Краткий обзор развития тригонометрии. Тригонометрия с нуля: основные понятия, история Кто придумал тригонометрию

Мини - проектная работа по теме «История развития тригонометрии»

обучающегося 11 «а» класса МБОУ «Килемарская СОШ» Килемарского муниципального района Республики Марий Эл Иванцова Василия

Учитель: И.П.Конюшкова

Цели и задачи:

  1. Найти сведения о развитии тригонометрии
  2. Изучить литературу по данной теме

План:

6. Развитие тригонометрии современности

В своей работе я рассматриваю историю развития тригонометрии.

1.Возникновение тригонометрии как науки

Тригонометрия возникла и развивалась в древности как один из разделов астрономии, как её вычислительный аппарат. Некоторые тригонометрические сведения были известны древним вавилонянам и египтянам, но основы этой науки заложены в Древней Греции. Древнегреческие астрономы успешно решали отдельные вопросы из тригонометрии, связанные с астрономией. Однако они рассматривали не линии синуса, косинуса и др., а хорды. Первые тригонометрические таблицы были составлены Гиппархом Никейским (180-125 лет до н. э.). Гиппарх был первым, кто свёл в таблицы соответствующие величины дуг и хорд для серии углов.

Более полные сведения по тригонометрии содержаться в «Альмагесте» Птолемея. Птолемей делил окружность на 360 градусов, а диаметр на 120 частей. Радиус он считал за 60 частей и пользовался шестидесятеричной системой счисления. Для прямоугольного треугольника с гипотенузой, равной диаметру круга, он записывал на основании теоремы Пифагора: (хорда α)²+(хорда /180-α /)² = (диаметру)², что соответствует современной формуле sin²α+cos²α=1. Таблица Птолемея, сохранившаяся до нашего времени, равнозначна таблице синусов с пятью верными десятичными знаками.

2.Развитие тригонометрии в Индии

В IV веке центр развития математики переместился в Индию. Индийские математики были хорошо знакомы с трудами греческих астрономов и геометров. Их вклад в прикладную астрономию и расчётные аспекты тригонометрии очень значителен. В первую очередь индийцы изменили некоторые концепции тригонометрии, приблизив их к современным. В Индии было положено начало тригонометрии как общему учению о соотношениях в треугольнике, хотя, в отличие от греческих хорд, индийский подход ограничивался только функциями острого угла. Синус индийцы определяли несколько иначе, чем в современной математике, но первыми ввели в использование косинус.

3. Дальнейшее развитие тригонометрии в странах Среднего и Ближнего Востока

Дальнейшее развитие тригонометрия получила в IX-XV вв. в странах Среднего и Ближнего Востока. Самые ранние из сохранившихся трудов принадлежат ал-Хорезми и ал-Марвази (IX век), которые рассмотрели, наряду с известными ещё индийцам синусом и косинусом, новые тригонометрические функции: тангенс, котангенс, секанс и косеканс. Хорезми (аль-Хорезми) Мухаммед бен Муса составил таблицы синусов и котангенсов. Он является автором ряда астрономических сочинений: работ о солнечных часах, астролябии; составил ряд математических и астрономических таблиц. Сохранилась также его рукопись «Изображение земли» (опубликована в 1878), посвященная географии. Однако известность ученому принесли прежде всего его работы в области математики. Больших результатов в развитии тригонометрии добился Абу-л-Вафа во второй половине X века, который впервые использовал для определения тригонометрических функций круг единичного радиуса, как это делается в современной математике.

Одной из важнейших задач науки того времени являлось составление тригонометрических таблиц с как можно меньшим шагом. В IX веке ал-Хорезми составил таблицы синусов с шагом 1°, его современник ал-Марвази добавил к ним первые таблицы тангенсов, котангенсов и косекансов с тем же шагом. В начале X века ал-Баттани опубликовал таблицы с шагом 30", в конце того же столетия Ибн Юнис составил таблицы с шагом 1". При составлении таблиц ключевым было вычисление значения . Искусные методы для вычисления этой величины изобрел наряду с Ибн Юнис и Абу-л-Вафа также ал-Бируни. Первым специализированным трактатом по тригонометрии было его сочинение «Книга ключей науки астрономии» (995-996 годы). Наибольшего успеха добился в XV веке ал- Каши, в одной из своих работ он подсчитал, что (все знаки верны). Его тригонометрические таблицы с шагом 1′ на протяжении 250 лет были непревзойденными. Ат-Туси, Насир ад-Дин (1201-1274) в «Трактате о полном четырехстороннике» впервые изложил тригонометрические сведения как самостоятельный отдел математики, а не придаток к астрономии.

4. Продолжение развития тригонометрии в Европе

После того как арабские трактаты были в XII-XIII веках переведены на латынь, многие идеи индийских и персидских математиков стали достоянием европейской науки. В Европе продолжилось развитие тригонометрии. Первоначально сведения о тригонометрии приводились в сочинениях по астрономии, однако в сочинении Фибоначи «Практика геометрии», написанном около 1220 года, тригонометрия излагается как часть геометрии. Первым европейским сочинением, целиком посвященным тригонометрии, часто называют «Четыре трактата о прямых и обращенных хордах» английского астронома Ричарда Уоллингфордского (около 1320 г.).

Самым же видным европейским представителем этой эпохи был Региомонтан. Его работы изложенные в математическом труде «Пять книг о треугольниках всех видов» имели большое значение в дальнейшем развитии тригонометрии в XVI-XVII вв.

