Единицы живого: Цитоскелет. Цитоскелет. Функции цитоскелета. Строение цитоскелета Составные компоненты цитоскелета способны к изменениям

Эукариотические клетки способны изменять свою форму, перемещаться, передвигать органеллы по цитоплазме и разделять хромосомы во время митоза. Эта способность обеспечивается трехмерной сетью белковых нитей (филаментов), составляющих главную архитектуру клетки ­– цитоскелет (иногда обозначаемый как цитоматрикс). Белковые волокна пронизывают цитоплазму эукариотических клеток и во множестве точек связаны с белками плазматической мембраны и органелл. Все эти волокна представляют собой структуры, состоящие из субъединиц – особых глобулярных белков. (Белки цитоскелета, как и другие белки клетки, закодированы в генах и синтезируются на рибосомах.)

Субъединицы цитоскелета соединяются между собой слабыми связями (водородными, ионными и др.) и это свойство позволяет клетке формировать легко изменяющиеся динамичные пространственные структуры цитоскелета. Отмечено, что при различных воздействиях клетка в первую очередь перестраивает цитоскелет, демонтируя основные компоненты своей архитектуры, а затем формирует их заново, в соответствии с характером полученного сигнала; при этом детальное строение цитоскелета постоянно меняется при сохранении общего плана его организации. Такую форму работы цитоскелетной системы называют принципом динамической нестабильности.

В зависимости от диаметра филаменты разделяются на три группы: микрофиламенты (5­–7 нм), промежуточные волокна (около 10 нм) и микротрубочки (около 25 нм). Каждый тип цитоскелетных структур образует в клетке собственную систему со своими основными и минорными белками. Эти системы не являются абсолютно независимыми, а взаимодействуют друг с другом и с другими компонентами клетки – плазматической мембраной, ядром и другими органоидами клетки. Согласно существующим представлениям, цитоскелет не только способствует поддержанию формы клетки и осуществляет все типы клеточных движений, но и объединяет разные части клетки и обеспечивает передачу сигналов внутри клетки за счет образования пространственных белковых комплексов между рецепторами и ферментами.

Микрофиламенты встречаются практически во всех типах клеток и состоят из белка актина – наиболее распространенного в эукариотических клетках. (Актин составляет около 5% общего белка клетки; в скелетных мышцах – приблизительно 20% клеточной массы.) Актин может существовать в виде мономера (G-актин – «глобулярный актин», состоящий из 375 аминокислотных остатков) или волокна (F-актин – «фибриллярный актин»). Каждый F-актиновый филамент представляет спиралевидную структуру длиной несколько микрометров. Волокна F-актина имеет два разноименно заряженных конца, которые полимеризуются с различной скоростью. Быстро растущий конец называется плюс-концом, а медленно растущий – минус-концом. Плюс-конец актинового филамента растет в 10 раз быстрее, чем минус-конец.



Микрофиламенты участвуют в динамических процессах, таких, как мышечное сокращение, движение немышечных клеток, фагоцитоз, образование выростов цитоплазмы у подвижных клеток и акросом в процессе слияния сперматозоида с яйцеклеткой. Все эти процессы осуществляются с помощью актин-связывающих белков.

В цитоплазме клеток имеются более 50 различных типов актин-связывающих белков, которые специфически взаимодействуют с G-актином и F-актином. Эти белки выполняют различные функции: регулируют объём G- актинового пула (профилин), стабилизируют концы нитей F-актина (фрагин), сшивают филаменты с другими компонентами цитоскелета. Некоторые актин-связывающие белки, например, гельформирующие (от слова ­– желе) – скрепляют волокна актина крест-накрест и, тем самым, переводят состояние участка цитоплазмы из состояния золь (от лат. solutio ­­– раствор) в гель. Ещё один актин-связывающий белок – спектрин, называемый также фодрином, соединяет волокна актина в пучки и прикрепляет их к цитоплазматической мембране и к сетке, построенной из промежуточных волокон. Белок валлин сцепляет актиновые филаменты в параллельно упорядоченные жесткие структуры и оказывает влияние на скорость полимеризации G-актина.

Почти все типы движений в клетке происходят с участием актин-связывающего белка миозина. У всех молекул миозина имеется головка, шейка и хвост. Головка миозина способна присоединяться к мономеру актина и, при наличии АТФ, двигаться от плюс- к минус-концу микрофиламента. В скелетных мышцах молекулы актина и миозина расположены на фиксированных расстояниях друг от друга, а перемещение головок миозина по актиновым нитям ­ приводит к сокращению мышц. В немышечных клетках при взаимодейстии с белком миозином актиновые филаменты могут формировать сократительные пучки, благодаря которым образуются инвагинации (впячивания) клеточной поверхности. Такие инвагинации образуются, например, при делении клеток. В общем, характер движений в клетке зависит от строения белка миозина, структура которого имеет более 80 вариантов. Комбинируя актиновые микрофиламенты с различными вариантами миозина и другими актин-связывающими белками, клетка формирует структуры, различающиеся по архитектуре, подвижности и времени существования.



У большинства клеток микрофиламенты образуют под плазматической мембраной трехмерную структуру, так называемую актиновую кору (актиновый кортекс). Особенность этой структуры – быстрое обновление микрофиламентов; например, в кортексе лейкоцита филаменты существуют не более 5 секунд. Основной тип перестроек кортекса у подвижных клеток связан с образованием

псевдоподий – выростов цитоплазмы. Псевдоподии могут иметь форму плоской пластинки (ламеллоподия), узкого цилиндра (филоподия) или шаровидного пузыря. Форма псевдоподий зависит от типа актин-связывающих белков, взаимодействующих с микрофиламентами и плазматической мембраной.

Актиновые микрофиламенты участвуют также в создании сложных пространственных и относительно стабильных цитоскелетных структур. Например, основу микроворсинок эпителиальных клеток кишечника и почек составляют длинные пучки актиновых филаментов. На верхней поверхности волосковых клеток улитки внутреннего уха, отвечающих за восприятие звуков, находятся специализированные отростки (волоски) – стереоцилии. Стереоцилии располагаются правильными рядами подобно трубам клавишно-музыкального инструмента – оргáна. Внутренняя полость волоска-стереоцилии заполнена актиновыми филаментами и молекулами других белков. Мутации некоторых генов, кодирующих эти белки, приводит к дегенерации волосковых клеток и проявляется в виде одной из форм наследственной глухоты (синдром Ашера).

Микрофиламенты принимают активное участие в движении клетки. При этом актиновые филаменты постоянно полимеризуется на конце двигательного края клетки и деполимеризуется с внутренней стороны. Процессы полимеризации и деполимеризации F-актина могут быть нарушены ядами (токсинами) грибов. Например, фаллоидин (яд бледной поганки) связывается с минус-концом актина и ингибирует деполимеризацию, в то время как цитохалазин (токсин из плесневых грибов, обладающий свойством цитостатика) присоединяется к плюс-концу, блокируя полимеризацию актина и движение клетки. Длительное воздействие веществ, нарушающих полимеризацию или деполимеризацию актиновых филаментов, приводит к смерти этих клеток.

Полимеризация актина – это точно регулируемый процесс, контролируемый с помощью поверхностных рецепторов клетки, ферментов (протеинкиназ) и ионов кальция. Нарушение этого процесса сопровождается клиническими проявлениями. Например, в трансформированных клетках отмечается уменьшение экспрессии белков, регулирующих сборку актина. Значительные аномалии актиновых филаментов наблюдаются в клетках некоторых злокачественных опухолей. В клетках саркомы (опухоли соединительной ткани) обнаружено наличие тонких и коротких филаментов актина. Эти клетки, в отличие от нормальных клеток, очень подвижны и обладают большой способностью к метастазированию.

