Сколько осей симметрии имеет шар круг. В.П.Дядченко "Введение в стереохимию". Осевая симметрия и понятие совершенства

Жизнь людей наполнена симметрией. Это удобно, красиво, не нужно выдумывать новых стандартов. Но что она есть на самом деле и так ли красива в природе, как принято считать?

Симметрия

С древних времен люди стремятся упорядочить мир вокруг себя. Поэтому что-то считается красивым, а что-то не очень. С эстетической точки зрения как привлекательные рассматриваются золотое и серебряное сечения, а также, разумеется, симметрия. Этот термин имеет греческое происхождение и дословно означает "соразмерность". Разумеется, речь идет не только о совпадении по этому признаку, но также и по некоторым другим. В общем смысле симметрия - это такое свойство объекта, когда в результате тех или иных образований результат равен исходным данным. Это встречается как в живой, так и в неживой природе, а также в предметах, сделанных человеком.

Прежде всего термин "симметрия" употребляется в геометрии, но находит применение во многих научных областях, причем его значение остается в общем и целом неизменным. Это явление достаточно часто встречается и считается интересным, поскольку различается несколько его видов, а также элементов. Использование симметрии также интересно, ведь она встречается не только в природе, но и в орнаментах на ткани, бордюрах зданий и многих других рукотворных предметах. Стоит рассмотреть это явление поподробнее, поскольку это крайне увлекательно.

Употребление термина в других научных областях

В дальнейшем симметрия будет рассматриваться с точки зрения геометрии, однако стоит упомянуть, что данное слово используется не только здесь. Биология, вирусология, химия, физика, кристаллография - все это неполный список областей, в которых данное явление изучается с различных сторон и в разных условиях. От того, к какой науке относится этот термин, зависит, например, классификация. Так, разделение на типы серьезно варьируется, хотя некоторые основные, пожалуй, остаются неизменными везде.

Классификация

Различают несколько основных типов симметрии, из которых наиболее часто встречаются три:


Кроме того, в геометрии различают также следующие типы, они встречаются значительно реже, но не менее любопытны:

  • скользящая;
  • вращательная;
  • точечная;
  • поступательная;
  • винтовая;
  • фрактальная;
  • и т. д.

В биологии все виды называются несколько иначе, хотя по сути могут быть такими же. Подразделение на те или иные группы происходит на основании наличия или отсутствия, а также количества некоторых элементов, таких как центры, плоскости и оси симметрии. Их следует рассмотреть отдельно и более подробно.

Базовые элементы

В явлении выделяют некоторые черты, одна из которых обязательно присутствует. Так называемые базовые элементы включают в себя плоскости, центры и оси симметрии. Именно в соответствии с их наличием, отсутствием и количеством определяется тип.

Центром симметрии называют точку внутри фигуры или кристалла, в которой сходятся линии, соединяющие попарно все параллельные друг другу стороны. Разумеется, он существует не всегда. Если есть стороны, к которым нет параллельной пары, то такую точку найти невозможно, поскольку ее нет. В соответствии с определением, очевидно, что центр симметрии - это то, через что фигура может быть отражена сама на себя. Примером может служить, например, окружность и точка в ее середине. Этот элемент обычно обозначается как C.

Плоскость симметрии, разумеется, воображаема, но именно она делит фигуру на две равные друг другу части. Она может проходить через одну или несколько сторон, быть параллельной ей, а может делить их. Для одной и той же фигуры может существовать сразу несколько плоскостей. Эти элементы обычно обозначаются как P.

Но, пожалуй, наиболее часто встречается то, что называют "оси симметрии". Это нередкое явление можно увидеть как в геометрии, так и в природе. И оно достойно отдельного рассмотрения.

Оси

Часто элементом, относительно которого фигуру можно назвать симметричной,


выступает прямая или отрезок. В любом случае речь идет не о точке и не о плоскости. Тогда рассматриваются фигур. Их может быть очень много, и расположены они могут быть как угодно: делить стороны или быть параллельными им, а также пересекать углы или не делать этого. Оси симметрии обычно обозначаются как L.

