Необратимость природных процессов. Необратимые процессы: определение, примеры Обратимость процессов в природе

Обратимые и необратимые процессы , пути изменения состояния термодинамической системы.

Процесс называют обратимым , если он допускает возвращение рассматриваемой системы из конечного состояния в исходное через ту же последовательность промежуточных состояний, что и в прямом процессе, но проходимую в обратном порядке. При этом в исходное состояние возвращается не только система, но и среда. Обратимый процесс возможен, если и в системе, и в окружающей среде он протекает равновесно. При этом предполагается, что равновесие существует между отдельными частями рассматриваемой системы и на границе с окружающей средой. Обратимый процесс - идеализированный случай, достижимый лишь при бесконечно медленном изменении термодинамических параметров. Скорость установления равновесия должна быть больше, чем скорость рассматриваемого процесса.

Если невозможно найти способ вернуть и систему, и тела в окружающей среде в исходное состояние, процесс изменения состояния системы называют необратимым .

Необратимые процессы могут протекать самопроизвольно только в одном направлении; таковы диффузия,теплопроводность, вязкое течение и другое. Для химической реакции применяют понятия термодинамической и кинетической обратимости, которые совпадают только в непосредственной близости к состоянию равновесия На практике нередко встречаются системы, находящиеся в частичном равновесии, т.е. в равновесии по отношению к определенного рода процессам, тогда как в целом система неравновесна. Например, образец закаленной стали обладает пространственной неоднородностью и является системой, неравновесной по отношению к диффузионным процессам, однако в этом образце могут происходить равновесные циклы механической деформации, поскольку времена релаксации диффузии и деформации в твердых телах отличаются на десятки порядков. Следовательно, процессы с относительно большим временем релаксации являются кинетически заторможенными и могут не приниматься во внимание при термодинамич. анализе более быстрых процессов.

Общее заключение о необратимости процессов в природе . Переход тепла от горячего тела к холодному и механической энергии во внутреннюю - это примеры наиболее типичных необратимых процессов. Число подобных примеров можно увеличивать практически неограниченно. Все они говорят о том, что процессы в природе имеют определенную направленность, никак не отраженную в первом законетермодинамики. Все макроскопические процессы в природе протекают только в одном определенном направлении . В обратном направлении они самопроизвольно протекать не могут. Все процессы в природе необратимы, и самые трагические из них - старение и смерть организмов.
Важность этого закона в том, что из него можно вывести заключение о необратимости не только процесса теплопередачи, но и других процессов в природе. Если бы тепло в каких-либо случаях могло самопроизвольно передаваться от холодных тел к горячим, то это позволило бы сделать обратимыми и другие процессы. Все процессы самопроизвольно протекают в одном определенном направлении. Они необратимы. Тепло всегда переходит от горячего тела к холодному, а механическая энергия макроскопических тел - во внутреннюю.
Направление процессов в природе указывается вторым законом термодинамики.

Второй закон термодинамики констатирует факт необратимости процессов в природе, но не дает ему никакого объяснения. Это объяснение может быть получено только на основе молекулярно-кинетической теории, и оно является далеко не простым.

Противоречие между обратимостью микропроцессов и необратимостью макропроцессов

Необратимость макропроцессов выглядит парадоксально, потому что все микропроцессы обратимы во времени. Уравнения движения отдельных микрочастиц, как классические, так и квантовые, обратимы во времени, ибо никаких сил трения, зависящих от скорости, не содержат. Сила трения - это макроскопический эффект от взаимодействия большого тела с огромным количеством молекул окружающей среды, и появление этой силы само нуждается в объяснении. Силы, посредством которых взаимодействуют микрочастицы (в первую очередь это электромагнитные силы), по времени обратимы. Уравнения Максвелла, описывающие электромагнитные взаимодействия, не меняются при замене t на - t .