Промежуточные филаменты состоят из белков специфических для определенных клеточных типов (напр. кератины в эпителиальных клетках, виментин в клетках соединительной ткани, десмин в клетках мышечных тканей и др). Промежуточные филаменты придают прочность клетке, так как они представляют собой крепкие, волокнистые, устойчивые к растяжению полипептиды и распределяются по всей цитоплазме клетки, образуя прочную сеть. Кроме того, промежуточные волокна присутствуют в ядре, образуя сеть филаментов (ламину) на внутренней поверхности ядерной мембраны, тесно связанную с ядерными порами.

Структурными элементами промежуточных волокон являются белки, принадлежащие к пяти родственным семействам и проявляющие высокую степень клеточной специфичности. Типичными представителями этих белков являются цитокератины, десмин, виментин, кислый фибриллярный глиапротеин и нейрофиламент. Все эти белки имеют в центральной части базовую стержневую структуру, которая носит название α-спирали. Две пептидные цепи (димер) образуют суперспираль. Такие димеры соединяются антипараллельно, образуя тетрамер. Агрегация тетрамеров по принципу «голова к голове» даёт протофиламент. Восемь протофиламентов сплетаются вместе и образуют промежуточное волокно диаметром 10 нм. Эластичность промежуточных филаментов обеспечивается тем, что димеры каждого тетрамера расположены в шахматном порядке относительно друг друга.

Волосы и ногти человека, шерсть, перья, иглы, когти, и копыта животных состоят главным образом из кератина (цитокератина). В одном волокне шерсти переплетены миллионы фибрилл. Отдельные цепи кератина скреплены многочисленными дисульфидными связями, что придает им дополнительную твердость. Выделено более 30 различных кератинов, комбинирующихся по два типа в эпителиальных клетках человека. Кроме того описано восемь изоформ тяжелых кератинов, специфичных для волос и ногтей. В нервных клетках существуют нейрофиламенты, придающие необходимую механическую опору длинным аксонам. Филаменты десмина расположены в Z-дисках саркомеров скелетных мышц. В различных типах клеток промежуточные филаменты играют важную роль в формировании клеточных контактов, называемых десмосомами, которые соединяют соседние клетки. Полудесмосомы прикрепляют эпителиальные клетки к базальной мембране, на которой они расположены.

Микротрубочки

Присутствующие во всех эукариотических клетках микротрубочки представляют собой длинные нитевидные структуры, протянутые по всей цитоплазме и формирующие сеть, которая поддерживает структурную организацию и локализацию некоторых органелл.

Микротрубочки образуются при полимеризации белка тубулина (лат. tubula – трубочка), который является гетеродимером, образованным субъединицами α- и β- тубулина. В процессе полимеризации α -тубулин одного димера контактирует сβ -тубулином следующего димера с образованием протофиламентов. Тринадцать тубулиновых продольных рядов протофиламентов (нитей), идущих по спирали, образуют микротрубочку диаметром 24 нм и длиной несколько микрометров.

Рис. Схема строения микротрубочки, показывающая каким образом тубулиновые полипептиды, связываясь друг с другом, образуют цилиндрическую стенку. А. Поперечный срез Б – Короткий отрезок микротрубочки.

Микротрубочки способны образовывать синглет , дублет и триплет .
A микротрубочка дублета или триплета состоит из 13 протофиламентов.
Трубочки B и C состоят из меньшего числа протофиламентов, обычно 10.

Полимеризация микротрубочек происходит в направлении от головы к хвосту таким образом, что микротрубочка имеет определенную полярность: её концы обозначаются соответственно как плюс- и минус-концы. Микротрубочки в клетке нестабильны. Они могут быстро собираться и разбираться. В клетке минус-концы связаны с центром организации микротрубочек (ЦОМТ) – структурой, расположенной около ядра, которая содержит в животных клетках пару маленьких телец – центриолей, образованных из слившихся микротрубочек. Как правило, микротрубочки ассоциированы с другими белками (миозин, динеин, кинезин), которые связывают микротрубочки с другими элементами цитоскелета и органеллами. Кинезин обеспечивает транспорт органелл и везикул (пузырьков) из одной части клетки в другую от плюс-конца микротрубочки к минус-концу, а динеин от минус-конца к плюс-концу.

Известны химические соединения, способные блокировать сборку микротрубочек (колхицин, винбластин) и стимулирующие образование стабильных микротрубочек (таксол). Следует отметить, что в развивающемся организме могут сложиться условия (недостаток кислорода, пониженная или повышенная температура и т.д.), когда нарушается сборка микротрубочек в клетках, это может служить причиной отклонения от нормального развития.

Микротрубочки, как и актиновые филаменты, принимают участие в поддержании формы клетки. Наряду со статической функцией, микротрубочки участвуют во многих процессах, протекающих во всех эукариотических клетках: мейозе, митозе, клеточном движении и секреции. Они служат направляющими «рельсами» для транспорта органелл. Вместе с ассоциированными белками микротрубочки способны осуществлять механическую работу, например, транспорт митохондрий, перемещение синаптических пузырьков, движение ресничек (волосоподобных выростов клеток в эпителии легких, кишечника и яйцеводов) и биение жгутика сперматозоида. Пузырьки, образуемые аппаратом Гольджи, направляются в различные места клетки по микротрубочкам строго по назначению. Кроме того микротрубочки в форме митотического веретена – важнейшая часть аппарата, обеспечивающего правильное распределение хромосом между дочерними клетками при делении эукариотических клеток.

Функции микротрубочек: 1) обеспечение расхождения хромосом при делении клеток, 2) поддержание формы клетки, 3) участие в транспорте макромолекул и органелл, 4) обеспечение подвижности жгутиков, ресничек.

Функции цитоскелета

Цитоскелет выполняет три главные функции.

1. Служит клетке механическим каркасом, который придаёт клетке типичную форму и обеспечивает связь между мембранной и органеллами. Каркас представляет собой динамичную структуру, которая постоянно обновляется по мере изменения внешних условий и состояния клетки.

2. Действует как «мотор» для клеточного движения. Двигательные (сократительные) белки содержатся не только в мышечных клетках, но и в других тканях. Компоненты цитоскелета определяют направление и координируют движение, деление, изменение формы клеток в процессе роста, перемещение органелл, движение цитоплазмы.

3. Служит в качестве «рельсов» для транспорта органелл и других крупных комплексов внутри клетки.

Микрофиламенты и промежуточные волокна.

Микрофиламенты построенные из F-актина пронизывают микроворсинки, образуя узлы. Эти микроволокна удерживаются вместе с помощью актинсвязывающих белков, наиболее важными из которых являются фимбрин и виллин. Кальмодулин и миозиноподобная АТФ – аза соединяют крайние микроволокна с плазматической мембраной. .

Клетка может менять набор синтезируемых белков цитоскелета в зависимости от условий, но процесс этот медленный. Конструкция цитоскелета способна быстро меняться даже без синтеза новых молекул, за счет полимеризации и деполимеризации нитей. В клетке все время идет обмен между нитями и раствором белков-мономеров в цитоплазме. Во многих клетках примерно половина молекул актина и тубулина находится в виде мономеров в цитоплазме и половина входит в состав нитей микрофиламентов. Клетка регулирует стабильность нитей цитоскелета, присоединяя к ним специальные белки, изменяющие скорость полимеризации. Общий принцип функционирования цитоскелета – динамическая нестабильность. Например, форму эритроцита в виде двояковогнутого диска поддерживает примембранный цитоскелет из волокон, образованных белком спектрином. Спектрин связан с белком анкерином (anchor – якорь), который соединяется с белком цитоплазматической мембраны, ответственным за транспорт анионов (Cl - , HCO - 3). Дефекты белков спектрина и анкирина вызывают необычную форму эритроцитов. Такие эритроциты очень быстро разрушаются в селезенке. Болезни, вызываемые такими нарушениями, называют наследственным сфероцитозом или наследственным эллиптоцитозом.