Примерами могут служить равнобедренные и В первом случае будет вертикальная ось симметрии, по обе стороны от которой равные грани, а во втором линии будут пересекать каждый угол и совпадать со всеми биссектрисами, медианами и высотами. Обычные же треугольники ею не обладают.

Кстати, совокупность всех вышеназванных элементов в кристаллографии и стереометрии называется степенью симметрии. Этот показатель зависит от количества осей, плоскостей и центров.

Примеры в геометрии

Условно можно разделить все множество объектов изучения математиков на фигуры, имеющие ось симметрии, и такие, у которых ее нет. В первую категорию автоматически попадают все окружности, овалы, а также некоторые частные случаи, остальные же попадают во вторую группу.

Как и в случае, когда говорилось про ось симметрии треугольника, данный элемент для четырехугольника существует не всегда. Для квадрата, прямоугольника, ромба или параллелограмма он есть, а для неправильной фигуры, соответственно, нет. Для окружности оси симметрии - это множество прямых, которые проходят через ее центр.

Кроме того, интересно рассмотреть и объемные фигуры с этой точки зрения. Хотя бы одной осью симметрии помимо всех правильных многоугольников и шара будут обладать некоторые конусы, а также пирамиды, параллелограммы и некоторые другие. Каждый случай необходимо рассматривать отдельно.

Примеры в природе

В жизни называется билатеральной, она встречается наиболее
часто. Любой человек и очень многие животные тому пример. Осевая же называется радиальной и встречается гораздо реже, как правило, в растительном мире. И все-таки они есть. Например, стоит подумать, сколько осей симметрии имеет звезда, и имеет ли она их вообще? Разумеется, речь идет о морских обитателях, а не о предмете изучения астрономов. И правильным ответом будет такой: это зависит от количества лучей звезды, например пять, если она пятиконечная.

Кроме того, радиальная симметрия наблюдается у многих цветков: ромашки, васильки, подсолнухи и т. д. Примеров огромное количество, они буквально везде вокруг.


Аритмия

Этот термин, прежде всего, напоминает большинству о медицине и кардиологии, однако он изначально имеет несколько другое значение. В данном случае синонимом будет "асимметрия", то есть отсутствие или нарушение регулярности в том или ином виде. Ее можно встретить как случайность, а иногда она может стать прекрасным приемом, например, в одежде или архитектуре. Ведь симметричных зданий очень много, но знаменитая чуть наклонена, и хоть она не одна такая, но это самый известный пример. Известно, что так получилось случайно, но в этом есть своя прелесть.

Кроме того, очевидно, что лица и тела людей и животных тоже не полностью симметричны. Проводились даже исследования, согласно результатам которых "правильные" лица расценивались как неживые или просто непривлекательные. Все-таки восприятие симметрии и это явление само по себе удивительны и пока не до конца изучены, а потому крайне интересны.

В широком смысле симметрией именуется сохранение чего-либо неизменным при каких-то преобразованиях. Обладают таким свойством и некоторые геометрические фигуры.

Геометрическая симметрия

Применительно к геометрической фигуре означает, что если данную фигуру преобразовать – например, повернуть – некоторые ее свойства останутся прежними.

Возможность таких преобразований различается от фигуры к фигуре. Например, круг можно сколько угодно вращать вокруг точки, расположенной в его центре, он так и останется кругом, ничто для него не изменится.

Понятие симметрии можно объяснить, не прибегая к вращению. Достаточно провести через центр круга прямую и построить в любом месте фигуры перпендикулярный ей отрезок, соединяющий две точки на окружности. Точка пересечения с прямой будет делить на две части, которые будут равны друг другу.

Иными словами, прямая разделила фигуру на две равные части. Точки частей фигуры, расположенные на прямых, перпендикулярных данной, находятся на равном расстоянии от нее. Вот эта пряма и будет называться осью симметрии. Симметрия такого рода – – называется осевой симметрией.