Если взять простейшую модель газа - совокупность упругих шариков, то газ в целом будет обнаруживать определенную направленность поведения. Например, будучи сжат в половине сосуда, он начнет расширяться и займет весь сосуд. Снова он не сожмется. Уравнения же движения каждой молекулы-шарика обратимы по времени, так как содержат только силы, зависящие от расстояний и проявляющиеся при столкновении молекул.

Таким образом, задача состоит не только в объяснении происхождения необратимости, но и в согласовании факта обратимости микропроцессов с фактом необратимости макропроцессов.

Заслуга в нахождении принципиально правильного подхода к решению этой проблемы принадлежит Больцману. Правда, некоторые аспекты проблемы необратимости до сих пор не получили исчерпывающего решения.

Житейский пример необратимости

Приведем простой житейский пример, имеющий, несмотря на свою тривиальность, прямое отношение к решению проблемы необратимости Больцманом.

Допустим, с понедельника вы решили начать новую жизнь. Непременным условием этого обычно является идеальный или близкий к идеальному порядок на письменном столе. Вы расставляете все предметы и книги на строго определенные места, и у вас на столе царит состояние, которое с полным правом можно назвать состоянием «порядок».

Что произойдет с течением времени, хорошо известно. Вы забываете ставить предметы и книги на строго определенные места, и на столе воцаряется состояние хаоса. Нетрудно понять, с чем это связано. Состоянию «порядок» отвечает только одно определенное расположение предметов, а состоянию «хаос» - несравнимо большее число. И как только предметы начнут занимать произвольные положения, не контролируемые вашей волей, на столе само собой возникает более вероятное состояние хаоса, реализуемое гораздо большим числом распределений предметов на столе.

В принципе именно такие соображения были высказаны Больцманом для объяснения необратимости макропроцессов.

Микроскопическое и макроскопическое состояния

Нужно прежде всего различать макроскопическое состояние системы и ее микроскопическое состояние.

Макроскопическое состояние характеризуется немногим числом термодинамических параметров (давлением, объемом, температурой и др.), а также такими механическими величинами, как положение центра масс, скорость центра масс и др. Именно макроскопические величины, характеризующие состояние в целом, имеют практическое значение.

Микроскопическое состояние характеризуется в общем случае заданием координат и скоростей (или импульсов) всех частиц, составляющих систему (макроскопическое тело). Это несравненно более детальная характеристика системы, знание которой совсем не требуется для описания процессов с макроскопическими телами. Более того, знание микросостояния фактически недостижимо из-за огромного числа частиц, слагающих макротела.

В приведенном выше житейском примере с предметами на столе можно ввести понятия микро- и макросостояний. Микросостоянию отвечает какое-то одно определенное расположение предметов, а макросостоянию - оценка ситуации в целом: либо «порядок», либо «хаос».

Вполне очевидно, что определенное макросостояние может быть реализовано огромным числом различных микросостояний. Так, например, переход одной молекулы из данной точки пространства в другую точку или изменение ее скорости в результате столкновения изменяют микросостояние системы, но, конечно, не меняют термодинамических параметров и, следовательно, макросостояния системы.

Теперь введем гипотезу, не столь очевидную, как предшествующие утверждения: все микроскопические состояния замкнутой системы равновероятны; ни одно из них не выделено, не занимает преимущественного положения. Это предположение фактически эквивалентно гипотезе о хаотическом характере теплового движения молекул.

Определение 1

Обратимый процесс считается в физике процессом, который возможен для проведения в обратном направлении таким образом, что система будет подвержена прохождению тех же состояний, но в обратных направлениях.

Рисунок 1. Обратимые и необратимые процессы. Автор24 - интернет-биржа студенческих работ

Определение 2

Необратимый процесс считается процессом, самопроизвольно протекающим исключительно в одном направлении.

Термодинамический процесс

Рисунок 2. Термодинамические процессы. Автор24 - интернет-биржа студенческих работ

Термодинамический процесс представляет непрерывное изменение состояний системы, которое происходит в итоге ее взаимодействий с окружающей средой. Внешним признаком процесса будет считаться в таком случае изменение хотя бы одного параметра состояния.