Рис. Цитоскелет эукариот. Актиновые микрофиламенты окрашены в красный, микротрубочки - в зеленый, ядра клеток - в голубой цвет.

Цитоскелет образуется тремя компонентами: микротрубочками, микрофиламентами, и промежуточными филаментами.

Микротрубочки пронизывают всю цитоплазму клетки. Каждая из них представляет собой полый цилиндр диаметром 20 – 30 нм. Стенка микротрубочек образована 13-ю нитями (протофиламентами), скрученными по спирали одна над другой. Каждая нить, в свою очередь, слагается из димеров белка тубулина. Синтез тубулинов происходит на мембранах гранулярной ЭПС, а сборка в спираль – в клеточном центре.

Соответственно, многие микротрубочки имеют радиальное направление по отношению к центриолям. Отсюда они распространяются по всей цитоплазме.

Большинство микротрубочек имеет закрепленный («-») и свободный («+») концы.Свободный конец обеспечивает удлинение и уко­рочение трубочек.В образовании микротрубочек путем самосборки уча­ствуют мелкие сферические тельца – сателлиты (центры организации микротрубочек), содержащиеся в клеточном центре и в базальных тель­цах ресничек, а также центромеры хромосом. Если полностью разру­шить микротрубочки цитоплазмы, то они отрастают от клеточного центра со скоростью 1 мкм/мин. Разрушение микротрубочек приводит к изменению формы клетки (животная клетка обретает обычно сфери­ческую форму). При этом нарушаются структура клетки и распределе­ние органелл.

В клетке микротрубочки могут располагаться:

Ø в виде отдельных элементов;

Ø в пучках, в которых они связаны друг с другом попереч­ными мостиками (отростки нейронов);

Ø в составе пар или дублетов (осевая нить ресничек и жгутиков);

Ø в составе триплетов (центриоли и базальные тельца).

В двух последних вариантах микротрубочки час­тично сливаются друг с другом.

Функции микротрубочек:

а) поддержание формы и полярности клетки;

б) обеспечение упорядоченности располо­жения компонентов клетки;

в) участие в образовании других, более слож­ных органелл (центриоли, реснички и т.д.);

г) участие во внутрикле­точном транспорте;

д) обеспечение движения хромосом при митотическом делении клетки;

е) обеспечение движения ресничек.

Микрофиламенты. Микрофиламентами названы тонкие белковые нити диаметром 5 – 7 нм, встречающиеся практически во всех типах клеток. Они могут располагаться в ци­топлазме пучками, сетевидными слоями или поодиночке.

Основным бел­ком микрофиламентов является актин,на долю которого приходится до 5% от общего количества белков. Кроме него в состав микрофиламентов могут входить миозин, тропомиозин, а также несколько десятков актинсвязывающих белков. Молекула акти­на имеет обычно вид двух спирально скру­ченных нитей. Непосредственно под плазмолеммой располагается кортикальная сеть,в которой микрофиламенты переплетены между собой и соединены друг с другом с помощью особых белков, например филамина. Кортикальная сеть обусловливает плавность изменения формы клеток, постепенно перестраиваясь с участием актин-расщепляющих ферментов.Тем самым она препятствует резкой и внезапной деформации клетки при механи­ческих воздействиях. Отдельные микрофиламенты кортикальной сети прикрепляются к интегральным и трансмембранным белкам плазмолеммы, а также к так называемым адгезионным соединениям (фокальным контактам), которые связывают клетку с компонентами межклеточного вещества или с другими клетками. Микрофиламенты более устойчивы к физическим и химическим воздействиям, чем микротрубочки.



Основные функции микрофиламентов:

1) обеспече­ние определенной жесткости и упругости клетки за счет кортикальной сети микрофиламентов;

2) изменение консистенции цитозоля, в том числе при переходе золя в гель;

3) участие в эндоцитозе и экзоцитозе;

4) обеспечение подвижности немышечных клеток (например, нейтрофилов и макрофагов), в основе которой лежит изменение формы кле­точной поверхности вследствие регулируемой полимеризации актина;

5) участие в сокращении мышечных клеток и волокон;

6) стабилизация локальных выпячиваний плазматической мембраны, обеспечиваемой пучками поперечно сшитых актиновых филаментов (микроворсинки, стереоцилии);

7) участие в формировании межклеточных соединений (опоясывающие десмосомы и др.).

Промежуточные филаменты представляют собой сплетенные белковыми нитями канаты толщиной около 10 нм. Такой показатель обусловил отведение им промежуточного места между микротрубоч­ками и микрофиламентами. Промежуточные филаменты образуют трехмерные сети в клетках различных тканей животного организма. Они окружают ядро и могут находиться в различных участ­ках цитоплазмы, образуют межклеточные соединения (десмосомы и полудесмосомы), располагаются внутри отростков нервных клеток.

Основные функции промежуточных филаментов:

1) структурная;

2) опорная;

3) функция распределения органелл в определенных уча­стках клетки.

ЦИТОСКЕЛЕТ

Цитоскелет представляет собой сложную динамичную систему микротрубочек, микрофиламентов, промежуточных филаментов и микротрабекул. Указанные компоненты цитоскелета являются немем-" бранными органеллами; каждый из них образует в клетке трехмерную сеть с характерным распределением, которая взаимодействует с сетями из других компонентов. Они входят также в состав ряда других более сложно организованных органелл (ресничек, жгутиков, микроворсинок, клеточного центра) и клеточных соединений (десмосом, полудесмосом, опоясывающих десмосом).

Основные функции цитоскелета:

1 поддержание и изменение формы клетки;

2 распределение и перемещение компонентов клетки;

3 транспорт веществ в клетку и из нее;

4 обеспечение подвижности клетки;

5участие в межклеточных, соединениях.

Микротрубочки

Микротрубочки, - наиболее крупные компоненты цитоскелета. Они представляют с^бой полые цилиндрические образования, имеющие форму трубочек, длиной до нескольких микрометров (в жгутиках более 50 нм) диаметром около 24-25 нм, с толщиной стенки 5 нм и диамет­ром просвета 14-15 нм (рис. 3-14).

Стенка микротрубочки состоит из спиралевидно уложенных нитей - протофиламентов толщиной 5 нм (которым на поперечном разрезе со­ответствуют 13 субъединиц), образованных димерами из белковых моле­кул а~ и /3-тубулина.

Функции микротрубочек:

(1) поддержание формы и полярности клетки, распределения ее компонентов,

(2) обеспечение внутриклеточного транспорта,

(3) обеспечение движения ресничек, хромосом в митозе (формиру­ют ахроматиновое веретено, необходимое для клеточного деления),

(4) образование основы других органелл (центриолей, ресничек).

Расположение микротрубочек. Микротрубочки располагаются в цитоплазме в составе нескольких систем;

а) в виде отдельных элементов, разбросанных по всей цитоплазме и формирующих сети;

б) в пучках, где они связаны тонкими поперечными мостиками (в отростках нейронов, в составе митогяческого веретена, манжетки сперматиды, периферического "кольца" тромбоцитов);

в) частично сливаясь друг с другом с формированием пар, или ду­блетов (в аксонеме ресничек и жгутиков), и триплетов (в базальном тельце и центриоли).

Образование и разрушение микротрубочек. Микротрубочки пред­ставляют собой лабильную систему, в которой имеется равновесие меж­ду их постоянной сборкой и диссоциацией. У большинства микро­трубочек один конец (обозначаемый как "-") закреплен, а другой ("+") свободен и участвует в их удлинении или деполимеризации. Структура­ми, обеспечивающими образование микротрубочек, служат особые мел- I кие сферические тельца - сателлиты (от англ, satellite - спутник), отче- { го последние называют центрами организации микротрубочек (ЦОМТ). . Сателлиты содержатся в базалъных тельцах ресничек и клеточном цен- I тре (см. рис. 3-15 и 3-16). После полного разрушения микротрубочек ] в цитоплазме они отрастают от клеточного центра со скоростью около 1 мкм/мин., а их сеть вновь восстанавливается менее, чем за полтора часа. К ЦОМТ относят также и центромеры хромосом.