Количество осей симметрии

У количество будет различным. Например, у круга и шара таких осей множество. У равностороннего треугольника осью симметрии будет перпендикуляр, опущенный на каждую из сторон, следовательно, у него три оси. У квадрата и прямоугольника можно провести четыре оси симметрии. Две из них перпендикулярны сторонам четырехугольников, а две другие являются диагоналями. А вот у равнобедренного треугольника ось симметрии только одна, располагающаяся меду равными его сторонами.

Осевая симметрия встречается и в природе. Ее можно наблюдать в двух вариантах.

Первый вид – радиальная симметрия, предполагающая наличие нескольких осей. Она характерна, например, для морских звезд. Более высокоразвитым организмам присуща билатеральная, или двусторонняя симметрия с единственной осью, делящей тело на две части.

Человеческому телу тоже присуща билатеральная симметрия, но идеальной ее назвать нельзя. Симметрично расположены ноги, руки, глаза, легкие, но не сердце, печень или селезенка. Отклонения от билатеральной симметрии заметны даже внешне. Например, крайне редко бывает так, чтобы у человека на обеих щеках были одинаковые родинки.

Современная органическая химия немыслима без предсавлений о пространственном строении молекул и его влиянии на ход химических реакций, что составляет предмет стереохимии. В стереохимии используются определенные способы изображения молекул, а также стереохимическая коменклатура. Цель настоящего пособия - познакомить читателя с основными понятиями, которыми оперирует стереохимия. Элементарные сведения по стереохимии изложены в разделах I-IX. В разделе X помещен дополнительный материал, знание которого также поможет успешному изучению курса органической химии.

I. Элементы симметрии.

Для описания пространственного строения молекул важно знание элементов симметрии. Термин "симметрия" интуитивно понятен. Обычно это слово ассоциируется с огрненным камнем, архитектурным сооружением и т.п. Симметричный объект содержит один или ннесколько элементов симметрии, для которых можно дать строгое математическое определение. Ниже приведены простейшие сведения об элементах симметрии.

Центр симметрии (центр инверсии),i

Центром симметрии объекта называется точка i , удовлетворяющая следующим условиям. Для любой точки А, принадлежащей объекту, всегда найдется точка А", также принадлежащая данному объекту такая, что:
а)точки А, i , А" лежат на одной прямой;
б)точки А и А" равноудалены от точки i .

Примеры централъно-симметричных объектов:

Плоскость симметрии

Плоскостью симметрии называется плоскость удовлетворяющая следющим условиям. Для любой точки А, принадлежащей объекту, всегда найдется точка А, также принадлежащая этому объекту такая, что:
а)прямая, проведенная через точки А и А", перпендикулярна плоскости ;
б)точки А и А" равноудалены от плоскости ,

равнобедренный треугольник прямоугольник

(плоскости симметрии перпендикулярны плоскости чертежа и переслкают ее по пунктирным линиям)

Простая ось симметрии n-го порядка C n

Осью симметрии n-ного порядка называется ось, проходящая через данной объект, при повороте вокруг которой на угол 360°/n объект совмещается сам с собой.

Ось Симметрии С 1 (поворот на 360°) называется тривиальным элементом симметрии. Существует также ось симметрии бесконечного порядка С. Поворот вокруг этой оси на любой угол приводит к coвмещению объекта с самим собой (ось, проходящая через центр круга и перпендикулярная его плоскости; любая ось, проходящая через центр шара).

Зеркально-поворотная ось симметрии n - ого порядка S n .

Это сложный элемент симметрии, включающий две операции: поворот вокруг оси на угол 360°/n и отражение в плоскости, перпендикулярной данной оси. При выполнении операций, соотвктствующих оси Sn, объект совмещается сам с собой.

Примером объекта, в котором имеется зеркально-поворотная ось, может служить деревянный квадрат, по углам которого вбиты четыре гвоздя: два сверху и два снизу. Ось S 4 перпендикулярна плоскости квадрата и проходит через его центр. Одного поворота вокруг оси S 4 на 90° недостаточно, чтобы данный объект совпал сам с собой. Для этого необходико последующее отражение в плоскости, перпендикулярной оси S 4 и рассекающей квадрат пополам (нижняя часть квадрата при отражении переходит вверх, верхняя - вниз);

Помимо оси S 4 в данном объекте присутствует также простая поворотная ось C 2 (поворот на 180°), совпадающая с осью S 4 .
Следует земетить, что плоскость симметрии эквивалентна заркально-поворотной оси первого порядка (поворот на 360° и отражение в плоскости); ,

Аналогично, центр симметрии эквивалентен оси симметрии S 2 (поворот на 180 0 и отражение в плоскости, перпендикулярной оси):
"Гаким образом, элементы симметрии составляют группу зеркально-поворотных осей.