Реальные процессы изменения состояния проистекают при условии присутствия значительных скоростей и разностей потенциалов (давлений и температур), существующих между системой и средой. В подобных условиях появится сложное неравномерное распределение параметров и функций состояния, исходя из объема системы, пребывающей в неравновесном состоянии. Термодинамические процессы, предусматривающие прохождение системы через ряд неравновесных состояний, будут называться неравновесными.

Изучение неравновесных процессов считается сложнейшей для ученых задачей, поскольку разработанные в рамках термодинамики методы приспособлены в основном для исследования равновесных состояний. К примеру, неравновесный процесс весьма сложно рассчитывается посредством уравнений состояния газа, применимых для равновесных условий, в то время, как в отношении всего объема системы давление и температура обладают равными значениями.

Возможно было бы выполнять приближенный расчет неравновесного процесса путем подстановки в уравнение средних значений параметров состояния, но в большинстве случаев осреднение параметров по объему системы становится невозможным.

В технической термодинамике в рамках исследования реальных процессов условно принимают распределение параметров состояния равномерным образом. Это, в свою очередь, позволяет воспользоваться уравнениями состояния и иными расчетными формулами, полученными с целью равномерного распределения в системе параметров.

В некоторых конкретных случаях погрешности, обусловленные подобным упрощением, незначительны и при расчете реальных процессов их возможно не учитывать. Если в результате неравномерности процесс ощутимо отличается от идеальной равновесной модели, то в расчет внесут соответствующие поправки.

Условия равномерно распределенных параметров в системе при изменении ее состояния, по существу подразумевают взятие идеализированного процесса в качестве объекта исследования. Подобный процесс при этом состоит из бесконечно большого количества равновесных состояний.

Такой процесс возможно представить в формате протекающего настолько медленно, что в каждый конкретный момент времени в системе установится практически равновесное состояние. Степень приближения такого процесса к равновесному окажется тем большей, чем меньшей будет при этом скорость изменения системы.

В пределе мы приходим к бесконечно медленному процессу, предоставившему непрерывную смену для состояний равновесия. Подобный процесс равновесного изменения состояния будет называться квазистатическим (или как бы статическим). Такому виду процесса будет соответствовать бесконечно малая разность потенциалов между системой и окружающей средой.

Определение 3

При обратном направлении квазистатического процесса система будет проходить через состояния, аналогичные тем, что происходят в прямом процессе. Такое свойство квазистатических процессов называют обратимостью, а сами процессы при этом являются обратимыми.

Обратимый процесс в термодинамике

Рисунок 3. Обратимый процесс в термодинамике. Автор24 - интернет-биржа студенческих работ

Определение 4

Обратимый процесс (равновесный) – представляет термодинамический процесс, способный к прохождению и в прямом, и в обратном направлении (за счет прохождения через одинаковые промежуточные состояния), система при этом возвращается в исходное состояние без энергетических затрат, а в окружающей среде не остается никаких макроскопических изменений.

Обратимый процесс возможно в абсолютно любой момент времени заставить протекать в обратном направлении, за счет изменения какой-либо независимой переменной на бесконечно малую величину. Обратимые процессы могут давать наибольшую работу. Большую работу от системы получить невозможно ни при каких условиях. Это придает теоретическую важность обратимым процессам, реализовать которые на практике также нереально.

Такие процессы протекают бесконечно медленно, и становится возможным лишь приблизиться к ним. Важно отметить существенное отличие термодинамической обратимости процесса от химической. Химическая обратимость будет характеризовать направление процесса, а термодинамическая – способ, при котором он будет проводиться.

Понятия обратимого процесса и равновесного состояния играют очень значимую роль в термодинамике. Так, каждый количественный вывод термодинамики будет применим исключительно в отношении равновесных состояний и обратимых процессов.