Связь микротрубочек с другими структурами клетки и между со­бой осуществляется посредством ряда белков, выполняющих различные функции. (1) Микротрубочки с помощью вспомогательных белков при­креплены к другим клеточным компонентам. (2) По своей длине микро­трубочки образуют многочисленные боковые выросты (которые состоят из белков, ассоциированных с микротрубочками) длиной до нескольких десятков нанометров. Благодаря тому, что такие белки последовательно и обратимо связываются с органеллами, транспортными пузырьками, секреторными гранулами и другими образованиями, микротрубочки (ко- ] торые сами не обладают сократимостью) обеспечивают перемещение указанных структур по цитоплазме. (3) Некоторые белки, ассоцииро­ванные с микротрубочками, стабилизируют их структуру, а связываясь с их свободными краями, препятствуют деполимеризации.

Угнетение самосборки микротрубочек посредством ряда веществ, являющихся ингибиторами митоза (колхицин, винбластин, винкрис-тин), вызывает избирательную гибель быстроделящихся клеток. Поэто­му некоторые из таких веществ успешно используются для химиотера-

пии опухолей. Блокаторы микротрубочек нарушают также транспортные процессы в цитоплазме, в частности, секрецию, аксонный транспорт в нейронах. Разрушение микрогрубочек приводит к изменениям формы клетки и дезорганизации ее структуры и распределения органелл.

Клеточный центр (цитоцентр)

Клеточный центр образован двумя полыми цилиндрическими структурами длиной 0.3-0.5 <мкм и диаметром 0.15-0.2 мкм - центриоля-ми, которые располагются вблизи друг друга во взаимно перпендикуляр­ных плоскостях (рис. 3-15). Каждая центриоль состоит из 9 триплетов частично слившихся микротрубочек (А, В и С), связанных поперечны­ми белковыми мостиками ("ручками"). В центральной части центриоли микротрубочки отсутствуют (по некоторым данным, здесь имеется осо­бая центральная нить), что описывается общей формулой (9*3) + 0. Каждый триплет центриоли связан со сферическими тельцами диамет­ром 75 нм - сателлитами; расходящиеся от них микротрубочки образу­ют центросферу.

В неделящейся клетке выявляется одна пара центриолей (диплосо-ма), которая обычно располагается вблизи ядра. Перед делением в S-ne-риоде интерфазы происходит дупликация центриолей пары, причем под прямым углом к каждой зрелой (материнской) центриоли формируется новая (дочерняя), незрелая процентриоль, в которой вначале имеются лишь 9 единичных микротрубочек, позднее превращающихся в трипле­ты. Пары центриолей далее расходятся к полюсам клетки, а во время митоза они служат центрами образования микротрубочек ахроматина-вого веретена деления.

Реснички и жгутики

Реснички и жгутики - органеллы специального значения, участ­вующие в процессах движения, - представляют собой выросты цитоплаз­мы, основу которых составляет каркас из микротрубочек, называемый осевой нитью, или аксонемой (от греч. axis - ось и пета - нить). Длина ресничек равна 2-10 мкм, а их количество на поверхности одной рес­нитчатой клетки может достигать нескольких сотен. В единственном типе клеток человека, имеющих жгутик - спермиях - содержится только по одному жгутику длиной 50-70 мкм.

Аксонема образована 9 периферическими парами микротрубочек и одной центрально расположенной парой; такое строение описывается формулой (9 х 2) + 2 (рис. 3-16). Внутри каждой периферической пары за счет частичного слияния микротрубочек одна из них (А) полная, а вторая (В) - неполная (2-3 димера общие с микротрубочкой А).

Центральная пара микротрубочек окружена центральной оболоч­кой, от которой к периферическим дублетам расходятся радиальные спицы. Периферические дублеты связаны друг с другом мостиками нек-сина, а от микротрубочки А к микротрубочке В соседнего дублета от­ходят "ручки" из белка динеина (см. рис. 3-16), который обладает ак­тивностью АТФазы.

Биение реснички и жгутика обусловлено скольжением соседних дублетов в аксонеме, которое опосредуется движением динеиновых ру­чек. Мутации, вызывающие изменения белков, входящих в состав рес­ничек и жгутиков, приводят к различным нарушениям функции соответ­ствующих клеток. При синдроме Картагенера (синдроме неподвижных, ресничек), обычно обусловленном отсутствием динеиновых ручек, боль­ные страдают хроническими заболеваниями дыхательной системы (свя­занными с нарушением функции очищения поверхности респираторного эпителия) и бесплодием (вследствие неподвижности спермиев).

Базальное тельце, по своему строению сходное с центриолью, ле­жит в основании каждой реснички или жгутика. На уровне апикального конца тельца микротрубочка С триплета заканчивается, а микротру­бочки А и В продолжаются в соответствующие микротрубочки аксоне-мы реснички или жгутика. При развитии ресничек или жгутика базаль-ное тельце играет роль матрицы, на которой поисходит сборка компо­нентов аксонемы.

Микрофиламенты

Микрофиламенты - тонкие белковые нити диаметром 5-7 ни, лежащие в цитоплазме поодиночке, в виде сетей или пучками. В ске­летной мышце тонкие Микрофиламенты образуют упорядоченные пучки, взаимодействуя с более толстыми миозиновыми филаментами.

Кортикальная (терминальная) сеть - зона сгущения микрофила-ментов под плазмолеммой, характерная для большинства клеток. В этой сети Микрофиламенты переплетены между собой и "сшиты" друг с другом с помощью особых белков, самым распространенным из ко­торых является филамин. Кортикальная сеть препятствует резкой и вне­запной деформации клетки при механических воздействиях и обеспе­чивает плавные изменения ее формы путем перестройки, которая облег­чается актин-растворяющими (преобразующими) ферментами.

Прикрепление микрофиламентов к плазмолемме осуществляется благодаря их связи с ее интегральными ("якорными") белками (интег-ринами) - непосредственно или через ряд промежуточных белков - та­лин, винкулин и сс-актинин (см. рис. 10-9). Помимо этого, актиновые микрофиламенты прикрепляются к трансмембранным белкам в особых участках плазмолеммы, называемых адгезионными соединениями, или фокальными контактами, которые связывают клетки друг с другом или клетки с компонентами межклеточного вещества.

Актин - основной белок микрофиламентов - встречается в моно­мерной форме (G -, или глобулярный актин), которая способна в при­сутствии цАМФ и Са 2+ полимеризоваться в длинные цепи (F -, или фибриллярный актин). Обычно молекула актина имеет вид двух спи­рально скрученных нитей (см. рис. 10-9 и 13-5).

В микрофиламентах актин взаимодействует с рядом актин-связы-вающих белков (до нескольких десятков видов), выполняющих различ­ные функции. Некоторые из них регулируют степень полимеризации актина, другие (например, филамин в кортикальной сети или фимбрин и виллин в микроворсинке) способствуют связыванию отдельных микро­филаментов в системы. В немышечных клетках на актин приходится примерно 5-10% содержания белка, лишь около половины его организо­вано в филаменты. Микрофиламенты более устойчивы к физическим и химическим воздействиям, чем микротрубочки.

Функции микрофиламентов:

(1) обеспечение сократимости мышечных клеток (при взаимодей­ствии с миозином);

(2) обеспечение функций, связанных с кортикальным слоем цито­плазмы и плазмолеммой (экзо- и эндоцитоз, образование псевдоподий и миграция клетки);

(3) перемещение внутри цитоплазмы ореанелл, транспортных пу­зырьков и других структур благодаря взаимодействию с некоторыми белками (минимиозином), связанными с поверхностью этих структур;

(4) обеспечение определенной жесткости клетки за счет наличия кортикальной сети, которая препятствует действию деформаций, но са­ма, перестраиваясь, способствует изменениям клеточной формы;

(5) формирование сократимой перетяжки при цитотомии, завер­шающей клеточное деление;

(6) образование основы ("каркаса") некоторых органелл (микро-ворсинок, стереоцилий).