П. Способы изображения пространственного строения молекул

Обычный способ изображения молекул в органической химии - это структурные формулы.Они передают порядок связи,атомов:

В случае молекул, имеющих плоское или линейное строение, с помощью таких формул можно адекватно описать также геометрию молекул, например:

Если же в состав молекулы входят: sp 3 -гибридизованные атомы углерода, имеющие тетраэдрическое окружение, структурная формула не может передать реальную геометрию молекул, то есть расположение атомов в пространстве. Этой цели лучше всего отвечают пространственные модели.

Полусферические модели Стюарта - Бриглеба:

Шаро - стержневые модели:

Однако, часто возникает необходимость изобразить пространственное строение молекулы на плоскости. Понятно, что пользоваться рисунками моделей неудобно, да и не всем это под силу. В таких случаях прибегают к помощи различных проекционных формул, которые представляют собой, по существу, проекции шаро-стержневых моделей в том или ином ракурсе.

Дня этана и его производных можно использовать перспективные формулы . Это рисункишаро-стержневых моделей, в которых шары, символизирующие атомы, заменены на символы химических элементов. В перспективных формулах связь С-С как бы удаляется от наблюдателя:

Однако, этот способ не подходит для более сложных молекул, например, бутана. В таких сяучаях наглядность теряется:

Перспективные формулы используют чаше всего для изображения циклических молекул (см. ниже, раздел X). Обычно для изображения пространственного строения молекул на плоскости используют клиновидную проекцию, проекционные формулы Ньюмена и Фишера. Наиболее наглядной является клиновидная проекция.

1. Клиновидная проекция.

С принципом построения этой проекции познакомимся на примере молекулы метана.

Мысленно расположим молекулу так, чтобы связи СН 1 и СН 2 оказались в плоскости чертежа (две пересекающиеся прямые задают плоскость). Тогда атом Н 3 будет возвышаться над плоскостью чертежа, закрывая собой атом Н 4 , расположеный под плоскостью. Изобразим связь С-Н 3 с помощью клина, широким концом направленного в сторону атома Н 3 .

По существу, мы получим проекцию молекулы СН 4 на плоскость чертежа, которая в данном случае является плоскостью симметрии молекулы. Для того, чтобы одновременно были видны атомы Н 3 и Н 4 , слегка исказим проекцию. Оставив неизменными связи углерода с Н 1 и Н 2 , немного сместим атом Н 3 вниз, а атом Н 4 - вверх. Связь СН 4 , расположенную под плоскостью чертежа, изобразим пунктиром (I) или штриховым клином, сужающимся в сторону удаленного атона (I "):

Рисунки (I) и (I ") являются клиновидными проекциями молекулы метана. При пользовании этими проекциями необходимо помнить, что связи, изображенные отрезком прямой, находятся в плоскости чертежа. Сплошные клинья символизируют связи, направленные к наблюдателю, а штриховые линии - связи, "уходящие" за плоскость чертежа.

Клиновидную проекцию можно поворачивать на любой угол относительно любой оси, например:

Проекция (I"") соответствует такому расположению молекулы метана, при котором ни один из атомов водорода не лежит в плоскости чертежа.
Клиновидную проекцию метана можно использовать для построения проекций других углеводородов, например:

Обратите внимание на то, что в проекциях (2) и (3) связи С-С находятся в плоскости чертежа. В этой же плоскости расположены только две связи С-Н. Иногда клиновидную проекцию этана изображают для такого расположения молекулы относительно плоскости чертежа, при котором ни одна из связей С-Н не находится в этой плоскости (2"):