На пороге XVII в. в развитии тригонометрии намечается новое направление - аналитическое. Если до этого главной целью тригонометрии считалось решение треугольников, вычисление элементов геометрических фигур и учение о тригонометрических функциях строилось на геометрической основе, то в XVII-XIX вв. тригонометрия постепенно становится одной из глав математического анализа. Она находит широкое применение в механике, физике и технике, особенно при изучении колебательных движений и других периодических процессов. О свойстве периодичности тригонометрических функций знал еще Виет, первые математические исследования которого относились к тригонометрии. Швейцарский математик Иоганн Бернулли (1642-1727) уже применял символы тригонометрических функций. Расширение представления о тригонометрических функциях привело к обоснованию их на новой, аналитической базе: тригонометрические функции определяются независимо от геометрии при помощи степенных рядов и других понятий математического анализа.

Развитию аналитической теории тригонометрических функций содействовали И. Ньютон и Л. Эйлер. Леонард Эйлер ввел и само понятие функции и принятую в наши дни символику. Он придал всей тригонометрии ее современный вид. В трактате «Введение в анализ бесконечных» (1748) Эйлер дал определение тригонометрических функций, эквивалентное современному, и определил обратные функции. Подход Эйлера с этих пор стал общепризнанным и вошёл в учебники.

5. Развитие тригонометрии в России

В России первые сведения о тригонометрии были опубликованы в сборнике «Таблицы логарифмов, синусов и тангенсов к изучению мудролюбивых тщателей», опубликованном при участии Л.Ф.Магницкого в 1703 году. В 1714 году появилось содержательное руководство «Геометрия практика», первый русский учебник по тригонометрии, ориентированный на прикладные задачи артиллерии, навигации и геодезии. Завершением периода освоения тригонометрических знаний в России можно считать фундаментальный учебник академика М. Е. Головина (ученика Эйлера) «Плоская и сферическая тригонометрия с алгебраическими доказательствами» (1789).

В конце XVIII века в Петербурге возникла авторитетная тригонометрическая школа, которая внесла большой вклад в плоскую и сферическую тригонометрию.

Дальнейшее развитие теории тригонометрии было продолжено в XIX в Н. И. Лобачевским и другими учеными.

В начале XIX века Н. И. Лобачевский добавил к плоской и сферической тригонометрии третий раздел - гиперболическую. В XIX-XX веках бурное развитие получили теория тригонометрических рядов и связанные с ней области математики: например, кодирование аудио и видеоинформации и другие.

В наше время важнейшая часть тригонометрии – учение о тригонометрических функциях рассматривается в математическом анализе, а -решение треугольников является частью геометрии

Работая над данной темой, я изучил ряд источников и нашел сведения о развитии тригонометрии.

Литература: 1.Глейзер Г.И. История математики в школе: IX-X кл. Пособие для учителей.- М.: Просвещение, 1983г.

2. Ресурсы сети Интернет

Тригонометрия (от греч. trigonon-треугольник и metrio-измеряю) – раздел математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Возникла и развивалась в древности как один из разделов астрономии, как ее вычислительный аппарат, отвечающий практическим нуждам человека. С ее помощью можно определить расстояние до недоступных предметов и, вообще, существенно упрощать процесс геодезической съемки местности для составления географических карт. Общепринятые понятия тригонометрии, а также обозначения и определения тригонометрических функция сформировались в процессе долгого исторического развития. Тригонометрия (от греч. trigonon-треугольник и metrio-измеряю) – раздел математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Возникла и развивалась в древности как один из разделов астрономии, как ее вычислительный аппарат, отвечающий практическим нуждам человека. С ее помощью можно определить расстояние до недоступных предметов и, вообще, существенно упрощать процесс геодезической съемки местности для составления географических карт. Общепринятые понятия тригонометрии, а также обозначения и определения тригонометрических функция сформировались в процессе долгого исторического развития. Тригонометрические сведения были известны древним вопросы из тригонометрии, связанные с астрономией. Однако они рассматривали не линии синуса, косинуса и др., а хорды. Роль линии синусов угла a у них выполняла хорда, стягивающая дугу, равную 2a. Тригонометрические сведения были известны древним вавилонянам и египтянам, но основы этой науки заложены в Древней Греции встречающиеся уже в III веке до н.э. в работах великих математиков– Евклида, Архимеда, Апполония Пергского.. Древнегреческие астрономы успешно решали отдельные вопросы из тригонометрии, связанные с астрономией. Однако они рассматривали не линии синуса, косинуса и др., а хорды. Роль линии синусов угла a у них выполняла хорда, стягивающая дугу, равную 2a.


В IV-V веках появился уже специальный термин в трудах по астрономии великого индийского учёного Ариабхаты. Отрезок CB он назвал ардхаджива (ардха –половина, джива – тетива лука, которую напоминает хорда). Позднее появилось более краткое название джива. Арабскими математиками в IX веке это слово было заменено на арабское слово джайб (выпуклость). При переводе арабских математических текстов в веке оно было заменено латинским синус (sinus –изгиб, кривизна). Известный Мухаммед ибн Муса ал- Хорезми (IX в.) составил таблицы синусов и котангенсов. Ал-Хабаш вычислил таблицы для тангенса, котангенса и косеканса. Слово косинус намного моложе. Косинус – это сокращение латинского выражения completely sinus, т. е. дополнительный синус (или иначе синус дополнительной дуги).