(7) участие в организации структуры межклеточных соединений (опоясывающих десмосом).

Микроворсинки - пальцевидные выросты цитоплазмы клетки ди­аметром 0.1 мкм и длиной 1 мкм, основу которых образуют актиновые микрофиламенты. Микроворсинки обеспечивают многократное увеличе­ние площади поверхности клетки, на которой происходит расщепление и всасывание веществ. На.апикальной поверхности некоторых клеток, активно участвующих в указанных процессах (в эпителии тонкой киш­ки и почечных канальцев) имеется до нескольких тысяч микроворси­нок, образующих в совокупности щеточную каемку.

Каркас каждой микроворсинки образован пучком, содержащим около 40 микрофиламентов, лежащих вдоль ее длинной оси (рис. 3-17). В апикальной части микроворсинки этот пучок закреплен в аморфном веществе. Его жесткость обусловлена поперечными сшивками из бел­ков фимбрина и виллина, изнутри пучок прикреплен к плазмолемме Микроворсинки особыми белковыми мостиками (молекулами минимио- З ина). У основания микроворсинки микрофиламенты пучка вплетается в терминальную сеть, среди элементов которой имеются миозиновые филаменты. Взаимодействие актиновых и миозиновых филаментов тер­минальной сети, вероятно, обусловливает тонус и конфигурацию микро­ворсинки.

Стереоцилии - видоизмененные длинные (в некоторых клетках -ветвящиеся) микроворсинки - выявляются значительно реже, чем мик­роворсинки и, подобно последним, содержат пучок микрофиламентов.

К структурам цитоскелета относят микротрубочки, тонкие микрофиламенты, промежуточные филаменты (микрофибриллы).

Они состоят из белков и не имеют мембран. Эти органеллы выполняют не только опорно-каркасную и формообразующую, но и множество других функций.

Микротрубочки . Они встречаются в цитоплазме практически всех клеток многоклеточных организмов, кроме прокариот. Микротрубочки исследуют при электронной микроскопии. Микротрубочки располагают отдельно в виде самостоятельной структуры или формируют сложные структуры центриолей, ресничек, жгутиков, веретена деления.

Органелла представляет собой прямую, не ветвящуюся, полую структуру. В цитоплазме большинства клеток микротрубочки постоянно подвергаются сборке и разборке. В результате этого динамического равновесия поддерживается вся система распределения органелл цитоплазмы, их положение в клетке, форма клетки, перемещение в ней веществ. Если вызвать в клетке деполимеризацию микротрубочек, введя колхицин или значительно снизив температуру, то форма клети сильно изменится и нарушится распределение в ней транспортных потоков. Следовательно, микротрубочки цитоплазмы формируют эластичный, но вполне устойчивый внутриклеточный скелет - цитоскелет.

При световой микроскопии скопления микротрубочек можно выявить с помощью специфических антител к тубулину. Они формируют скопление вблизи клеточного центра, участвуя в формировании центросферы.

Микротрубочки представляют собой полые цилиндры с общим диаметром 24 нм, внутренний просвет имеет ширину 15 нм, а толщина стенки - 5 нм. Микротрубочки состоят из глобулярных белков - тубулинов (13 на поперечном срезе). Глобулы тубулинов имеют диаметр около 5 нм, молекулярную массу 60 · 10 3 и коэффициент седиментации 3…4 S. Тубулины подразделяют на альфа — и бета-тубулины. Тубулины образуют димер - белок, состоящий из двух глобул тубулинов. Димеры соединяются в виде цепочки, которая формирует спираль. Тубулины могут быть в двух формах: глобулярной (диспергированной в матриксе) и фибриллярной (в виде микротрубочек). В составе тубулинов всегда обнаруживают значительное количество гуаниндифосфата (ГДФ).

Микротрубочки формируются в центрах организации микротрубочек, или микротрубочкоорганизующих центрах: центриолях, базальных тельцах ресничек и жгутиков, зонах кинетохоров митотических хромосом.

Образование микротрубочек происходит путем самосборки. Для этого необходимы: глобулы тубулинов, ГТФ (гуанинтрифосфат), белки, стимулирующие полимеризацию, высокое содержание ионов Mg 2+ и отсутствие ионов Са 2+ . Если эти условия соблюдены, то образование новых микротрубочек происходит даже в пробирке (in vitro).

В начале полимеризации органеллы происходит нуклеация, формируется «затравка» из очень короткой цепи тубулинов в три ряда, затем к обоим концам начинают прикрепляться новые тубулины, и размер микротрубочки увеличивается.

Микротрубочки имеют положительный и отрицательный полюса. Со стороны отрицательного полюса, лежащего ближе к организатору микротрубочек, тубулины полимеризуются медленнее и легко распадаются до глобулярных частиц. Со стороны положительного полюса, направленного к периферии клетки, полимеризация идет быстрее.

Микротрубочки быстро распадаются на глобулярные частицы, взвешенные в гиалоплазме. Распад органеллы можно спровоцировать, увеличив внутри клетки содержание ионов кальция.

Микротрубочки формируют центриоли, несут опорно-каркасную функцию, контролируют транспортные потоки в цитоплазме, участвуя в циклозе, обеспечивают каркасную основу ресничек и жгутиков, формируют веретено деления в митозе и мейозе и др.

Создавая внутриклеточный скелет, микротрубочки могут быть факторами ориентированного движения клетки в целом и ее внутриклеточных компонентов, задавать своим расположением векторы для направленных потоков разных веществ и для перемещения крупных структур.

При разрушении микротрубочек фибробластов в культуре форма клеток из вытянутой становилась округлой или многоугольной (полигональной), их движения стали хаотичными, то есть эти органеллы контролируют направление движения клетки.

Разрушение микротрубочек колхицином нарушает транспорт веществ в аксонах нервных клеток, приводит к блокаде секреции и т. д. По цитоплазматическим интерфазным микротрубочкам, как по рельсам, могут передвигаться различные мелкие вакуоли, например синаптические пузырьки, содержащие нейромедиаторы, в аксоне нервной клетки или митохондрии. Эти перемещения возможны из-за связи микротрубочек со специальными белками - транслокаторами (динеинами и кинезинами), которые, в свою очередь, связываются с транспортируемыми структурами.

С тубулинами микротрубочек связан белок кинезин, обладающий АТФазной активностью и обеспечивающий транспорт органелл и других структур от центра к периферии (от отрицательного к положительному полюсу микротрубочки). Подобную функцию, но в противоположном направлении, выполняет цитоплазматический динеин.

За счет этого микротрубочки могут контролировать транспортные потоки и распределение структур в клетке.

Если оба конца микротрубочки «закрыты» (копированы), то есть связаны, например, с клеточным центром и наружной мембраной, то микротрубочки не распадаются и могут метилироваться (присоединять метальные группы), приобретая устойчивую форму. Такие метилированные, стабильные микротрубочки могут выполнять специализированные функции: служить основой ресничек, жгутиков и клеточного центра. В нейроне они образуют органеллу специального назначения - нейротубулу.

Нейротубулы выполняют разнообразные функции: опорно-каркасную, обеспечивают транспорт веществ (аксоток), контролируют выделение медиаторов, регулируют процессы регенерации в поврежденном нервном волокне и др.

Копировать концы микротрубочек могут белки микротрубочкоорганизующих центров (МОТЦ), или центров организации микротрубочек (ЦОМТ).

По бокам к микротрубочкам могут прикрепляться низкомолекулярные т-белки и высокомолекулярные MAP (microtubule associated proteins). Эти белки формируют «шипы» на микротрубочках, связывают элементы цитоскелета между собой, стабилизируют микротрубочки, могут находиться на конце микротрубочки, прикрывать его (кэпировать) и этим предотвращать их распад (деполимеризацию).