Необратимые процессы термодинамики

Необратимый процесс невозможен к проведению в противоположном направлении посредством все тех же самых промежуточных состояний. Все реальные процессы считаются в физике необратимыми. В качестве примеров таких процессов выступают следующие явления:

  • диффузия;
  • термодиффузия;
  • теплопроводность;
  • вязкое течение и др.

Переход кинетической энергии (для макроскопического движения) в теплоту через трение (во внутреннюю энергию системы) будет представлять собой необратимый процесс.

Все осуществляемые в природе физические процессы подразделяются на обратимые и необратимые. Пусть изолированная система вследствие некоего процесса осуществит переход из состояния А в состояние В и затем возвратится в свое изначальное состояние.

Процесс, в таком случае, станет обратимым в условиях вероятного осуществления обратного перехода из состояния В в А через аналогичные промежуточные состояния таким путем, чтобы при этом не оставалось совершенно никаких изменений в окружающих телах.

Если осуществление подобного перехода невозможно и при условии сохранения по окончании процесса в окружающих телах или внутри самой системы каких-либо изменений, то процесс окажется необратимым.

Любой процесс, сопровождающийся явлением трения, станет необратимым, поскольку, в условиях трения, часть работы всегда превратится в тепло, оно рассеется, в окружающих телах сохранится след процесса – (нагревание), что превратит процесс (с участием трения) в необратимый.

Пример 1

Идеальный механический процесс, выполняемый в консервативной системе (без сил трения), стал бы обратимым. Примером подобного процесса можно считать колебания на длинном подвесе тяжеловесного маятника. По причине незначительной степени сопротивления среды, амплитуда маятниковых колебаний становится практически неизменной на протяжении продолжительного времени, кинетическая энергия колеблющегося маятника при этом оказывается полностью переходящей в его потенциальную энергию и обратно.

В качестве важнейшей принципиальной особенности всех тепловых явлений (где участвует громаднейшее количество молекул), будет выступать их необратимый характер. Примером процесса такого характера можно считать расширение газа (в частности, идеального) в пустоту.

Итак, в природе наблюдается существование двух видов принципиально различных процессов:

  • обратимых;
  • необратимых.

Согласно заявлению М. Планка, сделанного однажды, различия между такими процессами, как необратимые и обратимые, будут лежать значительно глубже, чем, к примеру, между электрическими и механическими разновидностями процессов. По этой причине, его с большим основанием (сравнительно с любым другим признаком) имеет смысл выбирать как первейший принцип в рамках рассмотрения физических явлений.

Описание

Давно было замечено, что в одну и ту же реку дважды войти нельзя. Мир вокруг нас меняется, наше общество меняется, и мы сами, члены общества, только стареем. Изменения необратимы.
Необратимые процессы – физические процессы, которые могут самопроизвольно протекать только в одном направлении - в сторону равномерного распределения вещества, теплоты и т. д.; характеризуются положительным производством энтропии. В замкнутых системах необратимые процессы приводят к возрастанию энтропии.

Работа состоит из 1 файл

Реферат по физике

на тему: «Необратимость процессов в природе»

Работу выполнил

Игорь Рубцов

    Введение

Давно было замечено, что в одну и ту же реку дважды войти нельзя. Мир вокруг нас меняется, наше общество меняется, и мы сами, члены общества, только стареем. Изменения необратимы.

Необратимые процессы – физические процессы, которые могут самопроизвольно протекать только в одном направлении - в сторону равномерного распределения вещества, теплоты и т. д.; характеризуются положительным производством энтропии. В замкнутых системах необратимые процессы приводят к возрастанию энтропии.

Классическая термодинамика, изучающая равновесные, обратимые процессы, устанавливает неравенства, которые указывают возможное направление необратимых процессов.

Необратимые процессы изучаются термодинамикой неравновесных процессов и статистической теорией неравновесных процессов. Термодинамика необратимых процессов дает возможность находить для различных необратимых процессов производство энтропии в системе в зависимости от параметров неравновесного состояния, а также получать уравнения, описывающие изменения во времени этих параметров.