Название «тангенс», происходящее от латинского tanger (касаться), появилось в 1583 г. Tangens переводится как «касающийся» (линия тангенсов – касательная к единичной окружности). Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс (а также котангенс) введен в X веке Аль - Батани () и Абу-ль-Вефа Мухамед-бен Мухаммед (), который составил таблицы синусов и тангенсов через 10 с точностью до 1/604. Название «тангенс», происходящее от латинского tanger (касаться), появилось в 1583 г. Tangens переводится как «касающийся» (линия тангенсов – касательная к единичной окружности). Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс (а также котангенс) введен в X веке Аль - Батани () и Абу-ль-Вефа Мухамед-бен Мухаммед (), который составил таблицы синусов и тангенсов через 10 с точностью до 1/604. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты лишь в XIV веке немецким математиком, астрономом Региомонтаном (1467 г.). Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты лишь в XIV веке немецким математиком, астрономом Региомонтаном (1467 г.).


Именно Региомонтан доказал теорему тангенсов (латинизированное имя немецкого астронома и математика Иоганна Мюллера (). Региомонтан составил также подробные тригонометрические таблицы; благодаря его трудам плоская и сферическая тригонометрия стала самостоятельной дисциплиной и в Европе. Региомонтан – самый видный европейский представитель этой эпохи в области тригонометрии. Его обширные таблицы синусов через 1 с точностью до 7-й значащей цифры и его мастерски изложенный тригонометрический труд «пять книг о треугольниках всех видов» имели большое значение для дальнейшего развития тригонометрии в XVI – XVII веках. Именно Региомонтан доказал теорему тангенсов (латинизированное имя немецкого астронома и математика Иоганна Мюллера (). Региомонтан составил также подробные тригонометрические таблицы; благодаря его трудам плоская и сферическая тригонометрия стала самостоятельной дисциплиной и в Европе. Региомонтан – самый видный европейский представитель этой эпохи в области тригонометрии. Его обширные таблицы синусов через 1 с точностью до 7-й значащей цифры и его мастерски изложенный тригонометрический труд «пять книг о треугольниках всех видов» имели большое значение для дальнейшего развития тригонометрии в XVI – XVII веках.


Тригонометрия: 1) плоская - изучает только плоские треугольники 2) сферическая – изучает только сферические треугольники 3) прямолинейная – не входит в школьную программу. Плоская тригонометрия начала развиваться позже сферической, хотя отдельные теоремы ее встречались и раньше, так например 12-я и 13-я теоремы второй книги «Начал» Евклида (III в. до н. э.) выражают по существу теорему косинусов. Плоская тригонометрия получила развитие у аль-Баттани (2-я половина IX – начало Xв.), Абу-ль-Вефа, Бхскала и Насиреддина Туси, которым была уже известна теорема синусов. Тригонометрия, занимающаяся сферическими треугольниками, называется сферической, также она рассматривает соотношения между сторонами и углами треугольников на сфере, образованных дугами больших кругов. В работах математика Франсуа Виета (), который полностью решил задачу об определениях всех элементов плоского или сферического треугольника по трем данным.




Наивысшими достижениями греческая тригонометрия обязана астроному Птолемею (2 век н.э.), создателю геоцентрической системы мира, господствовавшей до Коперника. Греческие астрономы не знали синусов, косинусов и тангенсов. Вместо таблиц этих величин они употребляли таблицы: позволяющие отыскать хорду окружности по стягиваемой дуге. Дуги измерялись в градусах и минутах; хорды тоже измерялись градусами (один градус составлял шестидесятую часть Радиуса), минутами и секундами. Это шестидесятеричное подразделение греки заимствовали у вавилонян. В первом тысячелетии нашей эры происходит бурный расцвет культуры и науки в странах Арабского Халифата, и поэтому основные открытия тригонометрии принадлежат ученым этих стран. Туркменский ученый аль-Маразви первым ввел понятие tg и ctg как отношение сторон прямоугольного треугольника и составил таблицы sin, tg, и ctg. Основным достижением арабских ученых является то, что они отделили тригонометрию от астрономии.


Значительные высоты достигла тригонометрия и у индийских средневековых астрономов. Главным достижением индийских астрономов стала замена хорд синусами, что позволило вводить различные функции, связанные со сторонами и углами прямоугольного треугольника. Таким образом, в Индии было положено начало тригонометрии как учению о тригонометрических величинах. Индийские ученые пользовались различными тригонометрическими соотношениями, в том числе и теми, которые в современной форме выражается как: sin 2 a + cos 2 a = 1, sin a = cos (90 - a) sin (a + b) = sin a · cos b + cos a · sin b


Учения о тригонометрических величинах получило развитие в VIII- XV вв. в странах Среднего и Ближнего Востока. Так, в IX веке в Багдаде аль-Хорезми составил первые таблицы синусов. Аль-Бузджани в X в. сформулировал теорему синусов и с её помощью построил таблицу синусов с интервалом 15, в которой значения синусов приведены с точностью до 8-го десятичного знака. Ахмад-аль-Беруни в XI в. вместо деления радиуса на части при определении значений синуса и косинуса, сделанного до него Птоломеем, начал использовать окружность единичного радиуса. В первой половине XV в. аль-Каши создал тригонометрические таблицы с шагом 1, которые последующие 250 лет были непревзойдёнными по точности. После того как арабские трактаты были переведены на латынь, многие идеи индийских математиков стали достоянием европейской, а затем и мировой науки. Такою она была еще в средние века, хотя иногда в ней использовались и аналитические методы, особенно после появления логарифмов. Постепенно тригонометрия органически вошла в математический анализ, механику, физику и технические дисциплины.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Актуальность: знакомство с новым предметом - тригонометрией.

Цель: Расширить знания по истории развития тригонометрии.

1. Чем вызвана к жизни наука тригонометрия

2. Применение тригонометрии в астрономии, физике, биологии и медицине.

Объект: тригонометрия, история зарождения и развития тригонометрии.