Микротрубочки являются составной частью клеточного центра, ресничек и жгутиков. Система микротрубочек развивается вместе с центриолью, в которой происходит начальная полимеризация тубулинов и рост микротрубочек цитоскелета.

Промежуточный филамент . Это нити с поперечным диаметром 8…11 нм. Их скопления формируют более толстые структуры - микрофибриллы, которые в нейронах участвуют в образовании нейрофибрилл. Они обеспечивают опорно-каркасную функцию. Промежуточные филаменты лежат в центральных областях клеток в виде трехмерной сети. На периферии филаменты нередко объединяются в пучки, прикрепляются к внутренней поверхности десмосом и полудесмосом. Промежуточные филаменты придают клеткам упругость и жесткость. Присоединяясь с помощью десмосом к подобным участкам соседних клеток, они формируют обширную сеть - каркас, который соединяет клетки в механически прочную и в то же время гибкую и эластичную систему. Это особенно важно в эпителиальных тканях, часто подвергающихся механическим воздействиям.

Промежуточные филаменты - неветвящиеся, располагающиеся пупками нити (микрофибриллы). Эти фибриллярные структуры относительно стабильны по сравнению с микротрубочками и тонкими микрофиламентами. Они состоят из фибриллярных белков-мономеров. Эти фибриллярные белки в виде α-спирали переплетаются между собой и поэтому органелла напоминает канат. Особенно хорошо развиты промежуточные филаменты в клетках, которые испытывают значительные механические нагрузки (эпителиальные, мышечные ткани).

Микрофибриллы являются тканеспецифичными, так как их образуют фибриллярные белки, различные по составу в зависимости от происхождения клеток и тканей. Десмины образуют промежуточные филаменты мышечных тканей мезодермального происхождения; виментины - клеток мезенхимального происхождения (ткани внутренней среды); цитокератины - эпителиальных клеток; белки нейрофибриллярного триплета - нейронов; глиальный фибриллярный кислый белок - астроцитов.

Особенностью промежуточных филаментов является то, что образующие их фибриллярные белки комплементарно соединяются друг с другом: кислые цитокератины с цитокератинами, имеющими основные свойства. Три мономера цитокератинов объединяются между собой в виде α-спирали. Каждая такая нить имеет толщину около 2 нм. Эти тонкие нити соединяются в более толстые образования - полые трубки с поперечным сечением 8…11 нм. В некоторых участках филаменты разволокняются, что облегчает связь нитей в органелле. Нити в таком филаменте свернуты в слабо закрученную спираль. Промежуточные филаменты могут формировать крупные комплексы (микрофибриллы).

Промежуточные филаменты в эпителии называются тонофиламентами, а микрофибриллы - тонофибриллами.

В отличие от микротрубочек промежуточные филаменты не имеют полярности и являются стабильными компонентами цитоскелета. На внутренней поверхности ядерной оболочки имеются структуры, аналогичные промежуточным филаментам. Они образованы белками ламинами и участвуют в формировании ядерной пластинки. К ним прикрепляется хроматин.

При помощи иммуноморфологических методов определяют тканевое происхождение тех или иных опухолей именно по белкам их промежуточных филаментов, что очень важно для диагностики и правильного выбора типа химиотерапевтических противоопухолевых препаратов.

Химический состав и молекулярная масса белков промежуточных филаментов довольно разнообразны. Так, выявлено, что кислых цитокератинов около 15 видов. Примерно столько же и основных цитокератинов. Молекулярная масса основных цитокератинов колеблется от 50 000 до 70 000, кислых - от 40 000 до 60 000. Примерно 8 из цитокератинов входят в состав производных кожи (волосы, когти, рога, ногти и т. д.). Их распределение зависит от типа эпителия. В многослойном эпителии цитокератины различны в разных слоях эпителия и преобладание того или иного цитокератина является косвенным признаком степени дифференцировки кератиноцитов (клеток многослойного эпителия).

Промежуточные филаменты нервной клетки - нейрофиламенты у позвоночных сформированы белками NF-Z, NF-M, NF-H, которые значительно отличаются по молекулярной массе (от 57 до 150 кДа). Эти белки и промежуточные филаменты поддерживают форму тел и отростков клеток нервной ткани, а также фиксируют на поверхности белки ионных каналов.

При значительном повреждении клетки промежуточные филаменты формируют клубок - подвергаются коллапсу. В такой клубок погружаются поврежденные органеллы и другие макромолекулярные образования. Вероятно, это облегчает их последующий гидролиз (самопереваривание).

При регенерации сети промежуточных филаментов восстанавливаются от центральных участков клетки, от клеточного центра, что позволяет предполагать его роль как центра формирования не только микротрубочек, но и промежуточных филаментов.

Тонкие микрофиламенты . Представляют собой тонкие нити с поперечным диаметром около 6 нм. Микрофиламенты находятся практически во всех клетках и являются универсальными элементами цитоскелета. Концентрируются на периферии клетки, формируя так называемую «кортикальную» периферическую область клетки, а в толще цитоплазмы лежат в виде сети, отдельных волокон или в виде пучков. В кортикальном слое цитоплазмы тонкие микрофиламенты образуют сгущения под плазмолеммой в виде плотных пучков или слоев. В апикальной зоне эпителия такие сгущения называют кутикулой.

Тонкие микрофиламенты видны как плотно упакованные пучки, направляющиеся в клеточные отростки, где служат основой для их формирования (микроворсинки и стереоцилии).

Наряду с опорой микрофиламенты - это внутриклеточный сократительный аппарат, обеспечивающий не только подвижность клеток при активном амебовидном перемещении, но и при перемещении цитоплазмы, движении вакуолей, митохондрий, делении клетки.

Кроме того, актиновые микрофиламенты выполняют и каркасную функцию, соединяясь с рядом стабилизирующих белков, они могут образовывать временные или постоянные пучки или сети.

В большинстве клеток актины (основные белки тонких микрофиламентов) составляют около 5 % общего содержания белка. Выделяют пять форм актина (изоформ). Все изоформы близки по аминокислотным последовательностям, но строение и состав концевых участков полипептидных цепочек различные. Это приводит к различию в скорости полимеризации актина, что необходимо для двигательной активности клетки и скорости формирования выпячиваний и впячиваний клеточной мембраны.

Молекулы актина в тонких микрофиламентах закручены по а-спирали, располагаясь в виде двух цепочек. Такой актин называется F-актином. Как и тубулины микротрубочек, актиновые нити легко полимеризуются и вновь распадаются на отдельные глобулы. Диспергированный в гиалоплазме актин называют G-актином.

Тонкие микрофиламенты имеют отрицательный и положительный полюса. Область положительного полюса легче полимеризуется, а отрицательный полюс легче распадается.

Образование тонкого микрофиламента, как и микротрубочки, начинается с формирования тримера (нуклеация). Это цепочка из трех актинов. Затем к этому тримеру начинают присоединяться новые актины (элонгация) и длина тонкого филамента увеличивается. Выявлены белки, контролирующие эти процессы. Так, профиллин блокирует нуклеацию. Он присоединяется к активной зоне мономера и формирует димер, который не может связаться с другими белками - актинами. Фрагмин подавляет нуклеацию и элонгацию, также связывая концевые элементы цепочки.

С помощью опорно-каркасных белков микрофиламенты могут соединяться с клеточной мембраной - это α-актинин, талин, винкулин, спектрин, фрагмин, анкирин, адцуцин. Разнообразие сцепляющих белков обусловлено разными способами прикрепления микрофиламентов: параллельно мембране, в виде пучков (по типу копирования) и др.