Необратимые процессы

К необратимым процессам относятся: процессы диффузии, теплопроводности, термодиффузии, вязкого течения, расширения газа в пустоту и т.п.

Диффузия (от лат. diffusio - распространение, растекание, рассеивание), движение частиц среды, приводящее к переносу вещества и выравниванию концентраций или к установлению равновесного распределения концентраций частиц данного сорта в среде. В отсутствие макроскопического движения среды (напр., конвекции) диффузия молекул (атомов) определяется их тепловым движением (т. н. молекулярная диффузия). В неоднородной системе (газ, жидкость) при молекулярной диффузии в отсутствие внешних воздействий диффузионный поток (поток массы) пропорционален градиенту его концентрации. Коэффициент пропорциональности называется коэффициентом диффузии. В физике, кроме диффузии молекул (атомов), рассматривают диффузию электронов проводимости, дырок, нейтронов и других частиц.

Теплопроводность, перенос энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия составляющих его частиц. Приводит к выравниванию температуры тела. Обычно количество переносимой энергии, определяемое как плотность теплового потока, пропорционально градиенту температуры (закон Фурье). Коэффициент пропорциональности называют коэффициентом теплопроводности.

Термодиффузия (термическая или тепловая диффузия), диффузия, обусловленная наличием в среде (растворе, смеси) градиента температуры. При термодиффузии концентрация компонентов в областях пониженной и повышенной температур различна. Термодиффузию в растворах называют также эффектом Соре по имени швейцарского ученого Ш. Соре (Ch. Soret, 1879).

Неравновесные процессы, физические процессы, в которых система проходит через неравновесные состояния. Неравновесные процессы необратимы.

Термодинамика неравновесных процессов, раздел физики, изучающий неравновесные процессы (диффузию, вязкость, термоэлектрические явления и др.) на основе общих законов термодинамики. Для количественного изучения неравновесных процессов, в частности определения их скоростей в зависимости от внешних условий, составляются уравнения баланса массы, импульса, энергии, а также энтропии для элементарных объемов системы, и эти уравнения исследуются совместно с уравнениями рассматриваемых процессов. Термодинамика неравновесных процессов - теоретическая основа исследования открытых систем, в т. ч. живых существ.

Открытые системы, системы, которые могут обмениваться с окружающей средой веществом (а также энергией и импульсом). К открытым системам относятся, напр., химическая и биологическая системы (в т. ч. живые организмы), в которых непрерывно протекают химические реакции за счет поступающих извне веществ, а продукты реакций отводятся. Открытые системы могут находиться в стационарных состояниях, далеких от равновесных состояний.

Неравновесность систем

В абсолютно равновесных системах энтропия достигает максимально возможную величину при данном количестве элементов. Элементы при ЭО макс. действуют неограниченно "свободно", независимо от влияния других элементов. В системе отсутствует какая-либо упорядоченность.

Очевидно, абсолютного хаоса в системах не существует. Все существующие реально системы имеют в структуре менее или более заметный порядок и соответствующую ОНГ. Чем больше система имеет в структуре упорядочённость, тем больше она удаляется от равновесного состояния. С другой стороны неравновесные системы стремятся двигаться в сторону термодинамического равновесия, т.е. увеличивать свою ОЭ. Если они не получают дополнительную энергию или ОНГ, они не могут в длительное время сохранять своё неравновесное состояние. Но равновесие может быть и динамическим, где процессы протекают в равном объёме в противоположные стороны. Внешне сохраняется равновесие, т.е. устойчивость системы. Если скорость таких процессов мало изменяется, то такие режимы являются стационарными, т.е. относительно стабильными во времени. Скорость процессов может изменятся в очень широких пределах. Если скорость процессов очень маленькая, то система может находится в состоянии локального квазиравновесия, т.е. кажущегося равновесия. Неравновесность систем играет существенную роль в их инфообмене. Чем больше неравновесность, тем больше их чувствительность и способность принимать информацию и тем больше возможности саморазвития системы.