Гипотеза: многие физические явления природы можно описать с помощью тригонометрии.

Новизна: знакомство с тригонометрией.

Методика исследования. Изучение литературы по данной теме, информации из Интернет-ресурсов. Обобщение найденного материала.

Продукт: Буклет «История тригонометрии» (Приложение 2).

Практическая значимость: данный материал можно использовать на уроках геометрии и тригонометрии для дополнительного образования. Любой ученик может развить в себе интерес к науке тригонометрии через данный материал.

Возникновение тригонометрии

Исторически тригонометрия сложилась из задач на решение плоских и сферических треугольников.

Как и всякая другая наука, тригонометрия возникла в результате человеческой практики в процессе решения конкретных практических задач.

Возникновение тригонометрии тесно связано с развитием одной из древнейших наук - астрономии. Главная роль принадлежит ей в формировании и развитии сферической тригонометрии. Со времен древнего Вавилона до времени Эйлера и Лапласа астрономия была руководящей и вдохновляющей силой самых замечательных математических открытий.

Развитие астрономии, вызвано, в первую очередь, необходимостью составления правильного календаря, имевшего важное значение для земледельческого хозяйства древности. Земледельцу нужно было знать смену времен года, чтобы своевременно производить необходимые сельскохозяйственные работы. Календарь был необходим также и служителям культа, исполняющим религиозные обряды, для определения дней праздником и многим другим лицам.

Развитие торговли, связанное с необходимостью передвижения, как по суше, так и водным путем, оказало большое влияние на развитие астрономии: нужно было уметь правильно определять курс корабля в открытом море.

Значительную роль в развитии астрономии и связанной с ней тригонометрии сыграла, несомненно, потребность в составлении точных географических карт, это требовало правильного определения больших расстояний на земной поверхности.

Уровень развития математики у древних народов Двуречья был более высоким, чем у других восточных народов. У древних народов Двуречья были особенно развиты астрономические наблюдения. Следовательно, они владели некоторыми простейшими сведениями из тригонометрии. Уже 2-3 тысяч лет до нашей эры древние египтяне практически использовали астрономические наблюдения при работах по сельскому хозяйству. Разливы Нила были важны фактором в развитии земледелия.

В классическом китайском трактате «математика в девяти книгах», составленном во II-I веках нашей эры по более ранним источникам, в книге IX трактата собран ряд задач на применение прямоугольных треугольников, где есть задачи на определение расстояния до недоступных предметов. Больших успехов в астрономии добились древние майя, ими был создан достаточно точный календарь (календарно- хронологическая система).

Тригонометрия в Древней Греции

Значительно позднее тригонометрия вступила в следующий этап своего развития в древней Греции, как часть астрономии. В связи с потребностями астрономии и геодезии первостепенное значение получили вычислительные задачи сферической тригонометрии. Некоторое знакомство с сферической тригонометрией имел еще Фалес Милетский (640 - 548 гг. до н.э. - древнегреческий математик и астроном (Приложение 1); в первой половине 3 веке до н.э. древнегреческий астроном и математик Аристарх Самосский (310 - 230 г г. до н.э.); Архимед (Приложение 1), высказал смелую гипотезу о том, что Земля движется по кругу около Солнца (за это его обвинили в безбожии и изгнали из Афин).

Уже в середине I тысячелетия до н.э. древнегреческие ученные знали, что Земля имеет форму шара, в частности длины его окружности. Были разработаны некоторые методы решения этой задачи. Первое измерение дуги меридиана и радиуса Земли принадлежит Эратосфену Киренскому (ок. 276 - 194 гг. до н.э.) - древнегреческому математику, географу, историку, философу, поэту (Приложение 1).

Но основополагающее значение для развития тригонометрии в эпоху ее зарождения имели работы древнегреческого ученого Гиппарха (ок. 180 - 125 г г. до н.э.) (Приложение 1) - основателя научной астрономии.

Гиппарх составил звездный каталог с тем, чтобы будущие астрономы могли следить за появлением новых звезд и исчезновением старых. В каталог было занесено положение на небе более 1 тысячи звезд, подразделенных им по блеску на 6 звездных величин и определенных им по блеску на 6 звездных величин и определенных для того времени весьма точно. Гиппарх явился основоположником математической географии. Им было введено определение точек на земной поверхности при помощи географических координат - широты и долготы.

Важно отметить, что тригонометрии как науки в современном смысле этого слова не было ни у Гиппарха, ни у других ученных древности. Но они, пользуясь известными им положениями элементарной геометрии, решали те задачи, которые сейчас относятся к тригонометрии. В основе всех тригонометрических вычислений у греков лежала известная еще Гиппарху теорема Птолемея, которую можно сформулировать так: «Произведение диагоналей вписанного в круг четырехугольника равно сумме произведений противоположных сторон».

Тригонометрия в Индии

Следующий шаг по развитию тригонометрии связан с развитием математической культуры народов индии с IV по XII вв. Наряду с «синусом» индийцы ввели в тригонометрию «косинус», точнее говоря, стали употреблять в своих вычислениях линию косинуса. Сам термин «косинус» появился значительно позднее в работах европейских ученных австрийского математика Пейрбаха или Пурбаха (1423 - 1461) и немецкого математика Региомонтана (1436 - 1476) .) (Приложение 1).

Индийцам было так же известно соотношение sin 2 a + cos 2 a= r 2 , а также формулы для синуса половинного угла и синуса суммы и разности двух углов. Таким образом, индийцы положили начало тригонометрии как учению о тригонометрических величинах, хотя у них и было мало внимания отведено как раз решению треугольников. Для измерений высот и расстояний были разработаны несколько правил, основанных на изменении тени вертикального шеста - гномона и на подобии треугольников. Все это предвосхищало введение тангенса и котангенса.