Микрофиламенты сцепляются между собой с помощью белков фасцина, α-актинина, фимбрина, филамина, виллина. Эти белки могут связывать тонкие микрофиламенты в виде плотных (фимбрин) или рыхлых (α-актинин) пучков, сетей (филамин). Так, белок филамин, являясь еще и белком-стабилизатором тонких микрофиламентов, формирует сшивки в местах пересечения органелл. В результате образуются сети из сцепленных нитей. Если оба конца микрофиламентов сцеплены с мембраной или с какой-либо иной структурой (копированы), они не распадаются и становятся стабильными. Последующее метилирование предотвращает распад микрофиламентов.

Стабильные тонкие микрофиламенты характерны для мышечных тканей, где они называются тонкими миофиламентами. Совместно с миозинами они формируют специализированную органеллу мышечной ткани - миофибриллу. Белок тропомиозин стабилизирует тонкий миофиламент.

Гельзолин, виллин и фрагмин копируют положительный полюс тонкого микрофиламента. Акументин выполняет подобную функцию со стороны отрицательного полюса.

Тонкие микрофиламенты обеспечивают опорно-каркасную функцию, контролируют циклоз, участвуют в формировании адгезивных контактов (пояска сцепления или ленточной десмосомы). В поясках сцепления тонкие микрофиламенты лежат параллельно цитомембране вдоль адгезивного контакта. Они укрепляют данный контакт, связываясь также с элементами внутриклеточного цитоскелета.

Наряду с микротрубочками микрофиламенты контролируют направление транспортных потоков и распределение макромолекулярных образований, органелл. В циклозе важное значение имеет полярность тонких микрофиламентов, противоположная к микротрубочкам.

Микрофиламенты участвуют в движении клетки. Одним из ведущих факторов, обеспечивающих движение, является взаимодействие актина с толстыми микрофиламентами, содержащими миозины. В присутствии ионов кальция в поперечнополосатых мышцах это взаимодействие ведет к сокращению симпласта. В гладких миоцитах и немышечных клетках подобную роль играет взаимодействие с минимиозинами, а также способность актинов к быстрому распаду и полимеризации.

В результате перераспределения тонких микрофиламентов в кортикальной зоне клетка может формировать впячивания (псевдоподии, ламеллоподии). Это позволяет обеспечивать локальные движения и перемещения целой клетки. Подобный процесс лежит в основе фагоцитоза и экзоцитоза.

Если клетка находится в состоянии покоя, в условиях жидкой среды и отсутствия контактов с другими клетками, она отличается округлой формой и равномерной сетью тонких филаментов в цитоплазме. В процессе исследования движения клетки в культурах тканей доказано, что перемещение клетки, например фибробласга, начинается с формирования филоподии - нитчатого выроста цитоплазмы диаметром 0,3…0,5 мкм и длиной до 20 мкм. Затем образуются плоские пластинчатые выросты - ламеллоподии или выросты, напоминающие оборки - «рафлы». Ламеллоподии затем сливаются так, что образуется особая зона - ламеллярная цитоплазма, в которой почти нет органелл и рибосом, но много микрофиламентов. Если клетка равномерно распластана, то она отличается концентрацией органелл вокруг ядра, лежащего в центре. К наружи от органелл тонкие микрофиламенты формируют кольцо.

В процессе формирования ламеллоподий может активироваться движение клетки. Движение обусловлено преобладанием в одном из направлений адгезивных или так называемых хемотаксических факторов.

Хемотаксические факторы - это вещества, стимулирующие перемещение клеток в направлении их наибольшей концентрации. Начало перемещения сопровождается перераспределением органелл и других структур (поляризацией) клетки. Такая активированная к движению клетка отличается тем, что псевдоподии и ламеллярная цитоплазма сохраняются на одной из сторон клетки. Именно эта сторона клетки и есть направление ее дальнейшего перемещения. Боковые поверхности клетки остаются неактивными. Перемещающаяся поверхность взаимодействует с внеклеточными структурами с помощью точечных (фокальных) контактов. Тонкие филаменты распределены в виде пучков вдоль оси перемещения. Область ламеллоподии содержит многочисленные тонкие микрофиламенты и микротрубочки. С их помощью происходит транспорт элементов клеточной мембраны от полюса с малым содержанием хемотаксинов в полюс с их высокой концентрацией. В результате клетка подтягивается в направлении перемещения. В последующем цикл перемещения повторяется.

В течение цикла тонкие микрофиламенты и микротрубочки непрерывно перераспределяются. Сеть микрофиламентов крайне неустойчива и все время перестраивается. В клетке, свободно плавающей в межклеточном веществе, тонкие микрофиламенты располагаются диффузно. В покое тонкие актиновые микрофиламенты концентрируются в виде кольца, а часть из них лежит в виде радиальных пучков. Во время перемещения тонкие микрофиламенты распределяются вдоль основного направления движения. По ламеллярному краю видны отдельные волокна или их пучки, которые лежат параллельно поверхности клетки.

Перемещения клеток необходимы для нормального функционирования и развития тканей и органов. Так, процессы миграции обеспечивают развитие зародышевых листков, внезародышевых клеток, формирование центральной и периферической нервных систем. Без активных перемещений невозможны иммунные реакции, функционирование эпителиальных тканей и фибробластов, многие другие процессы.

Тонкие микрофиламенты являются опорой (основой) для микроворсинок и стереоцилий. В структуре этих специализированных образований тонкие филаменты располагаются в виде тесно лежащих пучков.

Толстые микрофиламенты . Они образованы белками миозинами (меромиозинами). Толстые микрофиламенты в поперечном сечении имеют диаметр 10…12 нм. Эти структуры находятся в мышечной ткани, обеспечивают мышечное сокращение при взаимодействии с актиновыми филаментами.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Цитоскелет состоит из нескольких компонентов. Там есть микротрубочки, я их упоминал, когда обсуждал фагоцитоз.

Микротрубочки полностью соответствуют своему названию. Это прямые микроскопические трубочки (наружный диаметр 28 нм, внутренний - 14 нм), состоящие из двух похожих друг на друга белков a-тубулина ("альфа-тубулин") и b-тубулина ("бета-тубулин"). Два конца микротрубочки отличаются друг от друга некоторыми важными свойствами (их называют "+" и "-"-концы ). В ДНК клетки имеются два разных гена, содержащие информацию о последовательностях аминокислот a- тубулина и b- тубулина.

После синтеза на рибосомах в цитоплазме молекулы а- и b- тубулина объединяются вдимеры ("ди" - "два", "мерос" - "часть"). Димеры тубулина при определенных условиях могут присоединяться к "+"-концу микротрубочки, микротрубочка при этом удлиняется. С "-"-конца микротрубочки могут разбираться (то есть от него отделяются димеры тубулина, и микротрубочка при этом укорачивается).

Изменяя условия в разных частях цитоплазмы, клетка имеет возможность делать сеть микротрубочек в ней более или, наоборот, менее густой. Кроме того, есть белки, способные присоединяться к "+"-концам микротрубочек, прекращая тем самым их сборку, и другие белки, способные присоединяться к "-"-концам и прекращать разборку микротрубочек (вместе они называются “кэпирующие белки ”).

Известны специальные транспортные белки, способные перетаскивать по микротрубочкам различные органоиды клетки. Один из них, кинезин , переносит их в направлении от "-"- к "+"-концу.

Следующий момент связан с тем, что если какие-то белки портятся, то такая конструкция гарантирует от того, что испортится вся микротрубочка. Если где-то возник разрыв белковой цепочки, то этот белок не присоединиться к плюс-концу или каким-то образом будет удален, или вся микротрубочка разберется. То есть так решается задача как избавляться от испорченных молекул.

Естественно, все макромолекулы в клетке постепенно портятся. И часть конструкций клетки ориентирована на удаление испорченных молекул. Например, в цитоплазме клетки есть ферменты - гидролазы, которые расщепляют белки. У всех белков, находящихся в цитоплазме, концы цепочки аминокислот спрятаны внутрь белковой глобулы. В норме они не торчат наружу. Если появился кончик, значит возник разрыв. И такой белок будет уничтожен, расщеплен на отдельные аминокислоты, которые потом можно опять использовать. И это правильно, так как белок испорчен. Похожая ситуация с нуклеиновыми кислотами - они как правило защищены от разрушения.