Возрастание энтропии в замкнутых системах

Энтропия первоначально была введена для объяснения закономерностей работы тепловой машины. В узком смысле энтропия характеризует равновесное состояние замкнутой системы из большого числа частиц.

В обычном понимании равновесие в системе означает просто хаос. Для человека максимум энтропии - это разрушение. Любое разрушение увеличивает энтропию.

Энтропия замкнутой системы необратима. Но в природе полностью замкнутых систем не существует. А для открытых неравновесных систем точного определения энтропии пока не известно. Измерить энтропию нельзя. Из строгих физических законов она не выводится. Энтропия вводится в термодинамике для характеристики необратимости протекающих в газах процессов.

Многие ученые не считают феноменологические законы термодинамики законами природы, а рассматривают их как частный случай при работе с газом с помощью тепловой машины. Поэтому не рекомендуются расширенная трактовка энтропии в физике.

С другой стороны необратимость протекающих физических процессов и самой нашей жизни – это факт. С этой позиции вполне оправдано использование понятия энтропии в нефизических дисциплинах для характеристики состояния системы. Все природные системы, включая человеческий организм и человеческие сообщества, не являются замкнутыми. Открытость системы позволяет локальным образом уменьшать энтропию за счет обмена энергией. Примеры необратимых процессов . Нагретые тела постепенно остывают, передавая свою энергию более холодным окружающим телам. Обратный процесс передачи теплоты от холодного тела к горячему не противоречит закону сохранения энергии, если количество теплоты, отданное холодным телом, равно количеству теплоты, полученному горячим, но такой процесс самопроизвольно никогда не происходит.
Другой пример. Колебания маятника, выведенного из положения равновесия, затухают (рис.13.9; 1, 2, 3, 4 - последовательные положения маятника при максимальных отклонениях от положения равновесия). За счет работы сил трения механическая энергия маятника убывает, а температура маятника и окружающего воздуха (а значит, и их внутренняя энергия) слегка повышается. Энергетически допустим и обратный процесс, когда амплитуда колебаний маятника увеличивается за счет охлаждения самого маятника и окружающей среды. Но такой процесс никогда не наблюдается. Механическая энергия самопроизвольно переходит во внутреннюю, но не наоборот. При этом энергия упорядоченного движения тела как целого превращается в энергию неупорядоченного теплового движения слагающих его молекул.