Тригонометрия в странах Арабского Халифата

Следующий этап в развитии тригонометрии связан с расцветом культуры стран арабского халифата. Так называлось объединение различных стран и народов, завоеванных арабами в VII - VIII вв. в него входили таджики, узбеки, персы, азербайджанцы, египтяне, сирийцы и другие народы. Многие из этих народов стояли на более высоком уровне общественного и культурного развития, чем сами арабы. Необходимые сведения по астрономии вместе с тригонометрией, алгеброй и арифметикой были заимствованы в первые из Индии. И хотя индийская математика дала начало развитию арабской математики, господствующее положение в нарождающейся науки науке у арабов занимала греческая геометрия и астрономия, благодаря переводом всех трудов Евклида, Аполлония, Архимеда, Птолемея и их позднейших комментаторов. Особенно велик вклад, внесенный арабоязычными народами в математику. Это прежде всего десятичная система счисления, позаимствованная арабами у индийцев и позже, благодаря трудам арабоязычных ученых, получившая распространение в Европе. Успехи в математике, в частности в тригонометрии, создали основу для достижений в астрономии и в некоторых других науках.

Тригонометрия и здесь развивалась в тесной связи с астрономией и географией и носила ярко выраженный «вычислительный» характер.

В Багдаде в разное время занимались научной работой такие ученые, как ал - Хорезми (783 - 830), ал - Хабаш (764 - 874), Ибн кора (836 - 901), Ибн Ирак (965 - 1035), ал - Бируни (973 - 1050) (Приложение 1) .)

Ал - Хорезми внес большой вклад в развитии математики, астрономии и математической географии. Его труды в течение нескольких столетий оказывали сильное влияние на ученных Востока и Запада и долго служили образцом при написании учебников математики. Два его трактата по арифметики и алгебре сыграли большую роль в развитии математики.

Тригонометрия в Европе

В XII вв Европе возникает городская культура, развиваются товарно-денежные отношения внутри феодальной системы хозяйства. Этому способствовали также торговые путешествия и крестовые походы, позволившие частично познакомиться не только с движениями восточной культуры, но и с культурой древней Греции. Начинается самостоятельное творчество европейских ученых. Им пришлось заново открывать многое из того, что открыто было задолго до них. Первые их достижения относятся именно к тригонометрии. Эта наука разливалась в основном на базе достижений древних греков. Появились переводы некоторых «арабских» сочинений по тригонометрии. На основе этих сочинений в Англии были написаны работы по тригонометрии Р. Уоллигрфордом (ок. 1292 - 1335) и его современником Д. Модюктом. Английский ученый Томас Брадвардин (ок. 1290 - 1349) (Приложение 1). Он впервые в Европе предложил единичный радиус тригонометрического круга, ввел в тригонометрические вычисления котангенс под назначением «прямой тени» и тангенс под названием «обратной тени». В этот период составляют таблицы синусов.

Региомонтан, независимо от арабов (опередивших его на 400 лет) и Т.Бродвардина, ввел в еврейскую науку функцию тангенса, составил таблицу синусов через 1’ и таблицу тангенсов через 1 о. он составил так же таблицу для вычисления катета прямоугольного треугольника (сферического) по лежащему против него углу А и по гипотенузе С согласно формуле sina - sinCsinA,назвав ее таблицей «с двойным входом». Эта работа Региомонтана (Приложение 1) сыграла очень большую роль в дальнейшем развитии тригонометрии.

Важный вклад в развитие тригонометрии внес польский астроном Николай Коперник (1473 - 1543) (Приложение 1), создатель гелиоцентрической системы мира, реформатор астрономии. Не знакомый с работами Региомонтана, Коперник самостоятельно обосновал некоторые основные положения сферической тригонометрии; он впервые сводит все дело к трехграннику, проектирующему треугольник из центра. Коперник сам занимался составлением тригонометрических таблиц. Немецкий математик Петер Крюгер (1480 - 1532) был первым из европейских математиков, составивших отдельно таблицы логарифмов тригонометрических функций и таблицы логарифмов чисел. Датский математик Томас Финк (1561 - 1656) (Приложение 1) в работе «Геометрия круглого»(1583) впервые вводит термины «синус», «тангенс» и «секанс».

Английский математик Абрахам Муавр (1667 - 1754) (Приложение 1), по происхождению француз, находит правило для возведения в степень комплексного числа, заданного в тригонометрической форме, которое широко применяется в тригонометрии и алгебре при решении двухчленных уравнений и известно теперь как «формула Муавра».

В настоящее время тригонометрия перестала существовать как самостоятельная наука, распавшись на две части. Одна из этих частей представляет собой учение о тригонометрических функциях, а другая - вычисление элементов тригонометрических фигур.

Первая часть, как мы уже говорили выше, входит в состав математического анализа, располагающего общими методами исследования функций, а вторая часть относится к геометрии и играет в ней вспомогательную роль.

«Геометрическая» часть тригонометрии в свою очередь распадается на два раздела - «прямолинейную тригонометрию» и «сферическую тригонометрию». Основным содержанием первого раздела является вычисление элементов плоских треугольников, а второго раздела - вычисления элементов сферического треугольника.

Применение тригонометрии

Продолжая тему тригонометрии важно отметить, что тригонометрические вычисления применяются практически во всех сферах жизнедеятельности людей: астрономии, физике, природе, музыке, медицине, биологии и многих других.