Клиновидные проекции неразветвленных углеводородов обычно изображают в виде зигзагообразной цепи, все связи С-С и две концевые связи С-Н которой расположены в плоскости чертежа. При этом окружение каждой связи С-С должно быть таким же, как я в проекции молекулы этана (2). Сами же атомы углерода можно не изображать. Они подразумеваются в углах зигзага:

Разумеется, клиновидную проекцию можно использовать для изображения не только неразветвленнах углеводородов, но г других органических соединений, например:

В настоящее время широкое распространение получил сокращенный вариант проекций молекул в виде зигзагов, в углах и на концах которых подразумеваются атомы углерода. Связи С-Н при этом не изображают:

Связи заместителей с атомами углерода цепи помещают на продолжении биссектрисы соответствующего угла зигзага:

«Симметрия вокруг нас» - Все виды осевой симметрии. Вращения. Греческое слово симметрия означает «пропорциональность», «гармония». Произвольная. Центральная относительно точки. Симметрия в пространстве. Вращения (поворотная). В геометрии есть фигуры, которые имеют. Симметрия. Осевая. Один вид симметрии. Вокруг нас. Центральная.

«В мире симметрии» - Орнаменты, фризы имеют в своей основе периодически повторяющийся узор. Симметричны формы жука, червяка, гриба, листа, цветка и др. Большинство зданий зеркально симметричны. Во всем ли в жизни должна быть симметрия? Зачем надо знать о симметрии, изучая технические науки? Что такое симметрия? Симметрия в природе и технике.

«Симметрия в искусстве» - Центрально- осевая симметрия в архитектуре. II.1. Пропорция в архитектуре. Палаццо Спада (Рим). По характеру своих творческих возможностей периодичность - универсальное явление. III. Ле-Корбюэье. Ритм является одним из основных элементов выразительности мелодии. Р. Декарт. Ж. А. Фабр. Геометрические методы изображения пространственных фигур:

«Точка симметрии» - Фигуры, не имеющие осей симметрии. Точка О называется центром симметрии. Две точки А и А1 называются симметричными относительно О, если О середина отрезка АА1. Равнобочная трапеция имеет только осевую симметрию. Симметрия в природе. Прямоугольник и ромб, не являющиеся квадратами, имеют две оси симметрии.

«Математическая симметрия» - Однако у сложных молекул, как правило, отсутствует симметрия. Палиндромы. Осевая. Центральная симметрия. Осевая симметрия. Типы симметрии. Симметрия в биологии. Вращательная симметрия. Симметрия в искусствах. ИМЕЕТ МНОГО ОБЩЕГО С ПОСТУПАТЕЛЬНОЙ СИММЕТРИЕЙ В МАТЕМАТИКЕ. Спиральная симметрия. Поступательная.

«Виды симметрии» - Центральная симметрия является движением. Зеркальный двойник оказывается "вывернутым" вдоль направления перпендикулярного к плоскости зеркала. Осевая симметрия также является движением. Теорема. Параллельный перенос. Центральная симметрия. Виды движения. Понятие движения. Параллельный перенос – один из видов движения.

Всего в теме 11 презентаций

«Симметрия » в переводе с греческого означает «соразмерность» (повторяемость). Симметричные тела и предметы состоят из равнозначных, правильно повторяющихся в пространстве частей. Особенно разнообразна симметрия кристаллов. Различные кристаллы отличаются большей или меньшей симметричностью. Она является их важнейшим и специфическим свойством, отражающим закономерность внутреннего строения.

По более точному определению симметрия – это закономерная повторяемость элементов (или частей) фигуры или какого-либо тела, при которой фигура совмещается сама с собой при некоторых преобразованиях (вращение вокруг оси, отражение в плоскости). Подавляющее большинство кристаллов обладает симметрией.

Понятие симметрии включает в себя составные части – элементы симметрии. Сюда относятся плоскость симметрии , ось симметрии , центр симметрии , или центр инверсии .

