-восстановительной реакции: Добавив в обе части уравнения соответствующее число ионов NOJ нН+, находим молекулярное уравнение реакции: Обратите внимание, что для определения числа отданных и принятых электронов нам ни разу не пришлось определять степень окисления элементов. Кроме того, мы учли влияние среды и «автоматически» определили, что Н20 находится в правой части уравнения. Несомненно то, что этот метод имеет большой химический смысл. Метод эмпрооийго баланса. Суть метода нахождения стехи-ометряческнх коэффициентов в уравнениях ОВР в обязательном нахождении степеней окисления атомов элементов, участвующих в ОВР. Используя данный подход, снова уравняем реакцию (11.1) (выше мы применила к этой реакции метод полуреакций). Процесс восстановления описывается просто: Сложнее составить схему окисления, поскольку окисляются сразу два элемента - Fe и S. Можно приписать железу степень окисления +2, сере - 1 и учесть, что на один атом Fe приходится два атома S: Можно, однако, обойтись без определения степеней окисления и записать схему, напоминающую схему (11.2): Правая часть имеет заряд +15, левая - 0, поэтому FeS2 должен отдать 15 электронов. Записываем общий баланс: С полученным уравнением баланса нужно еще немного «разобраться» - из него видно, что 5 молекул HN03 идут на окисление FeS2 и еще 3 молекулы HNO, необходимы для образования Fe(N03)j: Чтобы уравнять водород и кислород, в правую часть нужно добавить 2 молекулы Н20: Метод электронно-ионного баланса более универсален по сравнению с методом электронного баланса и имеет неоспоримое преимущество при подборе коэффициентов во многих ОВР, в частности, с участием органических соединений, в которых даже сама процедура определения степеней окисления является очень сложной. - Рассмотрим, например, процесс окисления этилена, происходящий при пропускании его через водный раствор перманганата калия. В результате этилен окисляется до этиленгликоля НО - СН2 - СН2 - ОН, а перманганат восстанавливается до оксида марганца (TV), кроме того, как будет очевидно из итогового уравнения баланса, справа образуется также гидроксид калия: После проведения необходимых сокращений подобных членов записываем уравнение в окончательном молекулярном вид* Влияние среды ца характер протекания ОВР.Разобранные примеры (11.1) - (11.4) наглядно иллюстрируют «технику» использования метода электронно-ионного баланса в случае йротё-кания ОВР в кислой или щелочной среде. Характер средь!"влияет на протекание той или иной ОВР; чтобы «прочувствовать» это влияние, рассмотрим поведение одного и того окислителя (КМп04) в разных средах. . Наибольшую окислительную активность ион МпО^ проявляет вткислей среде, восстаиилифаясъ до мц меньшую - в нейтральной, восстанавливаясь до Mn+4(Mn0j), и минимальную - в силыгощеяочной, в которой восстагШаияаапся до (мвнганат-нОн Мп042"). Объясняется это следу- ющим образом. Кислоты оря диссоциации образуют ионы гящюкйопяж ffjO+, которые сально поляризуют4" ионы МоОГ Послабляют связи марганца о кислородом (способствуя тем самим усилению дейст»ия восстановителя).. В нейтральной среде поляризующее действие молекул воды значительно c-aafep. bjto иная донов гидроксоння Н30+, аозтом>" ионы МпО; поляризуются гораздо меньше. В силь-но щелочной среде гидр оксид-ионы «сколько даже упрочняют связь Мп - О, вследствие чего эффективность действия восстановителя уменьшается и МпО^ принимает только один электрон. Пример поведения перманганата калия в нейтральней среде представлен реакцией (11.4). Приведем также по одному примеру реакций с участием КМпОА в кислой и щелочной средах