Из микротрубочек состоят центриоли. Центриоль - это цилиндр, состоящий из девяти троек микротрубочек. На поверхности цилиндра находятся белковые конструкции, которые служат центрами организации микротрубочек. Они обладают способностью создавать короткие участки микротрубочек из димеров тубулина. И каждому короткому участку дальше могут присоединяться димеры тубулина, и от центриоли в разные стороны расходятся микротрубочки. Это существенно при митозе. Так что центриоль служит центром организации микротрубочек.

Центриоль является также основанием ундулиподии, они же жгутики или реснички. Это характерный органоид, которые, видимо, также как митохондрии и хлоропласты, имеет симбиогенное происхождение. Были некоторые симбиотические бактерии, которые постепенно превратились в ундулиподии.

Есть два варианта того как работают реснички. Есть два варианта работв ундулиподии. Один вариант, который называется ресничка, делает взмах, поверхность, к которой она прикреплена, получает толчок. Начальный участок реснички при этом становится мягкой и начинает сгибаться. Ресничка работает (делает эффективный удар) в одной плоскости.

У протистов (у инфузорий) ресничка иногда может совершать так называемый реверс, то есть бить в обратную сторону. В любом случае движение означает, что для того, чтобы животное двигалось в определенную сторону, все реснички должны быть ориентированы своими плоскостями в одну и ту же сторону. Действительно, так и есть. На теле планарии, например, они ориентированы в одну сторону.

Другой вариант - это жгутик. В этом случае кончик ундулиподии двигается по кругу. При этом в зависимости от того, как изогнута сама нить жгутика, жгутик может быть тянущим или толкающим. На рис. Показан вариант толкающего и тянущего жгутика.

Сама по себе нить закручена в спираль, витки которой перемещаются - обычно от основания к кончику жгутика. В результате в зависимости от того, как соотносится направление вращения и направление закрученности спирали, жгутик или «ввинчивается» в воду или как бы «вывинчивается».

У некоторых простейших бывает промежуточный вариант, когда ундулиподия работает как жгутик, но описывает при этом фигуру не круг, а сильно вытянутый овал.

Как устроена эта конструкция внутри. На срезе реснички видны девять пар микротрубочек. При этом в центре имеются еще две микротрубочки, соединенные некими связками и окруженные цилиндром из белка нексина. Это называется центральный цилиндр, от каждой пары микротрубочек центрального цилиндра отходит спица, которая тоже состоит из белка нексина.

Кроме того, каждая пара имеет «ручки» - выросты, состоящие из белка динеина, который обладает способностью, потребляя АТФ, присоединяться к соседней микротрубочке и создавать разность высот между парами микротрубочек. В результате, когда из 9 пар микротрубочек срабатывают динеиновые «ручки» примерно на половине, то какие-то пары микротрубочек поднимаются выше, а какие-то - опускаются. Жгутик сгибается, происходит взмах. Примерно так работает ундулиподии, которые используется при движении простейших.

Основной белок другой части цитоскелета - микрофиламентов - называется актин. Глобулы актина (называемого в этом состоянии г-актин) способны объединятся в нити, представляющие собой двойные спирали, соединенные между собой. Получается двойная спираль с двумя желобками. Есть большое количество белков, влияющих на архитектуру этой системы нитей. Есть белки, которые соединяют вместе случайно коснувшиеся нити, есть белки, которые слепляют их в пучки, и разные другие другие. Один из белков, регулирующих структуру нитей, называется тропомиозин. Он тоже образуется в виде глобул и формирует нити.

Дальше эти нити укладываются в два желобка на нитях f-актина. Есть еще один белок, называется тропонин, который состоит из трех субъединиц. Одна субъединица связывается с f-актином, вторая способна связываться с тропомиозином, а третья обладает способностью обратимо связывать кальций. При наличии ионов кальция в растворе смесь субъединиц соединяется. Если убрать кальций, то кальций отделяется и все возвращается в исходное состояние.

Такой филамент, состоящий из этих трех белков, в присутствии кальция будет переходить в другое состояние, при котором тропонин, удлинившись, будет вытаскивать из желобков нити тропомиозина. В результате при наличии кальция желобки будут открываться, а если кальций из среды убрать - закрываться. Зачем это нужно, сейчас объясню.

Еще один белок, принимающий участие в сокращении, называется миозин. Его структура хорошо изучена и представляет собой две переплетенные альфа-спирали с головками на концах. При этом имеется так называемая шарнирная область, в которой возможны изгибания. Даже одна такая молекула способна, связываясь головками с желобками актинового филамента, способна в присутствии кальция по нему взбираться, попеременно сгибаясь и разгибаясь (с расходом АТФ).

Молекулы миозина способны объединятся в димеры. Такой димер способен прикрепиться к двум нитям актина и двигать их навстречу друг другу в присутствии кальция. Более того, молекулы миозина способны слипаться друг с другом в агрегаты большего размера, так что получаются конструкции из сотен и даже тысяч молекул. Они представляют собой цилиндр с шестью рядами головок.

Внутри - молекулы миозина, а торчат ряды головок. В середине такой молекулы есть пространство в котором, с одной стороны молекула ориентирована в одну сторону, а с другой - в другую, ширина конструкции примерно равна удвоенной длине молекулы миозина. В агрегате шесть филаментов с одной и шесть с другой стороны, и как только в среде появится кальций, они могут быть потащены навстречу друг другу.

Из таких агрегатов может быть составлена более сложная структура. Агрегат миозина с шестью рядами головок и нити актина (актиновые филаменты) - опять агрегат миозина и т.д. То есть получается по сути кристаллическая структура, в которой каждый актиновый филамент связан с тремя миозиновыми, а каждый миозиновый - с шестью актиновыми. Вся структура может сокращаться, и примерно так устроено мышечное волокно, например, поперечно-полосатые мышцы.

К диску из специального белка с двух сторон прикреплены актиновые филаменты. Между актиновыми филаментами находятся агрегаты миозина. Получается структура с поперечными полосками (отсюда и название поперечно-полосатая мышца). Если в нее подать кальций, а для этого нужны участки эндоплазматической сети и белки-каналы в ней, которые в нужный момент откроются. Чтобы они открылись, нужно, чтобы по мембране мышцы побежал потенциал действия, о котором вам потом расскажут. Кальций выйдет, и тогда вся конструкция сократиться. Головки миозина присоединятся к актиновым филаментам и потянут их.

Ядро и ядерная оболочка. Ядерная оболочка двойная, в ней есть ядерные поры, они окружены в три ряда кругом из восьми белками. Один внешний круг контактирует с цитоплазмой, другой средний и внутренний круг контактирует с внутренностью ядра. Ядерная пора выполняет достаточно сложную функцию. Все белки синтезируются в цитоплазме. Соответственно, ядерная пора должна пропустить внутрь ядра только те белки, которые должны там работать, и не пропустить другие.

Исследования показали, что существует определенная последовательности аминокислот, которая является пропуском внутрь ядра. Если эти 5-6 аминокислот химически присоединить к шарику латекса, и взвесь таких шариков инъецировать внутрь клетки, то белки пор протащат шарики в ядро. С другой стороны, эти же белки должны не выпускать из ядра молекулы ДНК, РНК и др.

Молекулы ДНК особым образом закреплены в ядре, так что каждой молекуле (хромосоме) соответствует определенная хромосомная территория, участок внутри ядра. Иногда при повреждении клетки, например под действием радиации, хромосомы с двух сторон ядра двигаются навстречу друг другу и с помощью специальных белков сравниваются и исправляют повреждение. Это все мало изучено, известно только, что ДНК прикреплена.