Плоскость симметрии делит кристалл на две зеркально равные части. Обозначается она буквой Р. Части, на которые плоскость симметрии рассекает многогранник, относятся одна к другой, как предмет к своему изображению в зеркале разные кристаллы имеют различное количество плоскостей симметрии, которое ставится перед буквой Р. Наибольшее количество таких плоскостей у природных кристаллов – девять 9Р. В кристалле серы насчитывается 3Р, а у гипса только одна. Значит, в одном кристалле может быть несколько плоскостей симметрии. В некоторых кристаллах плоскость симметрии отсутствует.

Относительно элементов ограничения плоскость симметрии может занимать следующее положение:

  1. проходит через ребра;
  2. лежать перпендикулярно к ребрам в их серединах;
  3. проходить через грань перпендикулярно к ней;
  4. пересекать гранные углы в их вершинах.

В кристаллах возможны следующие количества плоскостей симметрии: 9Р, 7Р, 6Р, 5Р, 4Р, 3Р, 2Р, Р, отсутствие плоскости симметрии.

Ось симметрии

Ось симметрии – воображаемая ось, при повороте вокруг которой на некоторый угол фигура совмещается сама с собой в пространстве. Она обозначается буквой L. У кристаллов при вращении вокруг оси симметрии на полный оборот одинаковые элементы ограничения (грани, ребра, углы) могут повторяться только 2, 3, 4, 6 раз. Соответственно этому оси будут называться осями симметрии второго, третьего, четвертого и шестого порядка и обозначаться: L2, L3, L4 и L6.Порядок оси определяется числом совмещений при повороте на 360⁰С.

Ось симметрии первого порядка не принимается во внимание, так как ею обладают вообще не фигуры, в том числе и несимметричные. Количество осей одного и того же порядка пишут перед буквой L: 6L6, 3L4 и т.п.

Центр симметрии

Центр симметрии – это точка внутри кристалла, в которой пересекаются и делятся пополам линии, соединяющие одинаковые элементы ограничения кристалла (грани, ребра, углы). Обозначается она буквой С. Практически присутствие центра симметрии будет сказываться в том, что каждое ребро многогранника имеет параллельное себе ребро, каждая грань – такую же параллельную себе зеркально-обратную грань. Если же в многограннике присутствуют грани, не имеющие себе параллельных, то такой многогранник не обладает центром симметрии.

Достаточно поставить многогранник гранью на стол, чтобы заметить, имеется ли сверху такая же параллельная ей зеркально-обратная грань. Конечно, на параллельность нужно проверить все типы граней.

Существует ряд простых закономерностей, по которым сочетаются друг с другом элементы симметрии. Значение этих правил облегчает их нахождение.

  1. Линия пересечения двух или нескольких плоскостей является осью симметрии. Порядок такой оси равен числу пересекающихся в ней плоскостей.
  2. L6 может присутствовать в кристалле только в единственном числе.
  3. С L6 не могут комбинироваться ни L4, ни L3, но может сочетаться L2 причем L6 и L2 должны быть перпендикулярны; в таком случае присутствует 6L2.
  4. L4 может встречаться в единственном числе или трех взаимно перпендикулярных осей.
  5. L3 может встречаться в единственном числе или с 4L3.

Степенью симметрии называется совокупность всех элементов симметрии, которыми обладает данный кристалл.

Кристалл, имеющий форму куба, обладает высокой степенью симметрии. В нем присутствуют три оси симметрии четвертого порядка (3L4), проходящие через середины граней куба, четыре оси симметрии третьего порядка (4L3), проходящие через вершины трехгранных углов, и шесть осей второго порядка (6L2), проходящих через середины ребер. В точке пересечения осей симметрии располагается центр симметрии куба (С). Кроме того, в кубе можно провести девять плоскостей симметрии (9Р). Элементы симметрии кристалла можно изобразить кристаллографической формулой.

Для куба формула имеет вид: 9P, 3L4, 4L3, 6L2, C.

Русский ученый А.В. Гадолин в 1869 г. показал, что у кристаллов возможны 32 различных сочетания элементов симметрии, составляющих классы (виды) симметрии. Таким образом, класс объединяет группу кристаллов с одинаковой степенью симметрии.