Общее заключение о необратимости процессов в природе . Переход тепла от горячего тела к холодному и механической энергии во внутреннюю - это примеры наиболее типичных необратимых процессов. Число подобных примеров можно увеличивать практически неограниченно. Все они говорят о том, что процессы в природе имеют определенную направленность, никак не отраженную в первом законе термодинамики. Все макроскопические процессы в природе протекают только в одном определенном направлении . В обратном направлении они самопроизвольно протекать не могут. Все процессы в природе необратимы, и самые трагические из них - старение и смерть организмов.
Точная формулировка понятия необратимого процесса. Для правильного понимания существа необратимости процессов необходимо сделать следующее уточнение: необратимыми называ ются такие процессы, которые могут самопроизвольно протекать лишь в одном определенном направлении; в обратном направлении они могут протекать только при внешнем воздействии. Так, можно вновь увеличить размах колебаний маятника, подтолкнув его рукой. Но это увеличение возникает не само собой, а становится возможным в результате более сложного процесса, включающего движение руки.
Математически необратимость механических процессов выражается в том, что уравнения движения макроскопических тел изменяются с изменением знака времени. Они, как говорят в таких случаях, не инвариантны при преобразовании t→-t . Ускорение не меняет знака при замене t→-t . Силы, зависящие от расстояний, также не изменяют знака. Знак при замене t на -t меняется у скорости. Именно поэтому при совершении работы силами трения, зависящими от скорости, кинетическая энергия тела необратимо переходит во внутреннюю.
Кино «наоборот». Яркой иллюстрацией необратимости явлений в природе служит просмотр кинофильма в обратном направлении. Например, прыжок в воду будет при этом выглядеть следующим образом. Спокойная вода в бассейне начинает бурлить, появляются ноги, стремительно движущиеся вверх, а затем и весь ныряльщик. Поверхность воды быстро успокаивается. Постепенно скорость ныряльщика уменьшается, и вот уже он спокойно стоит на вышке. То, что мы видим на экране, могло бы происходить в действительности, если бы процессы можно было обратить.
Нелепость происходящего на экране проистекает из того, что мы привыкли к определенной направленности процессов и не сомневаемся в невозможности их обратного течения. А ведь такой процесс, как вознесение ныряльщика на вышку из воды, не противоречит ни закону сохранения энергии, ни законам механики, ни вообще каким-либо законам, кроме второго закона термодинамики .
Второй закон термодинамики. Второй закон термодинамики указывает направление возможных энергетических превращений, т. е. направление процессов, и тем самым выражает необратимость процессов в природе. Этот закон был установлен путем непосредственного обобщения опытных фактов.
Есть несколько формулировок второго закона, которые, несмотря на внешнее различие, выражают, в сущности, одно и то же и поэтому равноценны.
Немецкий ученый Р. Клаузиус (1822-1888) сформулировал этот закон так: невозможно перевести тепло от более холодной системы к более горячей при отсутствии других одновременных изменений в обеих системах или в окружающих телах.
Здесь констатируется опытный факт определенной направленности теплопередачи: тепло само собой переходит всегда от горячих тел к холодным. Правда, в холодильных установках осуществляется теплопередача от холодного тела к более теплому, но эта передача связана с другими изменениями в окружающих телах: охлаждение достигается за счет работы.
Важность этого закона в том, что из него можно вывести заключение о необратимости не только процесса теплопередачи, но и других процессов в природе. Если бы тепло в каких-либо случаях могло самопроизвольно передаваться от холодных тел к горячим, то это позволило бы сделать обратимыми и другие процессы.
Все процессы самопроизвольно протекают в одном определенном направлении. Они необратимы. Тепло всегда переходит от горячего тела к холодному, а механическая энергия макроскопических тел - во внутреннюю.
Направление процессов в природе указывается вторым законом термодинамики.

Заключение

Подводя итог всему, что было сказано выше, отметим, что по мере того, как рациональная наука все глубже и глубже постигает сложность организации существующих в мире систем она все в большей мере осознает недостаточность ранее признанных редукционистских концепций. Поиски источников информации определяющей структуры и функции сложных систем, приводят науку к необходимости создания телеологических концепций, то есть, в конечном счете, к признанию некого организующего начала, которое и есть не что иное, как проявление воли Творца.

Основным резервуаром свободной энергии в биологических системах являются электронно-возбужденные состояния сложных молекулярных комплексов. Эти состояния непрерывно поддерживаются за счет кругооборота электронов в биосфере, источником которого является солнечная энергия, а основным "рабочим веществом" - вода. Часть состояний тратится на обеспечение текущего энергоресурса организма, часть может запасаться впредь, подобно тому, как это происходит в лазерах после поглощения импульса накачки.

Список литературы

    1. А.Н. Матвеев, "Молекулярная физика"

    2. Большая физическая энциклопедия

    3. Канке В.А. «Основные философские направления и концепции науки. Итоги ХХ столетия».-М.:Логос,2000.

    4. Лешкевич Т.Г. «Философия науки: традиции и новации» М.:ПРИОР,2001 «Философия» под. ред. Кохановского В.П. Ростов-н/Д.:Феникс,2000

    5. О. Наумов, газета "Монолог" 2000г,N4

    6. Г. Хакен, "Информация и самоорганизация".