2.1. Тригонометрия в астрономии

Так в астрономии возникла потребность в «решении треугольников».

Составленные Гиппархом таблицы положений Солнца и Луны позволили предвычислять моменты наступления затмений (с ошибкой 1—2 ч). Гиппарх впервые стал использовать в астрономии методы сферической тригонометрии.

2.2. Тригонометрия в физике

В окружающем нас мире приходится сталкиваться с периодическими процессами, которые повторяются через одинаковые промежутки времени. Эти процессы называются колебательными. Колебательные явления различной физической природы подчиняются общим закономерностям и описываются одинаковыми уравнениями. Существуют разные виды колебательных явлений.

Механические колебания. Механическими колебанияминазывают движения тел, повторяющиеся точно через одинаковые промежутки времени. Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени. Примерами простых механических колебательных систем могут служить груз на пружине или математический маятник.

2.3 Тригонометрия в природе

Впервые теория радуги была дана в 1637 году Рене Декартом. Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.

Северное сияние Проникновение в верхние слои атмосферы планет заряженных частиц солнечного ветра определяется взаимодействием магнитного поля планеты с солнечным ветром.

Сила, действующая на движущуюся в магнитном поле заряженную частицу называется силой Лоренца. Она пропорциональна заряду частицы и векторному произведению поля и скорости движения частицы.

2.4. Тригонометрия в медицине

Ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения.

К тому же в биологии используется такое понятие как синус сонный, синус каротидный и венозный или пещеристый синус.

2.5. Тригонометрия и тригонометрические функции в медицине и биологии, музыке

Одно из фундаментальных свойств живой природы - это цикличность большинства происходящих в ней процессов. Биологические ритмы, биоритмы - это более или менее регулярные изменения характера и интенсивности биологических процессов. Основной земной ритм - суточный. Модель биоритмов можно построить с помощью тригонометрических функций.

Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.

Биологические ритмы, биоритмы связаны с тригонометрией. Модель биоритмов можно построить с помощью графиков тригонометрических функций. Для этого необходимо ввести дату рождения человека (день, месяц, год) и длительность прогноза.

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения.

При полёте птицы траектория взмаха крыльев образует синусоиду.

Частоты, соответствующие одной и той же ноте в первой, второй и т.д. октавах, относятся, как 1:2:4:8…

диатоническая гамма 2:3:5

Заключение

В ходе исследовательской работы расширились знания по тригонометрии, изучены материалы по истории тригонометрии и сделан вывод о том, что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.

Выяснили, что тригонометрия исторически сложившаяся наука. Она была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.

Убедились, что тригонометрия перестала существовать как самостоятельная наука, распавшись на две части.

Думаем, что тригонометрия не только нашла своё применение в жизни человека, что сферы применения её будут расширяться.

Список использованных источников и литературы

Интернет источники

https://ru.wikipedia.org/wiki

https://www.ucheba.ru/

http://www.math.ru/ библиотека

https://sites.google.com/site/trigonometry история тригонометрии

http://fb.ru история тригонометрии

Литература

Волошинов. Математика и искусство// Москва, 1992г. Газета

История математики с Древнейших времен до начала XIX столетия в 3-х томах// под ред. А. П. Юшкевича. Москва, 1970г. - том 1-3 Э. Т. Бэлл Творцы математики.

Маслова Т.Н. «Справочник школьника по математике» М.: ООО «Издательство Оникс»: ООО «Издательство «Мир и Образование», 2008. — 672 с.

Математика. Приложение к газете от 1.09.98г.

Предшественники современной математики// под ред. С. Н. Ниро. Москва,1983г. А. Н. Тихонов, Д. П. Костомаров.

Рассказы о прикладной математике//Москва, 1979г. А. В.

Приложение 1

Ученые, внёсшие вклад в развитие тригонометрии

Фалес Милетский

Аристарх Самосский

Эратосфен Киренский

Региомонтана

Томас Брадвардин

ал - Бируни

Николай Коперник

Томас Финке

Абрахам Муавр

Приложение 2

Первое измерение дуги меридиана и радиуса Земли принадлежит Эратосфену Киренскому (ок. 276 - 194 гг. до н.э.) - древнегреческому математику, географу, историку, философу, поэту.

Региомонтан, независимо от арабов (опередивших его на 400 лет) и Т. Бродвардина, ввел в еврейскую науку функцию тангенса, составил таблицу синусов через 1’ и таблицу тангенсов через 1 о.

Буклет подготовила:

ученица 9 «А» класса МОУ СШ№105

Павлова Полина Александровна

МОУ СШ №105

История тригонометрии

Волгоград, 2018

Тригонометрия - раздел математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Слово тригонометрия состоит из двух греческих слов: «trigwnon» - «треугольник» и «metrew» - «измерять», означает - «измерение треугольников». Именно эта задача - «измерение треугольников» или «решение треугольников», определение всех элементов треугольника по трем данным, с древнейших времен составила основу практических приложений тригонометрии.

Возникновение тригонометрии тесно связано с развитием одной из древнейших наук - астрономии. Главная роль принадлежит ей в формировании и развитии сферической тригонометрии

Гиппарх явился основоположником математической географии. Им было введено определение точек на земной поверхности при помощи географических координат - широты и долготы.

Врачам нужна была астрономия, алгебра и тригонометрия для астрологических вычислений, чтобы составить гороскоп больного и по расположению планет в созвездиях определить, поправится больной или нет.

Эти и другие стороны деятельности человека уже в глубокой древности наталкивались на необходимость ознакомления с положением и видимым движением небесных светил (Солнца, Луны, звезд).

История тригонометрии

Тригонометрия – слово греческое и в буквальном переводе означает измерение треугольников ( - треугольник, а - измеряю).

В данном случае измерение треугольников следует понимать как решение треугольников, т.е. определение сторон, углов и других элементов треугольника, если даны некоторые из них. Большое количество практических задач, а также задач планиметрии, стереометрии, астрономии и других приводятся к задаче решения треугольников.

Возникновение тригонометрии связано с землемерением, астрономией и строительным делом.

Хотя название науки возникло сравнительно недавно, многие относимые сейчас к тригонометрии понятия и факты были известны ещё две тысячи лет назад.

Впервые способы решения треугольников, основанные на зависимостях между сторонами и углами треугольника, были найдены древнегреческими астрономами Гиппархом (2 в. до н. э.) и Клавдием Птолемеем (2 в. н. э.). Позднее зависимости между отношениями сторон треугольника и его углами начали называть тригонометрическими функциями.

Значительный вклад в развитие тригонометрии внесли арабские ученые Аль-Батани (850-929) и Абу-ль-Вафа, Мухамед-бен Мухамед (940-998), который составил таблицы синусов и тангенсов через 10 с точностью до 1/60 4 . Теорему синусов уже знали индийский ученый Бхаскара (р. 1114, год смерти неизвестен) и азербайджанский астроном и математик Насиреддин Туси Мухамед (1201-1274). Кроме того, Насиреддин Туси в своей работе «Трактат о полном четырехстороннике» изложил плоскую и сферическую тригонометрию как самостоятельную дисциплину.

Длительную историю имеет понятие синус. Фактически различные отношения отрезков треугольника и окружности (а по существу, и тригонометрические функции) встречаются уже в III веке до н.э. в работах великих математиков Древней Греции – Евклида, Архимеда, Апполония Пергского. В римский период эти отношения достаточно систематично исследовались Менелаем (I век н.э.), хотя и не приобрели специального названия. Современный синус , например, изучался как полухорда, на которую опирается центральный угол величиной , или как хорда удвоенной дуги.

М

A

А’

Рис. 1

В IV - V веках появился уже специальный термин в трудах по астрономии великого индийского учёного Ариабхаты, именем которого назван первый индийский спутник Земли. Отрезок АМ (рис. 1) он назвал ардхаджива (ардха – половина, джива – тетива лука, которую напоминает хорда). Позднее появилось более краткое название джива. Арабскими математиками в IX веке это слово было заменено на арабское слово джайб (выпуклость). При переводе арабских математических текстов в веке оно было заменено латинским синус (sinus – изгиб, кривизна).

Слово косинус намного моложе. Косинус – это сокращение латинского выражения completely sinus , т. е. “дополнительный синус” (или иначе “синус дополнительной дуги”; cos = sin (90 - )).

Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс (а также котангенс) введен в X веке арабским математиком Абу-ль-Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты лишь в XIV веке немецким математиком, астрономом Регимонтаном (1467 г.). Он доказал теорему тангенсов. Региомонтан составил также подробные тригонометрические таблицы; благодаря его трудам плоская и сферическая тригонометрия стала самостоятельной дисциплиной и в Европе.

Название «тангенс», происходящее от латинского tanger (касаться), появилось в 1583 г. Tangens переводится как «касающийся» (линия тангенсов – касательная к единичной окружности).

Дальнейшее развитие тригонометрия получила в трудах выдающихся астрономов Николая Коперника (1473-1543) – творца гелиоцентрической системы мира, Тихо Браге (1546-1601) и Иогана Кеплера (1571-1630), а также в работах математика Франсуа Виета (1540-1603), который полностью решил задачу об определениях всех элементов плоского или сферического треугольника по трем данным.

Долгое время тригонометрия носила чисто геометрический характер, т. е. Факты, которые мы сейчас формулируем в терминах тригонометрических функций, формулировались и доказывались с помощью геометрических понятий и утверждений. Такою она была еще в средние века, хотя иногда в ней использовались и аналитические методы, особенно после появления логарифмов. Пожалуй, наибольшие стимулы к развитию тригонометрии возникали в связи с решением задач астрономии, что представляло большой практический интерес (например, для решения задач определения местонахождения судна, предсказания затемнения и т. д.). Астрономов интересовали соотношения между сторонами и углами сферических треугольников. И надо заметить, что математики древности удачно справлялись с поставленными задачами.

Начиная с XVII в., тригонометрические функции начали применять к решению уравнений, задач механики, оптики, электричества, радиотехники, для описания колебательных процессов, распространения волн, движения различных механизмов, для изучения переменного электрического тока и т. д. Поэтому тригонометрические функции всесторонне и глубоко исследовались, и приобрели важное значение для всей математики.

Аналитическая теория тригонометрических функций в основном была создана выдающимся математиком XVIII веке Леонардом Эйлером (1707-1783) членом Петербургской Академии наук. Громадное научное наследие Эйлера включает блестящие результаты, относящиеся к математическому анализу, геометрии, теории чисел, механике и другим приложениям математики. Именно Эйлер первым ввел известные определения тригонометрических функций, стал рассматривать функции произвольного угла, получил формулы приведения. После Эйлера тригонометрия приобрела форму исчисления: различные факты стали доказываться путем формального применения формул тригонометрии, доказательства стали намного компактнее проще,

Таким образом, тригонометрия, возникшая как наука о решении треугольников, со временем развилась и в науку о тригонометрических функциях.

Позднее часть тригонометрии, которая изучает свойства тригонометрических функций и зависимости между ними, начали называть гониометрией (в переводе – наука об измерении углов, от греческого  - угол, - измеряю). Термин гониометрия в последнее время практически не употребляется.

В данном случае измерение треугольников следует понимать как решение треугольников, т.е. определение сторон, углов и других элементов треугольника, если даны некоторые из них. Большое количество практических задач, а также задач планиметрии, стереометрии, астрономии и других приводятся к задаче решения треугольников.

Возникновение тригонометрии связано с землемерием, астрономией и строительным делом.

Хотя название науки возникло сравнительно недавно, многие относимые сейчас к тригонометрии понятия и факты были известны ещё две тысячи лет назад.

Впервые способы решения треугольников, основанные на зависимостях между сторонами и углами треугольника, были найдены древнегреческими астрономами Гиппархом (2 в. до н. э.) и Клавдием Птолемеем (2 в. н. э.). Позднее зависимости между отношениями сторон треугольника и его углами начали называть тригонометрическими функциями.

Значительный вклад в развитие тригонометрии внесли арабские ученые Аль-Батани (850-929) и Абу-ль-Вафа, Мухамед-бен Мухамед (940-998), который составил таблицы синусов и тангенсов через 10’ с точностью до 1/604. Теорему синусов уже знали индийский ученый Бхаскара (р. 1114, год смерти неизвестен) и азербайджанский астроном и математик Насиреддин Туси Мухамед (1201-1274). Кроме того, Насиреддин Туси в своей работе «Трактат о полном четырехстороннике» изложил плоскую и сферическую тригонометрию как самостоятельную дисциплину.

Длительную историю имеет понятие синус. Фактически различные отношения отрезков треугольника и окружности (а по существу, и тригонометрические функции) встречаются уже в III веке до н.э. в работах великих математиков Древней Греции – Евклида, Архимеда, Апполония Пергского. В римский период эти отношения достаточно систематично исследовались Менелаем (I век н.э.), хотя и не приобрели специального названия. Современный синус a, например, изучался как полухорда, на которую опирается центральный угол величиной a, или как хорда удвоенной дуги.

В IV-V веках появился уже специальный термин в трудах по астрономии великого индийского учёного Ариабхаты, именем которого назван первый индийский спутник Земли. Отрезок АМ (рис. 1) он назвал ардхаджива (ардха – половина, джива – тетива лука, которую напоминает хорда). Позднее появилось более краткое название джива. Арабскими математиками в IX веке это слово было заменено на арабское слово джайб (выпуклость). При переводе арабских математических текстов в веке оно было заменено латинским синус (sinus – изгиб, кривизна).

Слово косинус намного моложе. Косинус – это сокращение латинского выражения completely sinus, т. е. “дополнительный синус” (или иначе “синус дополнительной дуги”; cosa = sin(90° - a)).

Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс (а также котангенс) введен в X веке арабским математиком Абу-ль-Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты лишь в XIV веке немецким математиком, астрономом Регимонтаном (1467 г.). Он доказал теорему тангенсов. Региомонтан составил также подробные тригонометрические таблицы; благодаря его трудам плоская и сферическая тригонометрия стала самостоятельной дисциплиной и в Европе.

Название «тангенс», происходящее от латинского tanger (касаться), появилось в 1583 г. Tangens переводится как «касающийся» (линия тангенсов – касательная к единичной окружности).

Дальнейшее развитие тригонометрия получила в трудах выдающихся астрономов Николая Коперника (1473-1543) – творца гелиоцентрической системы мира, Тихо Браге (1546-1601) и Иогана Кеплера (1571-1630), а также в работах математика Франсуа Виета (1540-1603), который полностью решил задачу об определениях всех элементов плоского или сферического треугольника по трем данным.

Долгое время тригонометрия носила чисто геометрический характер, т. е. Факты, которые мы сейчас формулируем в терминах тригонометрических функций, формулировались и доказывались с помощью геометрических понятий и утверждений. Такою она была еще в средние века, хотя иногда в ней использовались и аналитические методы, особенно после появления логарифмов. Пожалуй, наибольшие стимулы к развитию тригонометрии возникали в связи с решением задач астрономии, что представляло большой практический интерес (например, для решения задач определения местонахождения судна, предсказания затемнения и т. д.). Астрономов интересовали соотношения между сторонами и углами сферических треугольников. И надо заметить, что математики древности удачно справлялись с поставленными задачами.

Начиная с XVII в., тригонометрические функции начали применять к решению уравнений, задач механики, оптики, электричества, радиотехники, для описания колебательных процессов, распространения волн, движения различных механизмов, для изучения переменного электрического тока и т. д. Поэтому тригонометрические функции всесторонне и глубоко исследовались, и приобрели важное значение для всей математики.

Аналитическая теория тригонометрических функций в основном была создана выдающимся математиком XVIII веке Леонардом Эйлером (1707-1783) членом Петербургской Академии наук. Громадное научное наследие Эйлера включает блестящие результаты, относящиеся к математическому анализу, геометрии, теории чисел, механике и другим приложениям математики. Именно Эйлер первым ввел известные определения тригонометрических функций, стал рассматривать функции произвольного угла, получил формулы приведения. После Эйлера тригонометрия приобрела форму исчисления: различные факты стали доказываться путем формального применения формул тригонометрии, доказательства стали намного компактнее проще,

Таким образом, тригонометрия, возникшая как наука о решении треугольников, со временем развилась и в науку о тригонометрических функциях.

Позднее часть тригонометрии, которая изучает свойства тригонометрических функций и зависимости между ними, начали называть гониометрией (в переводе – наука об измерении углов, от греческого gwnia - угол, metrew- измеряю). Термин гониометрия в последнее время практически не употребляется.